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Abstract

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer death globally.

More accurate and reliable diagnostic methods/biomarkers are urgently needed. Joint appli-

cation of metabolomics and transcriptomics technologies possesses the high efficiency of

identifying key metabolic pathways and functional genes in lung cancer patients. In this

study, we performed an untargeted metabolomics analysis of 142 NSCLC patients and 159

healthy controls; 35 identified metabolites were significantly different between NSCLC

patients and healthy controls, of which 6 metabolites (hypoxanthine, inosine, L-tryptophan,

indoleacrylic acid, acyl-carnitine C10:1, and lysoPC(18:2)) were chosen as combinational

potential biomarkers for NSCLC. The area under the curve (AUC) value, sensitivity (SE),

and specificity (SP) of these six biomarkers were 0.99, 0.98, and 0.99, respectively. Poten-

tial diagnostic implications of the metabolic characteristics in NSCLC was studied. The

metabolomics results were further verified by transcriptomics analysis of 1027 NSCLC

patients and 108 adjacent peritumoral tissues from TCGA database. This analysis identified

2202 genes with significantly different expressions in cancer cells compared to normal con-

trols, which in turn defined pathways implicated in the metabolism of the compounds

revealed by metabolomics analysis. We built a fully connected network of metabolites and

genes, which shows a good correspondence between the transcriptome analysis and the

metabolites selected for diagnosis. In conclusion, this work provides evidence that the meta-

bolic biomarkers identified may be used for NSCLC diagnosis and screening. Comprehen-

sive analysis of metabolomics and transcriptomics data offered a validated and

comprehensive understanding of metabolism in NSCLC.

1. Introduction

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. The inci-

dence and mortality rates of lung cancer have significantly increased in recent years [1].
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NSCLC is generally diagnosed by computed tomography (CT) and followed by percutaneous

lung biopsy. However, early diagnosis using non-invasive and cost-effective methods attracts

increasing attention. To develop better diagnostics and more effective treatments, research in

the past decades has focused on the identification of molecular changes in the genome, tran-

scriptome, proteome, and more recently also in the metabolome [2].

Metabolomics, currently the predominant methodology for early diagnosis and precision

medicine, focuses on small molecules to reveal alterations in the metabolism of biological sys-

tems. Metabolomics could also gain insight into the progression of cancers from a metabolic

view [3]. The metabolomics techniques commonly employed in lung cancer diagnosis are

nuclear magnetic resonance analysis (NMR), gas chromatography/mass spectrometry (GC/

MS), and liquid chromatography/mass spectrometry (LC/MS) [4]. Among these techniques,

LC/MS is the most frequently used, because it has the advantages of high sensitivity and high

throughput. Metabolite profiling is a relatively underrepresented field of biomarker develop-

ment for identifying and characterizing lung cancer, revealing differences in concentration of

metabolites or alterations of metabolic pathways. Previous studies have identified metabolite

differences in lung cancer patients related to altered amino acid metabolism, glycolysis and

gluconeogenesis, protein metabolism, handling of oxidative stresses, and fatty acid metabolism

[3–9]. NSCLC is a heterogeneous disease covering a heterogeneous population, with a complex

system for classifying the disease state and progression [10]. However, the sample sizes

employed in previous work were limited, and the validation of larger numbers of samples is

needed to provide more reliable information.

Transcriptomics enables us to interpret the functional elements of the genome and reveal

the global gene expression profiles associated with the disease. Integration of metabolomics

with transcriptomics data has recently been used in cancer research and may lead to more

insight into these fields than either approach alone. Finding that dysregulation of metabolites

and genes occur in the same biological processes in cancer provides enhanced validation to

potential diagnostic biomarkers.

To date, no study has been conducted to explore NSCLC through the integration of meta-

bolomics and transcriptomics with large sample sizes. Here, we carried out a comprehensive

analysis of metabolomics and transcriptomics data to discover dysregulated pathways and

identify more reliable biomarkers for the diagnosis of NSCLC. We performed serum metabo-

lomic analysis of samples from patients with NSCLC and healthy controls using ultra-high-

performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/

Q-TOF MS). In addition, we conducted transcriptomics analysis of data from the cancer

genome atlas (TCGA, https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga/?redirect=true) database to validate dysregulated pathways and to

clarify relationships between the mis-regulation of genes and metabolites. The overview work-

flow of the comprehensive analysis of metabolomics and transcriptomics in NSCLC is summa-

rized in Fig 1. The integration of metabolomics and transcriptomics analysis will produce

more reliable biomarkers and provide a complementary method for cancer detection.

