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Abstract

Introduction

Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public

health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota

may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Lit-

tle is known about the NP antibiotic resistome. This study longitudinally investigated the

composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South

African birth cohort.

Methods

As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23

infants enrolled as part of broader birth cohort study. These were selected on the basis of

changes in serotype and antibiogram over time. NP samples underwent short-term enrich-

ment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun

sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference

genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs

were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR

genes.

Results

AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were

detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The

predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%,

172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics
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(12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads.

The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-

22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one

infant having a stable carriage of mefA, msrD and tetM over a long period.

Conclusion

This study demonstrates that WMGS can provide a broad snapshot of the NP resistome

and has the potential to provide a comprehensive assessment of resistance elements pres-

ent in this niche.

Introduction

Infection with antibiotic-resistant bacteria is a major public health concern due to the limited

availability of new treatment options [1]. Increasing antibiotic resistance has been noted in

respiratory tract bacterial pathogens which are capable of causing life-threatening infections

[2,3]. The upper respiratory tract, including the nasopharynx, is the reservoir for many respira-

tory pathogens and may also serve as a source for the transfer of antimicrobial-resistance

(AMR) genes from non-pathogenic to pathogenic bacteria [4].

Pathogens which commonly colonize the upper airways include Streptococcus pneumoniae
(the pneumococcus), Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitidis,
and several Gram-negative bacilli [5–7]. The pneumococcus and H. influenzae are among the

leading causes of bacterial respiratory tract infections in young children [8,9]. Asymptomatic

NP carriage of pneumococci is prevalent among infants and often precedes the development

of disease [4,10]. Drug-resistant pneumococci may cause difficult-to-treat infections, associ-

ated with increased morbidity and mortality [4,10]. In many cases, antibiotic resistance results

from horizontal gene transfer (HGT) of a mobile genetic element, or uptake of free DNA from

the surrounding environment [11,12], which is of particular importance as pneumococci are

naturally competent [13].

Culture-based methods only allow for the detection of certain AMR genes in viable, cultur-

able bacteria, and are therefore unable to completely characterise the resistome in a particular

niche [14]. An alternative approach for detection of AMR genes is whole metagenome shotgun

sequencing (WMGS) of DNA extracted directly from samples [15,16]. The majority of WMGS

studies of the antibiotic resistome have focused on the human gut resistome [16–20]. To our

knowledge there are no published studies of the NP antibiotic resistome.

We have previously reported changes in NP pneumococcal antibiotic-resistance in infants

studied longitudinally over the first year of life, using culture-based susceptibility testing [21].

Here we further characterise a subset of these samples using WMGS to demonstrate proof of

concept for resistome analysis of upper respiratory tract samples.

Material and methods

This study was nested within a birth-cohort study which investigates the within-host micro-

evolution of naturally acquired pneumococci in 800 infants. NP swabs were longitudinally col-

lected fortnightly from birth until twelve months, in this high-carriage African setting [22]. As

a proof of concept, we selected obtained 196 NP swabs from 23 infants, on the basis of longitu-

dinal changes in serotype and antibiogram over the first year of life, for shotgun metagenomic
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sequencing [21]. These NP swabs were stored in 1 ml skim milk-tryptone-glucose-glycerol

(STGG) medium as previously described [23]. The study was approved by the Faculty of

Health Sciences Human Research Ethics Committee of the University of Cape Town (refer-

ence numbers: 235/2016 and 401/2009) and written informed consent obtained from all

parents or legal guardians at enrolment.

The NP-STGG samples were enriched as previously described, with minor modifications

[24]. Briefly, 200 μl of an NP-STGG sample was transferred to 6 ml Todd-Hewitt Broth (with-

out antibiotics), containing 0.5% yeast extract and 17% fetal bovine serum. The broth was

incubated at 37˚C with 5% CO2, without shaking for 6 hours, then centrifuged at 9000 rpm for

10 minutes at 4˚C. Total nucleic acid extraction was performed on the collected pellet using

the QIAsymphony SP automated platform (Qiagen, Hilden, Germany) with the QIAsymph-

ony Virus/Bacteria Mini Kit (Cat. No. 931036) following the manufacturer’s instructions.

