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Abstract

Economic, environmental, and social effects are the most dominating issues in cold chain

logistics. The goal of this paper is to propose a cost-saving, energy-saving, and emission-

reducing bi-objective model for the cold chain-based low-carbon location-routing problem.

In the proposed model, the first objective (economic and environmental effects) is to mini-

mize the total logistics costs consisting of costs of depots to open, renting vehicles, fuel con-

sumption, and carbon emission, and the second one (social effect) is to reduce the damage

of cargos, which could improve the client satisfaction. In the proposed model, a strategy is

developed to meet the requirements of clients as to the demands on the types of cargos,

that is, general cargos, refrigerated cargos, and frozen cargos. Since the proposed problem

is NP-hard, we proposed a simple and efficient framework combining seven well-known

multiobjective evolutionary algorithms (MOEAs). Furthermore, in the experiments, we first

examined the effectiveness of the proposed framework by assessing the performance of

seven MOEAs, and also verified the efficiency of the proposed model. Extensive experi-

ments were carried out to investigate the effects of the proposed strategy and variants on

depot capacity, hard time windows, and fleet composition on the performance indicators of

Pareto fronts and cold chain logistics networks, such as fuel consumption, carbon emission,

travel distance, travel time, and the total waiting time of vehicles.

1 Introduction

Logistics, which is a major contributor to carbon emissions (CE), pose challenges to global

warming and climate change [1], especially in the context of road transportation. Wang et al.

(2017) [2] stated that the CE produced by road transportation accounted for the entire trans-

port sector CE by up to 70% which accounted for 14% in the global CE statistics. In response,

according to the report of the United Nation Climate Conference in Copenhagen in 2009,

China has promised that the CE would be reduced about 40%–45% of the amount of CE

exhausted in 2005 by 2020 [3]. Due to the nature of low-temperature transportation, cold
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chain logistics are high-consumption and high-emission logistics activities. Hence, the meth-

ods should be developed to minimize fuel consumption and CE (FCCE). Moreover, the cold

chain is defined as a set of refrigeration steps that maintain the quality and safety of food prod-

uct [3], which concerns the cost-efficient storage and transportation of temperature-sensitive

products [4], which influences the client satisfaction. Hence, given the specific conditions,

how to maintain the quality and safety of perishable products is a critical issue for cold chain

logistics networks. Therefore, the above two motivated us to define a sustainable network for

cold chain considering triple effects: economic, environmental, and social benefits.

In the cold chain logistics networks, there exist several optimization objectives for examin-

ing the efficiency of networks, that is, logistics costs, environmental benefit, delivery duration,

traveling distance, client satisfaction, the freshness of products, etc. This paper investigated a

variant of the cold chain logistics: low-carbon cold chain logistics (LCCC), which is based on a

model of the location-routing problem (LRP), hence we call it as LRP-based LCCC

(LRPLCCC). In the proposed problem, a bi-objective model was developed by minimizing the

total costs consisting of three parts: fixed costs of depots to open, costs of vehicles to rent, and

travel costs, where the latter can be defined as the costs of FCCE, and to minimize the total

damage of quality. The former is used to reduce the logistics costs (economic effect) and the

FCCE (environmental effect), while the latter is modeled to improve client satisfaction (social

effect). Moreover, three types of cargos which must be delivered to and picked up from clients

are developed: general cargo (GC), refrigerated cargo (RC), and frozen cargo (FC). The GCs

can be stored at room or cold temperature (e.g., 3~10, which is used for the RC), while the FC

must be preserved at freezing temperature (e.g., -4~-24) in freezing chamber. Hence, the states

of delivery vehicles should consist of three functions for meeting the demands of cargos. Aim-

ing at solving the proposed bi-objective model, we proposed a practical and efficient frame-

work which is embedded into seven well-known MOEAs, that is, bi-goal evolution (BiGE) [5],

nondominated sorting genetic algorithm- II (NSGA-II) [6], strengthen Pareto evolutionary

algorithm2 (SPEA2) [7], nondominated sorting and local search (NSLS) [8], grid-based evolu-

tionary algorithm (GrEA) [9], indicator-based evolutionary algorithm (IBEA) [10], and

NSGA-III [11]. The main contributions of this paper are as follows:

1. Problem. In the proposed problem, several practical constraints were also considered:

simultaneous pickup and delivery, hard time windows, and heterogeneous fleet, where the

first two could which could increase client satisfaction and loyalty. Meanwhile, the types of

cargos are classified into three modules: GC, RC, and FC. The former two can posit in one

vehicle, but the latter must be separately stored in one vehicle. Moreover, the cold chain

logistics were based on LRP.

2. Model. A novel bi-objective model was developed for the proposed problem considering

three effects. The first objective can simultaneously concern two effects, which is more fit

for practical logistics compared to the logistics using travel distance and time as travel costs.

As the above mentioned, the second objective is modeled by the amount of damage in RC

and FC (except for GC), aiming at improving the client satisfaction which could be further

improved by another level: hard time windows.