2. Experimental

2.1. Chemicals and reagents

We purchased acetonitrile and methanol (HPLC grade) from Fisher Scientific (Fairlawn, NJ,

USA). Formic acid (HPLC grade) was from Fisher Scientific (Waltham, MA, USA). Ammo-

nium acetate (HPLC grade) was purchased from Beijing Reagent Company (Beijing, China).

Distilled water was filtered through the Milli-Q system (Millipore, MA, USA).
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2.2. Metabolomics sample collection and preparation

All serum samples were collected from fasting subjects and provided by the First Affiliated

Hospital of Zhengzhou University, Zhengzhou, China from November 2011 to July 2018. The

study was approved by the Institutional Review Board of the First Affiliated Hospital of Zheng-

zhou University. All subjects provided written informed consent according to the institutional

guidelines. After collection, all serum samples were kept at -80˚C until use.

Fig 1. An overview workflow of the comprehensive analysis of metabolomics and transcriptomics in NSCLC.

https://doi.org/10.1371/journal.pone.0232272.g001

Table 1. Characteristics of the metabolomics study population.

Training set(n = 208) validation set(n = 93)

NSCLC Healthy pa NSCLC Healthy pa

number 99 109 43 50

Anthropometric characteristics

age (years) 55.5 (39,67) 44 (35, 69) <0.0001 57 (38,68) 42 (33,55) <0.0001

gender (M/F) 54/45 64/45 0.544 27/15 24/26 0.117

Weight (kg) 66.5(45, 88) 77.1(44.6, 88.3) 0.1002 69(45,86) 64.7(46,87) 0.218

Cancer type

Squamous carcinoma 31 18

Adenocarcinoma 68 25

aUnpaired t tests for continuous measures and χ2 tests for categorical variables

https://doi.org/10.1371/journal.pone.0232272.t001
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The inclusion criteria of patients were as follows: patients were newly diagnosed with

NSCLC and had not received previous surgery, radiotherapy, or chemotherapy. The cancer

diagnosis was performed by histopathological analysis of tissue specimens. Healthy volunteers,

none of whom had known chronic or major diseases, or were undergoing any treatment, were

matched for weight and sex with the patients enrolled. We collected one batch of serum sam-

ples from 99 NSCLC patients (31 with squamous carcinoma and 68 with adenocarcinoma)

and 109 healthy controls at the discovery phase. The age and sex information are provided in

Table 1. We used another batch of serum samples from 43 NSCLC patients (18 with squamous

carcinoma and 25 with adenocarcinoma) and 50 healthy controls at the validation phase. The

two batches were treated with the same preparative and analytic methods.

Small molecule metabolites were extracted from serum after removing macromolecules by

the addition of 400 μL acetonitrile to 100 μL of serum, vortexing for 1 min, and centrifugation

at 14,000 rpm for 10 min at 4˚C. Next, two 200 μL aliquots of supernatant were lyophilized for

analysis in positive and negative electrospray ionization (ESI+ and ESI-) mode. The lyophi-

lized samples were re-dissolved in 100 μL acetonitrile/water (20:80, v/v) for injection.

QC samples were prepared by combining equal aliquots from all serum samples and were

injected every five specimens during the whole analysis. The QCs were used to test the instru-

ments, equilibrate the UPLC/Q-TOF MS system before sample injection, and examine the sta-

bility of the system during the analytical procedure. All samples were prepared and analyzed

from 11 December 2018 to 17 December 2018.