Nucleic acid concentrations and purity were determined by UV spectrophotometry using the

NanoDrop1 ND-100 (Thermo Fishers Scientific, Waltham, USA).

Total nucleic acid was subjected to shotgun sequencing on the MiSeq platform using the

MiSeq Reagent Kit v3 (600-cycle) (Illumina, San Diego, USA) at the J. Craig Venter Institute,

Rockville, USA. Metagenomic DNA sequencing and assembly protocols have previously been

described [24]. Reads were assembled using metaSPAdes [25], and aligned to a database con-

taining Streptococcus pneumoniae complete genomes in order to re-construct the pneumococ-

cal genomes and extract all the streptococcal contigs (genes identified using pneumococcal

references may have come from other streptococcus species due to high level of genetic relat-

edness thus referring to these as streptococcal contigs). Bacterial contigs not mapping to pneu-

mococcal genomes were regarded as non-streptococcal contigs and were separately extracted

for further analysis [24].

Screening for AMR genes present in the selected NP samples was performed on the assem-

bled contigs for both streptococcal and non- streptococcal contig datasets. Contigs were

aligned to the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database of acquired

AMR genes. To assess the reproducibility of the resistome analysis, all bacterial contigs as well

as the streptococcal and non-streptococcal contigs were separately aligned against the

ARG-ANNOT database. To increase sensitivity for identifying novel genes or genotypes with

low levels of similarity to the reference genes, less stringent criteria were used [26]. A sequence

with� 90% identity [27], with an alignment coverage length of� 25% to the reference gene

sequence was designated as an AMR gene [26]. The AMR genes were manually confirmed.

Statistical analyses were performed using STATA (Stata Corporation, College Station, TX).

Chi-square and Fisher’s exact tests were used to compare the differences in the proportion of

samples with AMR genes. A p-value of<0.05 was considered statistically significant.

Results

Participants and metagenomic sample characteristics

A total of 196 longitudinal NP samples were selected from 23 infants, with an average of 9

selected NP samples per infant (range, 4–21 samples). The age at which the NP samples were

collected spanned the first year of life with an average age of 15 weeks. Four of the 23 infants

were born via caesarean section (Table 1). Eight infants were born to HIV infected mothers,

but none of the infants were infected. Antibiotics were administered to 6 out of 7 infants who

had severe or non-severe lower respiratory tract infection (LRTI) during the first year of life

(ages, 0–52 weeks) (Table 1).
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Nasopharyngeal resistome characteristics

The average depth of coverage of the detected AMR genes from all contigs was 26X (range

1 – 862X). A total of 329 AMR genes were detected in 64% (125/196) of the selected NP sam-

ples. Among these, 57% (188/329) were detected at� 90% identity and� 25% gene coverage

while only 30% (97/329) were detected at the more stringent cut-off of� 90% identity

and� 80% gene coverage (Table 2). The number of resistance genes detected per sample ran-

ged from 1–14 genes (Fig 1), and included 36 non-redundant genes (Fig 2). AMR genes were

detected in at least one sample from each of the 23 selected infants (Fig 3). The same types and

number of AMR genes were detected from all bacterial contigs combined compared to those

detected from non-streptococcal and streptococcal contigs separately. The most common

Table 1. Clinical characteristics of the participants.

Infant

no.