To the best of our knowledge, the proposed model for the cold chain has not been studied

thus far. The rest of this paper is structured as follows: Section 2 provides a review of related lit-

erature; Section 3 defines the formulation for the LRPLCCC considering simultaneous pickup

and delivery, heterogeneous fleet, and hard time windows; Section 4 provides the solution

method, solution representation, and search operators; Section 5 describes the computational

experiments and simulated results; and, Section 6 outlines the study conclusions.
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2 Literature review

Much attention and efforts have been drawn to the development of effective tools in supply

chains and logistics systems [12], such as traveling salesman problem [13], vehicle-routing

problem (VRP) [14,15], and LRP [16], where the latter is integrated logistics. Since the LRP

was proposed by Jacobsen and Madsen (1980) [17] and Madsen (1983) [18], which deals with

the combination of two types of decisions that often arise in logistics: the location of facilities

and VRP [16], several LRP variants have appeared in the literature, such as capacitated LRP

[16], LRP with simultaneous pickup and delivery [12], LRP with time windows [19], LRP with

a heterogeneous fleet [19], etc. The works about LRP are plentiful with many exact and meta-

heuristic methods for tackling the variants of LRP.

The reason why LRP has been a research hotspot so far is its wide-range practicability and

considerable difficulty. This paper investigates the application of LRP in the cold chain consid-

ering environmental effects and client satisfaction, hence, the following sections focus on the

models of FCCE, low-carbon LRP (LCLRP), and cold chain with its variants based on VRP

and LRP.

2.1 Models estimating fuel consumption

In the traditional models of logistics, travel distance and time were always used as the routing

cost. However, in reality, the routing cost should be the costs of FCCE, which is much more

practical. Hence, the models estimating the amount of FCCE should be developed for the

logistics transportations. As stated by Demir et al. (2011) [20], measuring and reducing emis-

sions requires good estimations to be fed into planning activities, which in turn require estima-

tion models to be incorporated into the planning activities. Hence, it is necessary to analyze

the effects of factors on the amount of FCCE. Demir et al. (2014) [21] provided the classifica-

tion schemes for the factors: vehicle, environment, traffic, driver, and operations. However,

factors of environment, traffic, and driver are quite difficult to obtain and evaluate. Hence, sev-

eral researchers proposed some models using those factors that can be easily obtained, such as

the models proposed by Xiao et al. (2012) [22] and Poonthalir and Nadarajan (2018) [23].

However, the accuracy estimating FCCE of the above models is unsatisfactory.

The above models estimating FCCE could be called as factor models, which are simple

FCCE methods by using factors that can be easily obtained, such as load, distance, fuel effi-

ciency, etc. Demir et al. (2014) [21] also summarized much more complicated models estimat-

ing FCCE: macro and micro models. The former uses average aggregate network parameters

to estimate network-wide emission rates, which means that the factors affecting the FCCE

keep constant, while the micro ones estimate the instantaneous vehicle FCCE rates at a more

detailed level, which means that some factors could change in seconds like speed. The exam-

ples of macro ones are the methodology for calculating transportation emissions and energy

consumption [24], the computer programme to calculate emissions from road transportation

[25], etc. And the classical models in micro models are the comprehensive modal emission

model (CMEM) [26], the models defined by Bowyer et al. (1985) [27], etc.

From the level of complexity, micro/macro views are complicated versions of macro/factor,

and the above three are convertible, since some parameters in factor models and macro ones

can be viewed as the specific parameters that combine the vehicle-related and average speed,

and the dynamic parameters in micro models could be used as average values for simplifying

the calculation of FCCE. Hence, the above three models could be classified into two modules:

static and dynamic models. Moreover, in terms of estimating mechanism, they could be

grouped into the load (power)-based and the regression-models. From the perspectives of esti-

mated accuracy, the micro ones are the best, followed by macro ones, and factor model is the
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worst, the reason is that the estimation of FCCE depends on plentiful parameters which may

change over traveling time. For a comprehensive view of the models and factors, the reader is

referred to the surveys [21] and papers [20, 28–31].

2.2 LRP considering environmental effects

With the implementation of energy conservation and emission reduction, more and more

experts have indicated that logistics should not only consider economic indicators but also can

reduce energy and emissions to provide a better ecological environment. Lin et al. (2014) [32]

provides a comprehensive survey of VRPs considering FCCE. In their paper, a classification

was proposed for various variants of VRP and solution methods. However, the models estimat-

ing FCCE were not reviewed, and they only listed and analyzed the papers about VRP consid-

ering FCCE. Moreover, as an extensive variant of VRP, the investigation of the green/low-

carbon LRP was not provided. Our previous work [29, 30] provided a detailed assessment of

the FCCE model for green/low carbon LRP, the solution approach, and the number of optimi-

zation objectives. This section provides additional papers on the recently published LCLRP,

and other papers are also available in our previous paper [29, 30].

