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Abstract

Transposable elements (TEs) are mobile genetic elements in eukaryotic genomes. Recent

research highlights the important role of TEs in the embryogenesis, neurodevelopment, and

immune functions. However, there is a lack of a one-stop and easy to use computational

pipeline for expression analysis of both genes and locus-specific TEs from RNA-Seq data.

Here, we present GeneTEFlow, a fully automated, reproducible and platform-independent

workflow, for the comprehensive analysis of gene and locus-specific TEs expression from

RNA-Seq data employing Nextflow and Docker technologies. This application will help

researchers more easily perform integrated analysis of both gene and TEs expression, lead-

ing to a better understanding of roles of gene and TEs regulation in human diseases. Gene-

TEFlow is freely available at https://github.com/zhongw2/GeneTEFlow.

Introduction

Transposable elements (TEs) are mobile DNA sequences which have the capacity to move

from one location to another on the genome [1]. TEs make up a considerable fraction of most

eukaryotic genomes and can be classified into retrotransposons and DNA transposons accord-

ing to their different mechanisms of transposition and chromosomal integration [2, 3]. Retro-

transposons are made of Long Terminal Repeats (LTRs) and non-LTRs that include long

interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) that

mobilize via a RNA intermediate, while DNA transposons mobilize and function through a

DNA intermediate [4–6]. TEs can be transcribed from the genome [7] and have been demon-

strated to play important roles in the mammalian embryogenesis [8, 9], neurodevelopment

[10, 11], and immune functions [12, 13]. Furthermore, aberrant expressions of TEs have been

linked to cancers [14–16], neurodegenerative disorders [17, 18], and immune-mediated

inflammation [19, 12]. Therefore, it has become increasingly important to explore biological

roles of TEs expression. However, genome-wide analysis of TEs expression from high through-

put RNA sequencing data has been a challenging computational problem. TEs contain highly

repetitive sequence elements, making it arduous to unambiguously assign reads to the correct
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genomic location and accurately quantitate their expression level. Several bioinformatics tools

have been developed to address this challenge with relatively good success [16, 20–22].

Recently, SQuIRE was reported to have the capability to quantify locus-specific expression of

TEs from RNA-Seq data [22]. In addition, RNA-Seq data has long been used to detect dysregu-

lated genes between different disease and/or drug treatment conditions to help understand dis-

ease mechanisms and/or drug response mechanisms. Therefore, it is of great interest to

quantify both TEs and gene expression to elucidate contribution of both to disease mecha-

nisms. Although many open source software and tools exist for analysing gene [23–25] and

TEs expression, there are considerable challenges to efficiently apply these tools. In general,

these multi-step data processing pipelines use many different tools. Correct versions of each

tool need to be installed separately, and appropriate options, parameters, different reference

genome and gene annotation files have to be set at each step. This can be quite tedious and

challenging especially for non-computational users. Additionally, to ensure reproducibility of

the analysis results, it is critical to capture analysis parameters from each step of the process.

Equally important, to enable general use of the pipeline, the pipeline should be platform agnos-

tic. Thus far, a one-stop computational framework for the comprehensive analysis of gene and

locus-specific TEs expression from RNA-Seq data does not exist.

To address this need, we developed GeneTEFlow, a reproducible and platform-indepen-

dent workflow, for the comprehensive analysis of gene and locus-specific TEs expression from

RNA-Seq data using Nextflow [26] and Docker [27] technologies. GeneTEFlow provides sev-

eral features and advantages for integrated gene and TEs transcriptomic analysis. First, by

employing Docker technology, GeneTEFlow encapsulates bioinformatics tools and applica-

tions of specific versions into Docker containers enabling tracking, eliminating the need for

software installation by users, and ensuring portability of the pipeline on multiple computing

platforms including stand-alone workstations, high-performance computing (HPC) clusters,

and cloud computing systems. Second, GeneTEflow uses Nextflow to define the computational

workflows, not only enabling parallelization and complete automation of the analysis, but also

providing capability to track analysis parameters. Thus, GeneTEFlow allows users to generate

reproducible analysis results through utilization of both Docker and Nextflow in a platform

independent manner. Lastly, GeneTEFlow has modular architecture, and modules in GeneTE-

Flow can be turned on or off, providing developers with flexibility to build extensions tailored

to specific analysis needs.