Mode of delivery HIV

exposed

LRTI case, age

(weeks)

Age antibiotic(s) given

(weeks)

Antibiotic for LRTI treatment

(days)

Admission for suspected

LRTI

1 Normal vaginal No 0 0 Erythromycin-PO (7 days) -

Amikacin-IV (5 days)

Cefotaxime-IV (4 days)

Gentamycin-IV (3 days)

Meropenem-IV (3 days)

2 Normal vaginal No 8 8 Amoxicillin-PO (5 days) -

3 Normal vaginal No - - - -

4 Normal vaginal No - - - Ambulatory

5 Emergency Caesarean

section

No - - - Ambulatory

6 Normal vaginal Yes - - - Both

7 Normal vaginal Yes - - - Unknown

8 Elective Caesarean

section

No - - - -

9 Normal vaginal No - - - -

10 Normal vaginal No 25 28 Amoxicillin-PO Ambulatory

11 Normal vaginal Yes - - - Ambulatory

12 Normal vaginal Yes 8 - none Ambulatory

13 Normal vaginal Yes - - - -

14 Normal vaginal No - - - Ambulatory

15 Normal vaginal No - - - -

16 Emergency Caesarean

section

Yes 52 52 Amoxicillin-PO (5 days) Both

Ampicillin-IV (1 day)

Gentamycin-IV (1 day)

17 Normal vaginal Yes 36 36 Amoxicillin-PO (8 days) Ambulatory

Ampicillin-IV (1 day)

Gentamycin-IV (1 day)

18 Normal vaginal No - - - Ambulatory

19 Normal vaginal No - - - Ambulatory

20 Normal vaginal Yes - - - Hospitalized

21 Normal vaginal No - - - Ambulatory

22 Normal vaginal No 24 24 Amoxicillin-PO (5 days) Hospitalized

23 Elective Caesarean

section

No - - - Ambulatory

LRTI- Lower respiratory tract infection, PO- Oral antibiotic, IV- Intravenous antibiotic, Both- Ambulatory and acute care.

https://doi.org/10.1371/journal.pone.0231887.t001

PLOS ONE Nasopharyngeal resistome of South African infants

PLOS ONE | https://doi.org/10.1371/journal.pone.0231887 April 22, 2020 4 / 12

https://doi.org/10.1371/journal.pone.0231887.t001
https://doi.org/10.1371/journal.pone.0231887


resistance genes detected were those conferring resistance to beta-lactams (52%, 172/329),

macrolide-lincosamide-streptogramin antibiotics (MLS) (17%, 56/329), and tetracyclines

(12%, 38/329) (Table 2 and Fig 2). A high number of AMR genes conferring resistance to MLS

(n = 38), tetracyclines (n = 25), aminoglycosides (n = 17), fluoroquinolones (n = 4), and tri-

methoprim (n = 3) were detected at a cut-off of 90% identity over 50% gene coverage

(Table 2). Different patterns of carriage of AMR genes were observed, with only one infant

having a stable carriage of mefA, msrD and tetM over a long period (Fig 3).

Streptococcal resistome

Shotgun sequencing detected streptococcal reads in all 174 samples that were culture positive

for S. pneumoniae. Seventy AMR genes (four non-redundant genes) were detected from strep-

tococcal contigs; the average depth of coverage was 103X (range 1 – 411X). MLS and tetracy-

cline resistance genes were the only genes detected from streptococcal contigs. The most

commonly detected gene was tetM (n = 23), followed by msrD (n = 22), mefA (n = 21), and

ermB (n = 4). MsrD, ermB, and mefA genes were only identified from streptococcal contigs.

The combination of msrD, mefA and tetM genes was detected in 10 samples from 3 infants

and all were identified on the same contig in 9 out of 10 samples.

Non-streptococcal resistome

A total of 259 AMR genes were detected from non-streptococcal contigs with an average cov-

erage depth of 10X (range, 1 – 862X). Nine types of AMR genes were detected from non-strep-

tococcal contigs (Fig 3), with beta-lactam resistance genes (66%, 172/259) being the most

commonly detected genes (Table 2 and Fig 2). The most commonly detected beta-lactam resis-

tance gene was blaOXA-60, followed by blaOXA-22, blaBRO-1, blaTEM, blaBRO-2, cfxA, and blaZ

(Fig 2). The fluoroquinolone resistance gene norA was detected in six samples from four

infants (Fig 3).