In the last few months, several researchers have provided new sights in LCLRP. Dukkanci

et al. (2019) [33] provided a single-objective model defined by logistics costs consisting fixed

cost of depots and fuel consumption costs, while no fixed costs of vehicles were optimized. In

their model of estimating fuel consumption, the micro view CMEM were used. However, no

extra constraints were analyzed like the proposed ones in this paper. Koc (2019) [34] provided

a single-objective model consisting of costs of depots, vehicles, and fuel consumptions, like

their work published in 2016 [35]. Li et al. (2018) [36] proposed a many-objective model for a

variant of LRP, that is, multi-depot green vehicle routing problem. In their paper, the objec-

tives were revenue, logistics cost, traveling time, and carbon emission, where the latter used a

simple estimation of carbon emission like the total traveling distance, hence, the reduction in

carbon emission was not enough better than those using travel distance and time as traveling

cost.

2.3 Cold chain logistics

Cold chain logistics is a low-temperature transport that helps improve the preservation of

goods such as table grapes [37, 38], salmon delivery [39], vaccine [40] and blood [41]. There-

fore, the cold chain stream consumes more fuel and emits more emissions to maintain the

quality and safety of perishable goods. Therefore, it is necessary to save energy and reduce car-

bon emissions in cold chain logistics to seek a win-win situation of economic and environ-

mental sustainability [2].

Recently, the cold chain logistics considering FCCE has received increasing attention from

research. Details are as follows:

1. Wang et al. (2017) [2] investigates the optimization of VRP with time windows for the low-

carbon cold-chain logistics based on carbon tax in China. In their paper, the objective con-

sists of six parts: fixed costs of vehicles, transportation cost, refrigeration costs, penalty costs

(soft time window), damage cost, and carbon emission.

2. Wang et al. (2018) [42] formulated a single-objective LCLRP for the cold chain, and the

fixed cost of depots to open was added in the total costs consisting of the above six parts.

3. Qin et al. (2019) [43] modeled a bi-objective model for the cold chain (VRP) considering

three effects: total cost, client satisfaction, and carbon emissions.
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4. Zhang et al. (2019) [44] proposed a low-carbon VRP-based model for the cold chain, which

was very similar to the model proposed by Wang et al. (2017) [2]. The solution method in

their paper is an acid-ant colony optimization algorithm.

The above four paper investigated the cold chain considering environmental effects. How-

ever, they have several common characteristics: (1) same FCCE model, that is, the factor

model proposed by Xiao et al. (2012) [22]; (2) Refs. [2,42,44] applied the travel distance as the

routing cost and used penalty costs (i.e., soft time windows), only the Ref. [43] used the FCCE

costs as routing cost and did not use the penalty costs; (3) Swam heuristic methods. Refs.

[2,42,43] designed the genetic algorithm and Refs. [44] applied an acid-ant colony optimiza-

tion algorithm; (4) Refs. [2,43,44] defined the model for the cold chain logistics based on VRP,

only the Ref. [42] is based on LRP.

However, in the reality, the routing cost is the FCCE cost like the models [34,35], and the

factor model estimating FCCE might result in selecting the unpleasant routes with high pollu-

tion and high emissions since this model neglect the impacts of speed traveled over each arc

and other parameters affecting FCCE. Furthermore, it is known through optimization experi-

ence that genetic algorithms and ant colony algorithms are not satisfactory for LRP and VRP.

Since VRP and LRP are discrete combinatorial optimization problems, it is difficult to obtain

the performance of the solution method by the ant colony algorithm and the discrete steps in

the crossover and mutation processes.

The difference between this paper and the above papers are as follows: (1) model. This

paper defined a novel bi-objective model for the LRPLCCC with minimizing the total logistics

costs and the total amount of damage. The first objective consists of three parts: fixed costs of

depots to open, fixed costs of vehicles to rent, and costs of FCCE used as routing cost, and the

second objective combined hard time windows are used to improve the quality and safety of

food product to improve the client satisfaction; (2) Constraints. The proposed model is limited

by three practical constraints, which are first used in the cold chain. (3) Complexity. The above

four papers only focus on a single type of cargos, but this paper studies the mixed cargo com-

bined with integrated logistics and cold chain, which is the first study in the mixed logistics.

(4) solution method. This paper applies local search and mutation procedures to solve the pro-

posed model and develops an effective framework.

As for the cold chain only considering economic effects were studied by several researchers,

and the reader is referred to the Refs. [45–49] based on VRP and Refs. [50, 51] based on LRP,

which are the latest papers after 2013, and the earlier works can be seen in the paper of Wang

et al. (2018) [42].

3 Mathematical model

3.1 Problem description

The problem is defined on a complete and directed graphO = (V, E), whereV consists ofN clients

andM candidate depots, and the E is an edge set. Each client i2N have pickup demand pi and

delivery demand di, and hard time window and service time are (ei, li) and sti, respectively.