Implementation

The GeneTEFlow pipeline was developed using Nextflow, a portable, flexible, and reproducible

workflow management system, and Docker technology, a solution to securely build and run

applications on multiple platforms. To build the GeneTEFlow pipeline, a series of bioinformat-

ics tools (S1 Table) were selected for QC, quantitation and differential expression analysis of

genes and TEs from RNA-Seq data. These bioinformatics tools and custom scripts were built

into four Docker containers to ensure portability of the workflow on different computational

platforms. Data processing and analysis steps were implemented by modules using Nextflow.

Modules are connected through channels and can be run in parallel. Each module in GeneTE-

Flow can include any executable Linux scripts such as Perl, R, or Python. Parameters for each

module are defined in a configuration file.

A conceptual workflow of GeneTEFlow is illustrated in Fig 1. The workflow includes four

major inputs: raw sequence files in fastq format, a sample meta data file in excel format, refer-

ence genome and gene annotation files, and a Nextflow configuration file. The sample meta

data file contains detailed sample information and the design of group comparisons between
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different experimental conditions. Human reference genome UCSC hg38 with the gene anno-

tation (.gtf) was downloaded from Illumina iGenomes collections [28] and used by the bioin-

formatics tools included in GeneTEFlow. Scheduling of computational resources for each

application module is defined in the configuration file.

GeneTEFlow analysis is performed in following steps: QC, expression quantification, differ-

ential expression and down-stream analysis. First, adapter sequences are trimmed off from the

Illumina raw reads using Trimmomatic(v0.36) [29] for single-end or paired-end reads, and

low-quality reads are filtered out. Next, FastQC(v0.11.7) [30] is executed to survey the quality

of sequencing reads, and report is generated to help identify any potential issues of the high

throughput sequencing data. Reference genome index for mapping sequencing reads to

mRNA genes is built using “rsem-prepare-reference” of RSEM (v.1.3.0). Reads remaining after

the pre-processing step are mapped to the reference genome using STAR(v2.6.0c) [31]. Gene

level expression is quantitated as expected counts and transcripts per million (TPM) using

“rsem-calculate-expression” of RSEM(v1.3.0) with default parameters [32]. Custom Perl

scripts were developed to aggregate data from each sample into a single data matrix for

expected counts and TPM values respectively. The expression quantification of locus-specific

TEs is performed by SQuIRE [22]. After aligning reads to reference genome, SQuIRE classifies

reads into unique reads (reads mapped to a single locus) and multi-mapping reads (reads

mapped to multiple locations). Then SQuIRE calculates unique read expression of each anno-

tated TE and assigns the fractions of multi-mapping reads based on the normalized unique

read expression of each TE. Finally, expectation-maximization (EM) algorithm was

Fig 1. Illustration of GeneTEFlow: a Nexflow-based pipeline for identification of differentially expressed genes and locus specific transposable elements from

RNA-Seq data.

https://doi.org/10.1371/journal.pone.0232994.g001
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implemented in SQuIRE to recursively calculate the fractions of multi-mapping reads (E-step)

of each TE, and re-estimate total read counts (M-step) until convergence.

In addition, we also implemented quality control measures after reads alignment step to

detect potential outlier samples resulted from experimental errors. Boxplot and density plot

are used to evaluate the overall consistency of the expression distribution for each sample.

Sample correlation analysis is performed with Pearson method using TPM values to assess the

correlation between biological replicates from each sample group. Principal component analy-

sis (PCA) is employed to identify potential outlier samples and to investigate relationships

among sample groups.

Differential expression analysis of genes and transposable elements is performed using

DESeq2(v1.18.1) package [33]. Significantly up-regulated and down-regulated genes and TEs

are summarized in a table. To analyse overlap among significantly regulated genes and TEs

from pair-wise comparisons between different sample groups we use Venn diagrams. We per-

form hierarchical clustering of significantly dysregulated genes or TEs using R package “Com-

plexHeatmap” [34] with euclidean distance and average linkage clustering parameters. Gene

set enrichment analysis (GSEA, v3.0) [35] is conducted using collections from the Molecular

Signatures Database (MSigDB) [36]. The outputs (S2 Table) from GeneTEFlow are organized

into several folders predefined in a GeneTEFlow configuration file.