2.3. UPLC/Q-TOF MS based metabolome profiling

The sample analysis was performed on a UPLC-ESI-Q-TOF system (AB Sciex, Framingham, MA,

USA). Chromatography separation was achieved on an ACQUITY UPLC HSS T3 column

(100 × 2.1 mm i.d., 1.8 μm, Waters Co., MA, USA) maintained at 30˚C in both ESI+ and ESI-

mode. For ESI+, the mobile phase consisted of A (0.1% formic acid in water) and B (0.1% formic

acid in acetonitrile); for ESI-, the mobile phase consisted of C (5 mM ammonium acetate in water)

and D (5 mM ammonium acetate in 10% water/acetonitrile). Gradient elution was carried out

using 0–1 min, 5–30% B or D; 1–3 min, 30–60% B or D; 3–10 min, 60–95% B or D; 10–12 min,

95–95% B or D; 12–12.1 min, 5% B or D; and 12.1−14 min, 5% B or D in ESI+ or ESI- mode. The

flow rate was set at 0.4 mL/min, and the injection volume was 3 μL in both ESI+ and ESI- modes.

The mass spectrometric data were collected on a SCIEX X500R QTOF mass spectrometer

(AB Sciex, Framingham, MA, USA) coupled with an electrospray ionization interface (ESI).

We employed SCIEX OS software 1.2 (AB, Milford, MA, USA) for data acquisition and pro-

cessing. The electrospray ion source temperature and spray voltage were set to 600˚C, 5500 V,

and 600˚C, -4500 V, for the ESI+ and ESI- modes, respectively. The declustering potential

(DP), collision energy (CE), Collision Energy Spread (CES), gas 1, gas 2, and curtain gas were

80 V, 40 V, ±20 V, 60 psi, 60 psi, and 35 psi, respectively. Nitrogen was kept as the nebulizer

and auxiliary gas. TOF MS and TOF MS/MS were scanned with the mass range of m/z 50–

1000. Continuous recalibration was carried out after every sixth sample. Also, dynamic back-

ground subtraction (DBS) trigger information-dependent acquisition (IDA) was used to

obtain MS/MS data for low-level constituents. The accurate mass and composition for the pre-

cursor ions and fragment ions were analyzed using the Markerview™ software (Version 4.1,

Waters Co., Milford, MA, USA) integrated with the instrument.

2.4. Metabolomics data analysis

Raw data from TOF-MS were analyzed using Markerview for peak deconvolution and peak

alignment with the following parameters: initial retention time, 0.5 min; final retention time,
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23 min; mass tolerance, 20 PPM; ion intensity threshold, 300 counts; and retention time toler-

ance, 0.1 min. The data were combined into a single matrix by aligning peaks with the same

mass-retention time features from each data file in the dataset. According to the 80% rule, the

background and biologically irrelevant information were eliminated, and only variables with

values above zero presenting in at least 80% of each group were kept for the following analysis.

The ion intensities of each peak detected (2241 MS features for the ESI+ mode and 666 for the

ESI- mode) were normalized to the sum of the peak intensities in each sample.

We imported output data from TOF-MS separately into SIMCA (version 14.0, Umetrics,

Umeå, Sweden) for multivariable analysis (unit variance scaled). To provide comparative

interpretations and visualization of the metabolic differences between NSCLC patients and

healthy controls, principal component analysis (PCA) and orthogonal signal correction partial

least-squares discriminant analysis (OPLS-DA) were applied. We describe the quality of the

models by R2X and Q2 values. R2X shows the proportion of variance in the data explained by

the models and indicates the goodness of fit. The closeness of a value to 1 indicates the good-

ness of fit. Q2, in contrast, shows the proportion of variance in the data predictable by the

model and indicates predictability. The results are visualized in the form of score plots, where

each point represents an individual sample (to show the group clusters), and loading plots or

S-plots, where each coordinate represents one mass-retention feature (to identify the variables

contributing to the classification). The variable importance of projection (VIP) is the vector

that summarizes the total importance of the variable in explaining the model. The correspond-

ing variables with VIP >1.0 were chosen as potential discriminant metabolites. Statistical anal-

ysis was also performed using a one-way analysis of variance (ANOVA) followed by Tukey’s

multiple comparison test (SPSS, Chicago, IL, USA). Metabolite with P< 0.05 was considered

to be statistically significant between two groups.

LC-MS Peaks were identified according to actual mass, MS/MS fragments, and retention

time (RT). First, the m/z value of the molecular ion of interest was searched against an in-

house human metabolites database, where data were collected from published research works.