Besides, the cargo types are ξ = {GC, RC, FC}. Each candidate depot j2M has a capacity CDj, a

renting fee FDj, and a time windowsDTWj. The clients are served by a heterogeneous fleetH =

{h1, h2, h3}, and each vehicle type have corresponding parameters (see Section 5.2) which are used

to estimate the amount of FCCE, including fixed cost FVh (h2H) and a capacity CVh. In terms of

edge set, there are a travel distanceDij and speed limitation SPij for each edge (i, j)2E = {(i, j): i,
j2V, i6¼j}\{(i, j): i, j2M}. The goal is to determine the set of depots to open and the tracing of the

routes to minimize the total logistics cost and the amount of damage on the quality of the cargos.
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Before defining our model, several assumptions should be described:

1. Each client can only be served once by one vehicle and depot;

2. Each client has the same type of delivery and delivery demands;

3. The GC and RC can be delivered or picked up by the same vehicle for the clients, but the

vehicle state must adaptively change the state of the refrigerator according to the type of

cargo on each edge, and the FC must be supplied in the vehicle in the frozen state;

4. Each vehicle must return to the original depot before the depot closes;

5. The load of each vehicle on each edge must be less than its capacity;

6. The depot must serve the clients assigned to it;

7. The load of each depot must be less than its capacity;

8. The vehicles travel on each edge with the known speed limitation without considering the

road and traffic conditions;

9. The vehicle must wait until the moment reaches the opening time window of each client if

it arrives early.

3.2 Model development

This section provides the model estimating FCCE and a variable function of refrigerated goods

quality.

1. Model estimating FCCE

This section presents a microscopic model to estimate the amount of FCCE, namely

CMEM, which is easily applicable to calculate FCCE, and it has been extensively used in

LCLRP [28–30, 34, 35]. This paper applies the version of CMEM which is used in the cases

with a heterogeneous fleet. The fuel consumption rate FCRh (g/s) of a vehicle type h2H is

given by

FCRh ¼ φðkhNhTh þ Ph=ZÞ=k ð1Þ

where φ is the fuel-to-air mass ratio; kh is engine fiction parameter (kJ/rev/L); Nh is engine

speed (rev/s); Th is engine displacement (L); Ph is the second-by-second engine power putout

(in kW); η is an efficiency parameter for diesel engines; and κ is the heating value of a typical

diesel fuel (kJ/g).

Ph ¼ P
rc
h þ P

tract
h =ntf ð2Þ

where Phtract represents the total tractive power putout (kW); ηtf is the vehicle drive train effi-

ciency; Phrc is the engine power demand associated with running losses of the engine and the

operation of vehicle accessories such as air conditions and refrigerating compressor in the cold

chain logistics. The estimation of Phtract is given by:

Ptracth ¼ ðGaþ Ggsinyþ 0:5CdhrAhsðtÞ
2
þ GgCrcosyÞ � sðtÞ=1000 ð3Þ

where G is the sum of the total weight of the vehicle weight (wh) and the vehicle load (kg); a
and g are acceleration of vehicle and gravitation (m/s2), respectively; θ is the road angle; Chd

and Cr are, respectively, coefficient of aerodynamic drag of a type h2H and coefficient of roll-

ing resistance; ρ/Ah is the air density (kg/m3)/the front surface area (m2); s is the instantaneous
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traveling speed (m/s). Then the fuel consumption Fh,g (g) of vehicle type h over traveling a

time t from t1 to t2 at instantaneous traveling speed s(t) is calculated as

Fh;g ¼
R t2
t1
FCRfdt ¼ φkhNhThðt2 � t1Þ=kþ

φ
Zk
ðPrch ðt2 � t1Þ þ ð

R t2
t1
Ptracth dtÞ=ntf Þ ð4Þ

R t2
t1
Ptracth dt ¼ ðGðaþ gsinyþ gCrcosyÞ

R t2
t1
sðtÞdtþ 0:5CdhrAh

R t2
t1
sðtÞ3dtÞ=1000 ð5Þ

Fh;L ¼ Fh;g=c ¼ lððkhNhTh þ P
rc
h =ZÞ � ðt2 � t1Þ þ gwG

R t2
t1
sðtÞdtþ gbf

R t2
t1
sðtÞ3dtÞ ð6Þ

where λ = φ/κψ, γ = 1/(1000×ntfη), w = a+gsinθ+gCrcosθ and βv = 0.5ChdρAh, and ψ is conver-

sion factor which converts Fh,g in gram to Fh,L in liter. The above microscopic equation is a

basic estimate of FCCE and consists of three modules: (1) engine module, linearly proportional

to the travel time; (2) moment module, linearly proportional to the product of vehicle weight

and travel distance; (3) speed module, linearly proportional to the integral of s(t)3. If a vehicle

of type h travels a distance d at a constant speed s, then Eq (6) can be rewritten as:

Fh;L ¼ lððkhNhTh þ P
rc
h =ZÞ � d=sþ gwG� d þ gbhds

2Þ ð7Þ

Eq (7) is the general model estimating the fuel consumption during s6¼0. However, for RC

and FC, the vehicles must wait for the clients until the opening time window is open. Hence,

the refrigerating compressor must run for keeping the quality and safety of food production

during the waiting time of vehicles and service time for RC and FC. Therefore, for the cases in

this paper, the Fijh over arc (i, j)2E can be written as

Fijh ¼ lðkhNhTh þ Prch ðdv1ijÞ=ZÞ � ðDij=SPij þ ðmaxfei � ATihg þ stiÞ � dv2ijÞxijh

þlgwðLijh þ whÞDijxijh þ lgbhDijðSPijÞ
2xijh

ð8Þ

where

dv1ij is the state variant of the refrigerating compressor depending on type of cargos (see Eq

9), indicating that each type of vehicle has three states.