Table 2. Detection of AMR genes conferring resistance to various classes of antibiotics from 196 NP samples

using different stringency criteria.

Antibiotic class Number of genes Total number (%)

� 90% ID � 90% ID � 90% ID

� 25% Cov � 50% Cov � 80% Cov

Bla 125 29 18 172 (52.3)

MLS 18 4 34 56 (17.0)

Tet 13 2 23 38 (11.6)

AGly 11 8 9 28 (8.5)

Phe 8 0 5 13 (4.0)

Sul 10 1 1 12 (3.6)

Flq 2 0 4 6 (1.8)

Tmt 0 0 3 3 (0.9)

Rif 1 0 0 1 (0.3)

Total 188 44 97 329 (100.0)

AMR- Antimicrobial-resistance, Bla- Beta-lactam, MLS- Macrolide-lincosamide-streptogramin, Tet- Tetracycline,

AGly- Aminoglycoside, Phe- Chloramphenicol, Sul- Sulfonamide, Flq- Fluoroquinolone, Tmt- Trimethoprim, Rif-

Rifamycin, ID- identity, Cov- coverage.

https://doi.org/10.1371/journal.pone.0231887.t002
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Association between antibiotic use and the NP resistome

No significant difference was observed between the presence of AMR genes in samples col-

lected before and after the treatment of LRTI (Fig 3). A large proportion of AMR genes (69%

227/329) were detected in samples from a subset of eight infants (Fig 3).

Discussion

This proof-of-concept study investigated the composition of the NP antibiotic resistome in an

intensively sampled South African birth cohort. 329 AMR genes were detected across 64% of

the selected NP samples using targeted enrichment culture and shotgun metagenomic

sequencing. We detected the same types and number of AMR genes from all contigs combined

compared to those detected from non-streptococcal and streptococcal contigs separately, sug-

gesting that our resistome analysis was reliable. The average depth of coverage for the resis-

tance genes from streptococcal contigs (103X) was higher than that from non- streptococcal

contigs (10X). This observation is likely due to the short streptococcal enrichment culture step

using Todd Hewitt broth (without antibiotics) [24].

We detected resistance genes using a lower stringency criteria of� 90% identity over 25%

coverage of the reference gene, which has been shown to be more reliable, than more stringent

criteria, in detecting AMR genes [27]. Yang et al., reported a high accuracy (99%) for detecting

AMR genes using these less stringent parameters in metagenomic analysis [28]. In the current

study, at least 25% gene coverage was used [26], and this cut-off was higher than the suggested

coverage of� 25 amino acids [28]. Only 30% of the AMR genes were detected using� 90%

identity over 80% coverage of the reference gene [26]. The more stringent parameters detected

Fig 1. Distribution of antimicrobial-resistance (AMR) genes within 196 longitudinal NP samples selected from 23 infants.

https://doi.org/10.1371/journal.pone.0231887.g001
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mainly MLS, tetracycline, and aminoglycoside resistance genes which are frequently carried by

Streptococcus species, presumably due to the higher depth of coverage as a result of the enrich-

ment step [29,30].

We observed differences in the types and numbers of AMR genes identified from strepto-

coccal and non-streptococcal contigs. With the exception of one sample in which tetM was

Fig 2. Frequency of antimicrobial-resistance (AMR) genes within 196 longitudinal NP samples selected from 23 infants. MLS-Macrolide-

lincosamide-streptogramin. (�) AMR genes detected from streptococcal contigs. (��) AMR gene detected from streptococcal contigs in 23 out of 24

samples.

https://doi.org/10.1371/journal.pone.0231887.g002
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detected; tetM, msrD, ermB, and mefA genes were only detected from streptococcal contigs

(Fig 3). The msrD, ermB, and mefA genes are most frequently detected among streptococcal

isolates [31]. Pneumococci which are resistant to MLS antibiotics are commonly also resistant

to tetracycline due to the insertion of an MLS gene into the conjugative transposons of the

Tn916 family, which typically carry the tetM gene [32,33]. Although transposons were not

evaluated in the current study, msrD and tetM genes were commonly identified on the same

contig (9/10 samples) suggesting they could be carried on the same transposon [33].