Then, the putative identifications were verified by comparing the MS2 fragmentations from

the human metabolome database (HMDB) and Metabolite HR-MS/MS library (v1.0, AB, Mil-

ford, MA, USA).

Potential metabolite biomarkers that can distinguish NSCLC from healthy controls were

randomly screened using a binary logistic regression model. Receiver operating characteristic

(ROC) analysis was performed. Variables with AUC (area under the curve) values larger than

0.8 were identified as potential metabolite biomarkers and were further validated at the valida-

tion phase of 43 NSCLC patients and 50 healthy controls.

2.5. Transcriptomics analysis

The joint application of the metabolomics and transcriptomics possesses the high efficiency of

identifying key metabolic pathways and functional genes in lung cancer. Although transcrip-

tomics data was not acquired from serum samples collected, the transcriptomics data from the

TCGA database shall verify result revealed by metabolomics analysis and prompt understand-

ing of metabolic pathways interrupted. Thus, transcriptomics analysis from the TCGA data-

base comprising 1027 samples of cancerous tissue and 108 samples of adjacent peritumoral

tissue were conducted (Project ID TCGA-LUAD, TCGA-LUSC). Statistical testing was con-

ducted using R version 3.4.0 as well as a modular open-source programming suite (https://

www.r-project.org). Differentially expressed genes (DEGs) were selected by using the “DESeq.

2” package and analyzed through Student’s t test. Statistical significance was defined as

P< 0.05 and fold change (FC) > 10.
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3. Results and discussion

3.1. Serum metabolic profiling

Typical total ion current (TIC) chromatograms of serum metabolic profiles analyzed using

UPLC/Q-TOF MS in the positive mode (ESI+) or negative mode (ESI-) are shown in Fig 2. No

obvious differences between the NSCLC and healthy groups were detected by visual inspec-

tion. Original data in ESI+ or ESI- mode were imported into Markerview to produce data

matrix with mass-feature and sample name as row and column titles. After eliminating zero

values using the “80% rule,” 988 peaks from the ESI+ mode and 436 peaks from the ESI- mode

were obtained for subsequent data analysis.

We used the QC samples to evaluate system stability and data quality. We found from the

PCA score plots in both the positive and negative modes that all QC samples clustered together

(S1 Fig, S1 Table), demonstrating the stability of the analytical system and the reliability of the

data. Thus, the metabolic profiling data were reliable for classification and further analysis.

3.2. Multivariable analysis

Initially, PCA analysis after unit variance (UV) scaling was conducted to obtain a comprehen-

sive and complete understanding of the metabolic profiling data. The PCA score plots of the

patients with NSCLC and the healthy controls showed clear separation in both positive and

negative mode (see S1 Fig).

To further identify metabolites contributing to the separation of patients and controls, we

established multivariable analysis models based on Pareto Variance (Par) scaling. In the ESI

+ mode, an OPLS-DA model was developed, yielding a clear separation between the two

groups (Fig 3A), with R2Y = 0.902 and Q2 = 0.867. In the ESI- mode, a similar result was

obtained. The score plot (Fig 3B) showed a distinct separation of the patient group from the

healthy group, achieving content modeling and predictive abilities (R2Y = 0.877 and

Q2 = 0.828). In the S-plots (Fig 3C and 3D), the variables far from the center of the plot were

assumed to contribute more to the model classification. No over-fitting for positive or negative

mode was noticed according to the permutation validation (Fig 3E or 3F).

According to VIP list of S-plot, variables with VIP value over 1.0 were considered better

correlated with the separation, and Student’s t test of these variables between the NSCLC and

the healthy groups were conducted. We added the variables to the candidate list whose levels

were statistically significant with P values below 0.05. The candidate list was searched against

an in-house human metabolites database, HMDB as well as Metabolite HR-MS/MS library

(v1.0, AB, Milford, MA, USA).

After these steps, we identified 35 significantly different variables in ESI+ or ESI- mode (S2

Table). The levels of inosine, hypoxanthine, valine, tyrosine, phenylalanine, and lysoPC

decreased in the serum of NSCLC group compared to healthy controls, while those of arachi-

date, sphinganine, lysoPE (18:0), oleic acid, stearic acid, 3-hydroxybutyric acid, and capric

acid were increased.