ATih is the arriving moment on the node i2V of a vehicle type h;

Lijh is the load of vehicle type h over arc (i, j)2E;

dv2ij is a variant equaling to 1 if the RC/FC is a part of Lijh and to 0 otherwise.

xijh is a decision variant which equals to 1 if a vehicle of type h2H travels on edge (i, j)2E
and to 0 otherwise.

dv1ij ¼

1; if Lijh is GC

2; if Lijh is mixed ðGC and RCÞ or RC;8i; j 2 V

3; if Lijh is FC

ð9Þ

8
><

>:

The assumption H3 is imposed by dv1ij×dv1jk2{1,2,4,9} if the clients i, j, and k are served by

the same vehicle. Moreover, as reported by Refs. [28–30,34,35], the exhausted CE (in kilogram)

is estimated through the amount of fuel consumption, in other words, the amount of carbon

emission is directly proportional to the amount of fuel consumption, namely, 1 liter of fuel can

produce 2.32 kilogram of CO2. Hence, the cost of FCCE is as follows:

Cijh ¼ ðcfc þ ccc � 2:32Þ � Fijh ð10Þ

where cfc and ccc are, respectively, the price of 1-L fuel and 1-kg CE.

1. Damage on quality
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This paper applies the variable function of the quality of refrigerated goods used in [2, 42–

44]: D(t) = D0e–at, where D(t) is the quality of the cargo at time t; t is the transportation time;

D0 is the quality of the product from the depot; and a is, related to the characteristics of cargos

and temperature, the spoilage rate of the product. Combined with the characteristics of this

paper, we used the following equations to calculate the amount of damage on the quality:

D1ijh ¼ L
�

ijh � ð1 � e
� a1;lxðATjh � maxfei ;ATihg� stiþðmaxfej � ATjh;0gþstjÞdv2ijÞÞ ð11Þ

D2ijh ¼ ðL
�

ijh � qj � r � xijhÞ � ð1 � e
� a2;lxstjdv2ijÞ ð12Þ

where

D1ijh is the damage when the vehicle h2H leaves node i2V and arrives at node j2V and the

door is not opened in the process of transportation;

D2ijh is the damage when the vehicle h2H serves client j2V (the door is open);

L�ijh is the RC/FC weight of the vehicle h2H over arc (i, j)2E, if the total load belongs to GC,

its value equals to 0;

a1,lx and a2,lx are the spoilage rates for the cargos type lx2{GC, RC, FC}, respectively;

Let r equal to 0 if the cargos type of client j2V is GC and to 1 otherwise.

Hence, the total damage on the quality of cargos are as

Dijh ¼ D1ijh þ D2ijh ð13Þ

3.3 Establishment of the formulation

Section 3.2 provides a model for estimating FCCE and a method for calculating quality dam-

age. Therefore, the formal model of LRPLCCC can be defined as follows:

min TotalCost ¼
X

i2M

FDiyi þ
X

i2M

X

j2N

X

h2H

FVxijh þ
X

i2V

X

j2V

X

h2H

Cijhxijh ð14Þ

min TotalDamage ¼
X

i2V

X

j2V

X

h2H

Dijh ð15Þ

where yi be equal to 1 if a depot i2M is selected and to 0 otherwise. Objective (14) is the total

cost of three parts: fixed costs of the open depots, the fixed costs of the leased vehicles, and the

FCCE costs. Objective (15) is the total damage of RC and FC quality.

The following constraints are primarily used to satisfy and guarantee the above hypotheses

in Section 3.1. The following two are degree restrictions. In particular, constraint (16) states

that each customer must serve only once; constraint (17) provides a balance between entering

arcs and leaving arcs.

X

i2V

X

h2H

xijh ¼ 1; 8j 2 N ð16Þ

X

i2V

X

h2H

xijh ¼
X

i2V

X

h2H

xjih; 8j 2 N ð17Þ

The following three ensure that a load on the depot must not exceed its capacity and the

additional restrictions on the depot load at the beginning and end of the service.

maxf
X

i2N

dizij;
X

i2N

pizijg � CDjyj; 8j 2 M ð18Þ
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X

i2N

X

h2H

Ljih ¼
X

i2N

dizij; 8j 2 M ð19Þ

X

j2N

X

h2H

Ljih ¼
X

j2N

pjzji; 8i 2 M ð20Þ

where zij indicates the assignment of the client i2N, if it is assigned to the depot j2M, then zij =

1, otherwise zij = 0. Corresponding constraints on a load of vehicles on each edge are as fol-

lows:

0 � Lijh � CVhxijh; 8i 2 V; j 2 V; h 2 H ð21Þ

ðdi � piÞxjih � Ljih � ðCVh � di þ piÞxjih; 8i 2 N; j 2 V; h 2 H ð22Þ

X

i2M

X

j2N

Lijh ¼
X

i2N

X

j2V

dixijh; 8h 2 H ð23Þ

X

i2N

X

j2M

Lijh ¼
X

i2N

X

j2V

pixijh; 8h 2 H ð24Þ

X

i2V

X

h2H

ðLijh � djÞxijh ¼
X

i2V

X

h2H

ðLjih þ pjÞxjiv; 8j 2 N ð25Þ

In detail, constraint (21) imposes that the load on each edge must be less than the capacity

of the assigned vehicle; constraint (22) is the bound on the load variables; constraint (23) and

(24) are the restrictions on the load variables at the starting and finishing stage; constraint (25)

implies that the pickup and delivery demand of each client is met.