The predominant AMR genes detected from non-streptococcal contigs were beta-lactamase

genes, specifically blaOXA-60, blaOXA-22, blaBRO-1, and blaTEM. All blaTEM gene variants detected

in the current study encode narrow spectrum beta-lactamase enzymes, and these have previ-

ously been detected in the Enterobacteriaceae, H. influenzae, and Neisseria gonorrhoea [34].

The blaBRO-1 gene was more commonly detected than blaBRO-2 (Fig 2), both are typically

found among Moraxella catarrhalis isolates, with blaBRO-1 more prevalent than blaBRO-2 in M.

catarrhalis [35].

blaOXA-60 and blaOXA-22 genes, encoding the chromosomal and inducible class D beta-lacta-

mases have only been described in Ralstonia pickettii or R. mannitolilytica [36–40]. Ralstonia
sp. are Gram-negative, non-fermentative bacilli, commonly isolated from the respiratory tract

and their carriage among infants in this study warrants further investigation [41]. OXA-22 is

an oxacillinase with the ability to hydrolyse narrow-spectrum beta-lactams [40]. Unlike OXA-

22, the hydrolysis spectrum of OXA-60, although narrow, includes carbapenems. Whilst R.

pickettii infrequently causes infections, the potential for transfer of this gene to other NP bacte-

ria should be studied [36,39].

Fig 3. Antibiotic-resistance genes detected from 196 longitudinal NP samples selected from 23 infants (assigned 1 to 23). (A) Streptococcal resistome. (B) Non-

streptococcal resistome. Blue line indicates samples collected before antibiotic administration, for lower respiratory tract infection. Red line indicates samples collected

after antibiotic administration, for lower respiratory tract infection. MLS- Macrolide-lincosamide-streptogramin, AMR- Antimicrobial resistance.

https://doi.org/10.1371/journal.pone.0231887.g003
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The norA gene, which encodes a fluoroquinolone efflux transporter protein, has been

described mainly in Staphylococcus aureus and can render resistance to both fluoroquinolones

and other classes of antibiotics with dissimilar structures [42,43].

Beta-lactamase genes were the most commonly detected resistance genes in the current

study. Amoxicillin, a beta-lactam antibiotic, was the most commonly prescribed antibiotic for

both acute and ambulatory care in children in this study, which could explain the high number

and types of beta-lactamase genes detected [44].

There were several limitations to the current study. Firstly, the enrichment culture for strep-

tococci altered the composition of the NP resistome and the prevalence of the different AMR

genes detected may therefore differ from that found in directly tested samples. Secondly, the

purposively selected sample set is unlikely to be broadly representative of infants in this study.

Thirdly, the reference database used for the resistome analysis is not comprehensive, and

excludes chromosomal mutations associated with resistance. Penicillin resistance associated

with pbp gene mutations, such as pbp1a and pbp2x, and trimethoprim sulphamethoxazole

resistance, associated with folA I100L substitutions and folP insertions, would not be detected

using this database, and further work will be done to characterise these associations.

This study demonstrates that WMGS can provide a broad snapshot of the NP resistome.

Recent work has highlighted that the nasopharynx is a conducive environment for the

exchange of AMR genes between related Streptococcus species responsible for respiratory tract

infections in children [45]. WMGS has the potential to provide a comprehensive assessment of

all resistance elements present in this niche.
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