3.3. Screening of potential biomarkers

Potential metabolite biomarkers that can distinguish NSCLC from healthy controls are very

valuable to auxiliary diagnosis and clinical applications. We used the metabolomic data to

build separate linear classifier models that would distinguish the NSCLC from the healthy

group. We used ROC analysis to assess the performance of the classifier models for group clas-

sification. In this study, all 35 differential metabolites of NSCLC were randomly screened.

Results showed that the ROC curves of hypoxanthine, inosine, L-tryptophan, indoleacrylic
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acid, acyl-carnitine C10:1, and LysoPC (18:2) had AUC values larger than 0.8 (seen in

Table 2). Particularly, hypoxanthine had the highest AUC value of 0.943, with 90.1% sensitivity

and 94.1% specificity, and 95% confidence interval (CI) was [0.916, 0.970].

NSCLC is a complex disease involving changes in the levels of numerous metabolites in var-

ious metabolic pathways, so the combinational biomarker, which consists of two or more

metabolites, could reflect the pathologic status of diseases more comprehensively. Sensitivity

and specificity of the combinational biomarkers were additionally evaluated with ROC curves.

It was found that combinational biomarkers achieved an AUC value of 0.975, while the statisti-

cal analysis provided 95.7% sensitivity and 95.0% specificity for the prediction of NSCLC and

healthy control, with a cutoff value of 0.473. ROC curves are shown in Fig 4A.

Based on ROC analysis, six metabolites that had AUC values above 0.8 were chosen as com-

bination metabolic biomarkers for NSCLC clinical diagnosis. (A): Combinational biomarkers

achieved an AUC value of 0.975 for a discovery set of 99 cases of NSCL and 109 healthy con-

trols. (B): Combinational biomarkers achieved an AUC value of 0.957 for a validation set of 43

cases of NSCLC and 50 healthy controls. (C): Y-predicted scatter plot of validation set (43

NSCLC cases and 50 healthy controls) predicted at a Y cutoff of 0.473; AUC, area under the

curve; CI, confidence interval; LC, lung cancer; and ROC, receiver operating characteristic.

3.4. Validation of the combinational metabolic biomarker

To validate the combinational metabolic biomarker, we collected and analyzed another batch

of serum samples from 43 NSCLC patients and 50 healthy controls using the above method.

The validation results of combinational biomarkers are shown in Fig 4. The concentrations of

hypoxanthine, inosine, L-tryptophan, indoleacrylic acid, acyl-carnitine C10:1, and lysoPC

(18:2) were significantly decreased (P< 0.001), supporting the results from the previous sam-

ple batch. A ROC curve was generated to test the combinational potential biomarkers, yielding

Fig 2. Representative TIC chromatograms of serum from NSCLC patient (red) and healthy people (blue) in ESI+ or ESI- mode.

https://doi.org/10.1371/journal.pone.0232272.g002
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an AUC value was 0.957 (Fig 4B or Table 2), which confirmed that the sensitivity and specific-

ity were satisfactory. Moreover, the combinational markers could evidently distinguish the

NSCLC group from the healthy group (Fig 4C). Thus, the prospective combinational

Fig 3. OPLS-DA score plots, S-plots, and validation plots for the metabolic profiling results of NSCLC patients and healthy people. (A) OPLS-DA score plot for

NSCLC patients versus healthy controls in the ESI+ mode (R2X = 0.370, R2Y = 0.915, Q2 = 0.855). (B) OPLS-DA score plot for NSCLC patients versus healthy controls

in the ESI- mode (R2X = 0.369, R2Y = 0.904, Q2 = 0.816). (C) S-plot for NSCLC patients versus healthy controls in the ESI+ mode. (D) S-plot for NSCLC patients versus

healthy controls in the ESI- mode. (E) Permutation test for NSCLC patients versus healthy controls in the ESI+ mode. (F) Permutation test for NSCLC patients versus

healthy controls in the ESI- mode. The criteria for stability and credibility are as follows: all permuted R2 and Q2 values on the left are lower than the original point on

the right, and the Q2 regression line in blue has a negative intercept.

https://doi.org/10.1371/journal.pone.0232272.g003
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biomarkers appeared to have the potential to provide an auxiliary diagnosis of NSCLC. A large

number of samples were required to confirm this conjecture.