The constraints on hard time window for each client and each depot are as follows:

ATjh ¼ ðmaxfATih; eig þ sti þ Dij=SPijÞxijh; i 2 V; j 2 V; h 2 H ð26Þ

ATihxijh � ATjhxjkh � lj; 8i 2 V; j 2 N; k 6¼ i; h 2 H ð27Þ

ATjh � DTWj; 8j 2 M; h 2 H ð28Þ

Eq (26) is the continuity of the vehicle travel time. Constraint (27) stipulates that the arrival

time of each vehicle must not exceed the closing time window of each client. Constraint (28)

limits each vehicle to return before the closing time of each depot. The following three prohib-

its the formation of routes that do not start and end in the same depot:
X

h2H

xijh � zij; 8i 2 N; j 2 M ð29Þ

X

h2H

xijh � zji; 8j 2 N; i 2 M ð30Þ

X

h2H

xijh þ zik þ
X

m2M;m6¼k

zjm � 2; 8i; j 2 N; k 2 M ð31Þ
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Constraints (32) and (33) guarantee that each client must be served by only one vehicle and

depot to open:
X

j2M

zij ¼ 1;8i 2 N ð32Þ

xijh þ
X

k2V

X

p2H;p6¼h

xjkp � 1;8i 2 V; j 2 N; h 2 H ð33Þ

Constraints (34) and (35) make sure that the depot to open must serve at least one client:

zij � yj; 8i 2 N; j 2 M ð34Þ

X

i2N

zij � yj; 8j 2 M ð35Þ

In particular, constraint (34) indicates that the unselected depots must not serve any of the

clients; constraint (35) states that the depot to be opened must serve at least one client.

3.4 Extra valid restriction

Constraints (16)–(35) are the key and necessary for the proposed problem, and this paper also

provides several polynomial-size, valid, not necessary, and alternative inequalities described

below. First, the subtour must not exist, that is, subtour elimination, which could be seen as a

complementary one for constraints (16) and (17):

xijh þ xjih � 1;8i; j 2 N; h 2 H ð36Þ

Constraint (36) is special case of classical subtour elimination constraints used by Koc et al.

(2016) [19]. The following inequalities are used to restrict the depots to open and vehicles:
X

j2N

xijh � yi; 8i 2 M; h 2 H ð37Þ

X

i2N

X

h2H

xijh � yj; 8j 2 M ð38Þ

In particular, constraint (37) indicates that the unselected depot must not assign a vehicle;

constraint (38) states that the depots to be opened must allocate vehicles to serve the clients.

The above can be used as a supplementary restriction for constraints (16), (17), (34) and (35),

since constraints (16), (17), (34) and (35) mandate that each client must serve only once by a

vehicle and opened depot, indicating that the open depot must allocate the vehicle.

Constraint (39) is the bound on the number of the assigned vehicles, including upper

bound and lower bound.

dmaxf
X

i2N

di;
X

i2N

pig=maxfCVge �
X

i2M

X

j2N

X

h2H

xijh � jNj ð39Þ

where d•e is the smallest integer larger than •. The next inequality imposes the number of

depots to open:
X

i2M

CDiyi � maxf
X

i2N

di;
X

i2N

pig ð40Þ
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However, constraint (40) is not always feasible, since it also depends on the number of cli-

ents, the example is the instance with 55 clients and 15 depots introduced by Barreto et al.

(2007) [52]. The final inequality is a complementary restriction for constraint (33) to forbid

the different depots in a single route.
X

j2N

xijh þ
X

j2N

xjgh � 1;8j; g 2 M; j 6¼ g; h 2 H ð41Þ

The above constraints (16)–(41) could also be used in our previous works [29–30] for the

another variant of LCLRP except for the constraint (28).

4 Proposed methods

Since this paper tackles a bi-objective model for the LRPLCCC, the corresponding MOEAs

were used to obtain the Pareto solutions. In seven MOEAs, a practical framework was devel-

oped to generate the children solutions which is fit to the local search and mutational proce-

dures (Section 4.1). In the proposed framework, a simple and effective chromosome

representation for the proposed LRPLCCC were developed (Section 4.2). Moreover, we

designed 14 neighborhood operators (Section 4.3). The details are provided as follows.

4.1 Framework used in MOEAs for the LRPLCCC

An overview of the pseudocode for the proposed framework used in MOEAs is given in Algo-

rithm 1 (Fig 1). Input data includes the maximum number of iterations (Tmax), mutation prob-

ability (pm), and initial population (Pop) made of feasible random chromosomes (Section 4.2).

The output data is an elite population (EP) that consists of non-dominated solutions by

removing duplicates and dominating solutions.