In addition, GeneTEFlow can be run in step-by-step mode, which allows users to explore

their RNA-Seq data. On GitHub, we include an example on how to run GeneTEFlow in a flexi-

ble manner where user has an option to remove some low-quality samples before proceeding

with the differential expression analysis. A tutorial with detailed instructions on how to set up

and run GeneTEFlow is provided at https://github.com/zhongw2/GeneTEFlow.

Application of GeneTEFlow

We applied GeneTEFlow to a public dataset from Brawan’s study [37] investigating tissue-spe-

cific expression changes of genes and transposable elements. Human RNA-Seq data from

brain, heart and testis tissues were downloaded from GEO (accession number: GSE30352) (S3

Table). Expression analysis of genes and TEs were performed using GeneTEFlow and results

are shown in Fig 2. Gene expression analysis was performed using RSEM and DESeq2 mod-

ules while TEs expression analysis was conducted using SQuIRE and DESeq2 modules within

GeneTEFlow. Significantly regulated genes were identified with FDR less than 0.05 and fold

change greater than 2. Significantly regulated locus-specific transposable elements were identi-

fied with FDR less than 0.05 and fold change greater than 1.5. The number of significantly reg-

ulated genes and transposable elements were summarized into two tables respectively (Fig 2,

top panels). Using GeneTEFlow, we detected genes and TE differentially expressed between

different tissue types (brain vs heart tissues: 6,264 genes and 1,277 TEs; testis vs heart tissues:

7,066 genes and 595 TE; brain vs testis tissues: 8,125 genes and 1,297 TEs) with most signifi-

cant gene and TE expression differences observed being between brain and testis tissues. Our

analysis identified large number of both genes and TEs with tissue specific expression patterns

(Fig 2, middle panels and bottom panels). More in depth analysis to include additional tissue

types would be required to fully understand the tissue specific gene and TEs expression and

their relationship. GeneTEFlow is a computational solution to facilitate such studies.

Although SQuIRE provides both gene and TEs expression quantification, we also imple-

mented the widely used RSEM method to provide users with alternative approaches when

only gene expression quantification is desired. We compared gene level expression quantifica-

tion between RSEM and SQuIRE (S1 Fig). The results showed high concordance (correlation

coefficient: ~97%) of the gene level expression quantification between the two methods (S1
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Fig, highlighted in red box) suggesting a robust measurement for both gene and TEs expres-

sion by SQuIRE.

Conclusions

In conclusion, we have developed and made available an automated pipeline to comprehen-

sively analyse both gene and locus-specific TEs expression from RNA-Seq data. Taking advan-

tage of the advanced functionalities provided by Nextflow and Docker, GeneTEFlow allows

users to run analysis reproducibly on different computing platforms without the need for indi-

vidual tool installation and manual version tracking. We believe this pipeline will be of great

help to further our understanding of roles of both gene and TEs regulation in human diseases.

This pipeline is flexible and can be easily extended to include additional types of analysis such

as alternative splicing, fusion genes, and so on.

Fig 2. Differential expression analysis results of genes and transposable elements from GeneTEFlow. Left panels:

gene results; right panels: TEs results. Top panels: number of significantly regulated genes or TEs in each sample group

comparison. Significance was defined as following: FDR� 0.05 and fold change� 2 for gene expression analysis;

FDR� 0.05 and fold change� 1.5 for TEs expression analysis. Middle panels: overlaps of significantly regulated genes

or TEs amongst sample group comparisons. Bottom panels: hierarchical clustering of significantly regulated genes or

TEs.

https://doi.org/10.1371/journal.pone.0232994.g002
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Supporting information

S1 Fig. Comparison of gene expression quantification by RSEM and SQuIRE. Gene expres-

sion (total 22,955 genes) of samples from brain tissues (left), heart tissues (middle), and testis

tissues (right) was calculated by both RSEM and SQuIRE. Lower diagonal panels: pairwise

comparisons using log2(TPM + 1) of 22,955 genes. Upper diagonal panels: Pearson correlation

coefficient of each comparison. Panels highlighted in red: Pearson correlation coefficient of

comparisons between RSEM and SQuIRE gene expression quantification of the same sample.

Rep_: replicate, _RSEM: quantification performed by RSEM, _SQuIRE: quantification per-

formed by SQuIRE.

(TIF)

S1 Table. Major bioinformatics tools installed in GeneTEFlow.

(DOCX)

S2 Table. Major outputs from GeneTEFlow.

(DOCX)

S3 Table. Human RNA-Seq data used in the example application of GeneTEFlow.

(DOCX)
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