3.5. Metabolomics pathway analysis

The 35 differential metabolites between samples from NSCLC patients and normal controls were

used for pathway analysis conducted using MetaboAnalyst 4.0 (http://www.metaboanalyst.ca). A

total of 29 pathways were enriched (Fig 5A), of which 28 pathways were enriched significantly

with P values less than 0.05 (see Fig 5B and S3 Table). The enriched pathways were mainly

involved in carbohydrate metabolism (pyruvate metabolism, glycolysis or gluconeogenesis, syn-

thesis and degradation of ketone bodies), lipid metabolism (fatty acid biosynthesis, glyceropho-

spholipid metabolism, sphingolipid metabolism), amino acid metabolism (phenylalanine

metabolism, tyrosine metabolism, valine, leucine, and isoleucine metabolism), and purine metab-

olism, which play important roles in the rapid growth of cancer tissue. The rapid proliferation of

cancer cells requires more ATP as well as nucleotides, proteins, fatty acids, and membrane lipids,

which explains the perturbation of metabolites involved in these pathways.

3.6. Transcriptomics data analysis and joint analysis

The gene expression profiles of 1027 NSCLC tissues and 108 adjacent tissues obtained from

TCGA were analyzed in this study. Genes with statistical significance (2202 genes list in S4

Table 2. AUC, SE, and SP of six biomarkers and the combination of these biomarkers for the training set and test set data.

Biomarkers Training set Test set

AUC SE SP AUC SE SP

Hypoxanthine 0.943 0.901 0.941 0.935 0.900 0.900

Inosine 0.925 0.826 0.905 0.921 0.860 0.883

L-Tryptophan 0.870 0.733 0.882 0.791 0.780 0.717

Indoleacrylic acid 0.883 0.814 0.854 0.836 0.720 0.883

Carnitine C10:1 0.924 0.876 0.886 0.890 0.900 0.850

LysoPC(18:2) 0.821 0.795 0.727 0.813 0.800 0.733

Combined 0.975 0.957 0.950 0.957 0.960 0.900

AUC: area under the ROC curves; SE: sensitivity; and SP: specificity

https://doi.org/10.1371/journal.pone.0232272.t002

Fig 4. ROC curves of potential metabolic biomarkers for the discovery set (A) and validation set (B); Y-predicted scatter plot (C) of the validation set.

https://doi.org/10.1371/journal.pone.0232272.g004
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Table) were further analyzed by enrichment pathways analysis based on the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) database. A total of 293 KEGG pathways were enriched

(S5 Table).

3.7. Joint analysis of metabolomics and transcriptomics data

Joint analysis of two omics data was conducted to verify each other in the current work. We

believed that the combination of metabolomics and transcriptomics analysis in current work

would lead to more insight into these fields than either approach alone.

The transcriptomics analysis enables us to validate the metabolism dysregulations revealed

by metabolomics work. A total of 27 KEGG pathways were obtained repeatedly from both

metabolomics and transcriptomics data-based pathway analysis (Fig 5A). Among the 27

KEGG pathways, 11 were enriched with a significant difference between healthy and NSCLC

samples, including glycolysis or gluconeogenesis, tyrosine metabolism, purine metabolism,

phenylalanine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism,

glycerophospholipid metabolism, nitrogen metabolism, pentose phosphate pathway, and

sphingolipid metabolism (S5 Table).

To achieve a better understanding of dysregulated genes and metabolites, we employed a

pathway-based approach and integrated different levels of omics in the biological process.

Fig 5. Venn plot (A) of metabolic pathways enriched by metabolomics and transcriptomics; pathway analysis plot (B) of metabolites with a significant difference

between samples from NSCL patients and healthy controls; connected network (C) of metabolites and genes of metabolomics and transcriptomics analysis. The

quadrangle in blue indicates differential metabolites, and the nodes in green or red indicate increased or decreased expression of genes.

https://doi.org/10.1371/journal.pone.0232272.g005
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Network analysis of comprehensive gene expression and metabolites with noteworthy differ-

ences was performed with MetaboAnalyst 4.0 to explore their relationships. Network analysis

was conducted using the logarithm of the fold changes in the level of metabolites between the

control and NSCLC samples and differentially expressed genes to Metaboanalyst, and a model

of the network of metabolites and genes was assembled (see Fig 5C). Genes up-regulated are

colored in red, while genes down-regulated are colored in green. Metabolites are represented

by blue squares. As can be seen, some metabolites were associated with multiple genes, making

the analysis of variation complicated.