Step 2 is the parameter settings in the seven MOEAs, such as the grid density in GrEA, the

scaling parameter in the IBEA, and the reference points (or uniform points) in the NSGA-III.

Then the main loop is performed, stopping when a maximum number Tmax of iterations.

In each iteration of the main loop, the evolutionary phase is first performed in Steps 6–12.

In other words, for each individual in the current population, a mutational operator is ran-

domly selected from the pool of perturbation to provide slight randomness, depending on the

pm value, then a local search procedure is also chosen from the pool of local search procedures

to improve the quality of the obtained solution.

After improving all individuals in the current population, the children population (CP) is

merged with the parent population (i.e., the current population) to obtain the next population

with Np individuals by utilizing the update mechanism used in seven MOEAs (Steps 13–14).

Moreover, this framework also provides the external archive to save the best non-dominated

solutions with 5×Np individuals which is the data outputted (Steps 16–17).

When the main loop stops, the algorithm ends and returns to EP.

4.2 Chromosome representation

Since LRPLCCC is one of the discrete combinatorial optimization problems, a simple and effi-

cient representation is used to represent the solution, which was also used in our previous

paper [12, 28–30]. In the construction of solutions, each route (corresponding to the vehicle

route) consists of a sequence of clients and depots inserted at both ends. Hence, a complete

solution is represented by R = {r1, r2, . . ., rk}, where ri is a complete route. Besides, we also save

several attributes, such as the load, type, and state of vehicles and two objective values, aiming

at allowing a fast calculation in the implementation process in the operators and objective

PLOS ONE Bi-objective model of cold chain based location-routing decision and environmental effects

PLOS ONE | https://doi.org/10.1371/journal.pone.0230867 April 9, 2020 11 / 29

https://doi.org/10.1371/journal.pone.0230867


space. Besides, the adopted representation, together with the operators (detailed in Section

4.2), could provide feasible children solutions by meting constraints (16)–(41).

Fig 2 is a simple example of a chromosome representation of LRPLCCC. Four cars were

assigned to serve 15 clients, as shown in the left portion, and the attributes of each route are

Fig 1. Algorithm 1. General framework of MOEAs for LRPLCCC.

https://doi.org/10.1371/journal.pone.0230867.g001

Fig 2. A simple solution representation.

https://doi.org/10.1371/journal.pone.0230867.g002
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listed in the right portion. Besides, the initial population is randomly generated, which satisfies

all constraints (16)–(41).

4.3 Neighborhood search mechanisms

In the proposed framework, 14 operators are designed to obtain the Pareto solutions, which

can be classified into three modules: dominated operators (DO), Non-dominated operators

(NDO), and mutational operators (MO). The execution mechanism of DOs is to obtain the

children solutions dominated the parent individuals, which can accelerate convergence in the

early stages of the algorithm. Since EP consists of non-dominated solutions, NDOs are used to

obtain a large number of non-dominated solutions. While often insufficient to achieve com-

petitive results, MOs can be used to provide randomization when searching globally for per-

forming simple random moves. In this paper, the DO and NDO pools consist of five

operators: 2-opt, swap, insert, segment-based swap, and segment-based insert. The MO pool

consists of four operators: add, decompose, insert +, and swap+ moves. Details are as follows.

The 2-opt move is executed by removing two edges from two routes and reconnecting the

new four paths created (see Refs. 52). The swap move swaps the location of two clients from

different routes. The insert move is implemented by moving a client into a position of another

route. The segment-based swap and segment-based insert moves like swap and insert moves,

but the objects of them are two or three clients instead of one client.

The schematic diagrams of the above three moves are provided in Fig 3. As to the schematic

diagrams of insert+ and swap+ moves also like swap and insert moves, but the output of these

moves usually are dominated by the parent solutions.

The above operators are implemented by a complete process [53] rather than random selec-

tion, avoiding costing CPU time. Moreover, considering the hard time windows, the schematic

diagrams of the above 12 operators implement the moves between different routes rather than

those inside the routes.

As to the add move, it seeks to avoid a fast convergence to solutions with few depots (prone

to happen due to 2-opt, insert, and segment-based insert moves). Meanwhile, it diversifies the

opened depots by opening a new one and randomly reassigning between 1 and 2/3 of the

routes to it [16] or randomly choosing a depot from the set of all depots to open after closing

one opened depot.

The decompose move is executed by decomposing one route into two routes, and the

breakpoint is randomly selected only if it has more than one clients to serve. The benefit is to

avoid a fast convergence since the 2-opt, insert, and segment-based insert moves could easily

result in the long tracing of the route using vehicles with higher capacity.

Since a forthcoming article (2020) has tested and analyzed the performance of the first

found and the best improvement, the results showed that the performance of the operators

using the first found improvement is superior to those using the best improvement. Hence,

this paper used first found improvements as the mechanism in operators. In other words, if a

Fig 3. Schematic diagrams of 2-opt, swap, and insert moves.

https://doi.org/10.1371/journal.pone.0230867.g003

PLOS ONE Bi-objective model of cold chain based location-routing decision and environmental effects

PLOS ONE | https://doi.org/10.1371/journal.pone.0230867 April 9, 2020 13 / 29

https://doi.org/10.1371/journal.pone.0230867.g003
https://doi.org/10.1371/journal.pone.0230867


better solution is found, the operator will stop and return to the child solution. In the DO pool,

the definition of "better solution" is that the child solution dominates the parent solution, but

in the NDO pool, it is defined that the parent solution cannot be dominated by the child.