3.8. Biochemical explanation of the differential metabolites

Nucleotide metabolism imbalance plays an important role in cancers. In this work, the serum

levels of inosine and hypoxanthine in NSCLC group fell to less than 10% of those in the control

group. Decline of serum inosine or hypoxanthine has been reported in lung cancer [3] and

cystic fibrosis lung disease [11].It was inferred that the higher propagation rate of tumor cells

led to the decline in serum levels of inosine and hypoxanthine. By transcriptome analysis, 26

genes involved in nucleotide metabolism showed significant differences, with a P-value of

1.72×10−5.

Alterations of amino acid metabolism were detected in NSCLC. Serum levels of the aro-

matic amino acids (tyrosine, tryptophan, and phenylalanine) and branched-chain amino acids

(BCAA, including valine, leucine, and isoleucine) were previously reported to decrease in lung

cancer [7, 12]. In consistent, our research has revealed a 20–70% decrease in serum levels of

aromatic amino acids and BCAAs in NSCLC patients. The reduction would be due both to the

malnutrition associated with the tumor-bearing state and to an increase of the amino acid

demand in tumor [12, 13]. Transcriptomics analysis revealed that levels of mRNAs for

enzymes of amino acid metabolism were significantly altered, verifying alterations of amino

acid metabolism in NSCLC group.

Taurine and hypotaurine metabolism has been shown to be relevant to lung cancer [14].

Consistent with previous report [14], decreased taurine level was noticed in NSCLC group in

current research. However, taurine and hypotaurine metabolism was not detected significantly

altered by transcriptomics analysis. The inconsistence may be explained by that selective infor-

mation was provides by tissue samples while whole body information was carried out in serum

sample.

Disturbed permeability of cellular membrane was noticed in the current research. Low level

indoleacrylic acid and significant variations in Phosphatidylethanolamine (PE) and Phosphati-

dylcholines (PC) levels could provide evidence of disturbed permeability of cellular membrane

[15]. In our research, the serum level of indoleacrylic acid was decreased in NSCLC patients,

indicating disturbed cell membrane permeability [16]. Consistent with pervious report [17–

20], our results revealed elevation of lysoPE(16:0), lysoPE(20:4), lysoPE(18:0), lysoPE(22:6)

and decline of PC(18:0), LysoPC (18:2), LysoPC(18:1), LysoPC(18:0), LysoPC (16:0), as well as

LysoPC(17:0) in NSCLC patients, suggesting aberrations in lipid metabolism. Transcriptomics

data verified metabolomics results and showed corresponding changes in the messenger RNAs

of relevant enzymes, with roles in lipolysis in adipocytes, glycerophospholipid metabolism,

and glycerolipid metabolism.

Dysregulated sphingolipid metabolism appears to occur frequently in human cancers [21].

Metabolites of sphingolipids (phytosphingosine and sphingosine) are known to influence

numerous cellular functions [22]. Serum levels of sphingolipids were reported to increase in

ovarian [23] and endometrial cancer [24]. Our work revealed that the serum levels of phyto-

sphingosine, C16 sphinganine, and sphingosine were elevated in NSCLC, indicating that
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sphingolipid metabolism has an important role in NSCLC. Consistently, significantly altered

sphingolipid metabolism was revealed by transcriptomics analysis, with a P-value less than

0.05.

Linoleic acid is a vital component of cell membranes and is also the precursor of arachi-

donic acid, which is highly active in the proinflammatory response [25]. Levels of linoleic acid

and arachidic acid (arachidate) were reported to be higher in cancer tissue [7, 26]. Platelet lino-

leic acid has been reported as a biomarker for advanced NSCLC [27]. In line with previous

research, we observed an increase in the serum levels of linoleic acid and arachidic acid in

NSCLC patients.

Oleamide has been considered as a new class of biological signaling molecule because of its

role in cancer [28, 29]. Oleamide levels were found to decrease in lung cancer [4, 7]. Stearic

acid, oxidative product of oleic acid, was reported to significantly increased in tumor tissues

[6, 7]. In agreement with previous reports, our research has revealed an elevation of serum

stearic acid and a decline of serum oleamide in NSCLC patients.

Balance between fatty acid synthesis and β-oxidation were altered in tumor metabolic adap-

tation [30, 31]. Decanoic acid (capric acid) was reported to reduce cancer cell viability in vitro

[32], and increased more than 10-fold in colorectal cancer [33]. In present study, serum level

of decanoic acid was increased by 23 folds in the NSCLC group. Transcriptomics analysis sup-

ported the alteration, with eight genes downregulated leading to an elevation of decanoic acid

(Fig 5C). Carnitine plays a key role in fatty acid β-oxidation. Researches have reported

decreased serum acylcarnitine concentrations in cancer patients [34]. In current research,

serum acyl-carnitine C10:1 was found significantly decreased to 35% in NSCLC group, sug-

gesting altered fatty acid β-oxidation. However, fatty acid β-oxidation was not revealed signifi-

cantly altered by transcriptomics analysis. This may be derived from tissue discrepancy

between metabolomics analysis and transcriptomics analysis.

Regulation of glucose metabolism in carcinogenesis is a multi-factor, multi-step process.

Higher serum glucose levels were reported in patients with NSCLC [35], suggesting upregu-

lated gluconeogenesis. Level of serum lactate was reported to decline significantly in lung can-

cer patients compared with healthy controls [7]. In our research, a 40% elevation of serum

glucose and a 30% decrease in lactate were noticed, indicating altered gluconeogenesis and gly-

colysis. We further verified the alteration by transcriptomics analysis, revealing significant dis-

ruption of glycolysis or gluconeogenesis (16 genes involved, P-value 4.55×10−6).

Overall, in the current research, both metabolomics and transcriptomics analysis revealed

disturbances in nucleotide and amino acid metabolism, lysophospholipid (lysoPCs) catabo-

lism, glycerophospholipid metabolism, fatty acid synthase and fatty acid metabolism, sphingo-

lipid metabolism, gluconeogenesis, and glycolysis in NSCLC patients.

3.9. Limitation of the work

The current work was limited by the following factors. First, metabolomics and transcrip-

tomics data were collected from different populations; second, metabolomics analysis were

based on serum samples, while TCGA transcriptomics data were of cancerous or adjacent peri-

tumoral tissues; third, healthy volunteers and NSCLC groups were not enrolled with matched

ages. These may lead to inconformity of the metabolic information. However, the deficiencies

may be eliminated by relatively big sample size in current work; sample heterogeneities were

minimized the during sample collection, storage, and preparation. Besides, serum carries

information from entire body while cancer tissues only provided selective cancerous informa-

tion, causing partial inconsistence between metabolomics and transcriptomics work. As a

result, sensitivity analysis was conducted by multivariable analysis plotting NSCLC group,
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where NSCLC patients were grouped according to ages (group1 with ages 47.07±7.15, group2

with ages 64.49±6.34). It turned out that no obvious distinction was noticed between group 1

and group 2 (S2 Fig). Thus, integrated analysis of metabolomics and transcriptomics in cur-

rent work verified each other and provided convincing metabolic information of NSCLC.

4. Conclusions

We performed an integrated analysis of metabolomics and transcriptomics to explore metabo-

lism characteristics in NSCLC. In total, 35 differential metabolites and 2202 genes with signifi-

cantly difference were defined. Metabolic disturbances revealed in metabolomics analysis were

further verified by transcriptomics analysis. A combinational biomarkers of hypoxanthine,

inosine, L-tryptophan, indoleacrylic acid, acyl-carnitine C10:1, and lysoPC(18:2) was estab-

lished as a promising method for NSCLC diagnosis and screening. Finally, we built a fully con-

nected network of metabolites and genes, which shows a good correspondence between the

transcriptome analysis and the metabolites selected for diagnosis. This work demonstrated

that integration of metabolomics and transcriptomics data was a promising method to investi-

gate the mechanism of carcinogenesis and discover more reliable biomarkers.
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