5 Optimization simulation and analysis of results

Implementation aspects and evaluations of the proposed problem and algorithms are provided

and discussed in the following sections.

5.1 Implementation aspects and parameters configurations

The proposed algorithms and problem were coded in MATLAB and results were obtained

using 4.0 GHz Intel Core i7-6700K CPU with 12 GB of RAM and running Windows 10.

Parameters configuration plays an important role in affecting the performance of the pro-

posed problem and algorithms. However, this paper favors the default values which has tuned

by the published papers, such as the scaling factor in GrEA (0.05) [9] and the number of the

divisions of the objective space in each dimension (45) [10].

The size of the initial population Np is 100, just like the traditional setting of the bi-objective

problem. And the maximum number of iterations, Tmax, is directly dependent on the number

of nodes (i.e., clients and depots):

Tmax ¼ aðjNj þ jMjÞ ð42Þ

For all instances, the multiplier α is set to 10. As for the size of the external archive, we

return 5×Np elite individuals to prevent the loss of non-dominated solutions during the search

process. For the mutational probability pm, we conducted an initial experiment with different

values in the interval [0, 1] combined with seven MOEAs. The reason can be drawn that each

MOEA may favor different pm. And the results for the initial experiment were presented in

Section 5.4.

5.2 Test instances

Since the LRPLCCC is first studied in this paper, the instances proposed by the existing papers

are unable to be reused. Therefore, we randomly generated 28 instances with different number

of clients and depots, called as C|N|-|M|-No., where |N| and |M| are, respectively, the number of

clients and depots, and No. is the serial number of instances. The number of clients is |N|2
{20,30,40,50,60} and the number of candidate depots is |M|2{4,5,6,7,8}. All nodes are randomly

located in the square interval [0, 50]2 km. The delivery and pickup demand of each client is gen-

erated using a uniform distribution in the range [100, 1600] kg, and the opening time window

ei (i2N) of each client is obtained from the instance C101 [54], which decreased by 50%, and

the closing time window li (i2N) for each client depends on the service time (i.e., li = ei+sti):

sti ¼ 1800�
di þ piX

i2N

ðdi þ piÞ=jNj
ð43Þ

The capacity and fixed cost of each candidate depot are, respectively, generated using a uni-

form distribution in the range [10, 15] tons and [500, 1000] yuan. And the closing time win-

dow for all depots is set to 12 hours.

Regarding the parameters of the heterogonous fleet, they are given in Tables 1 and 2, which

provide vehicle-specific parameters and general parameters, including fixed costs, freezer

power for each type of vehicle, rate of corruption, etc.
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5.3 Performance metrics

To validate the reliability of the proposed algorithms, the four well-known performance met-

rics, namely generational distance (GD), inverted generational distance (IGD), hypervolume

(HV), and the ratio of non-dominated solutions (RNI), are applied.

GD describes the quality of an approximate Pareto front (APF) by measuring the distance

between APF and real Pareto front (RPF), the smaller the GD value, the better the quality. The

GD equals to 0 indicates that APF is a part of RPF.

The IGD describes the quality and uniformity of APF by measuring the distance between

RPF and APF. The smaller the IGD value, the better the distribution and convergence. The

IGD equals to 0 indicates that the APF equals to RPF.

The HV measures the size of the coverage space between the APF and the reference point.

The larger the HV value, the better the diversity and distribution. HV is in the range [0,1].

RNI describes the contribution rate of the APF for the RPF. The larger the RNI value is, the

better the APF. The RNI equals to 1 indicates that the APF equals to RPF.

However, in our case RPF is unknown. For this reason, and following the paper [55], this

set RPF was made of all sets APF obtained by all MOEAs by removing dominated and repeated

individuals. The set RPF is in fact an approximation of the real Pareto front.

Table 1. Parameters in the proposed model.

Notation Description Typical values

φ Fuel-to-air mass ratio 1

η Efficiency parameter for diesel engines 0.45

κ Heating value of a typical diesel fuel (kJ/g) 44

ntf Vehicle drive train efficiency 0.45

a Acceleration (m/s2) 0

g Gravitational constant (m/s2) 9.81

θ Road angle 0

ρ Air density (kg/m3) 1.2041

Cr Coefficient of rolling resistance 0.01

ψ Conversion factor (g/s to L/s) 737

Ccc CO2 emissions cost (Yuan/kg) 0.05

Cfc Fuel consumption cost (Yuan/L) 7.5

β Conversion factor (L fuel to kg CO2 emission) 2.32

a1 Spoilage rate when door is closed (GC/RC/FC) 0/0.001/0.002

a2 Spoilage rate when door is opened(GC/RC FC) 0/0.002/0.003

https://doi.org/10.1371/journal.pone.0230867.t001

Table 2. Vehicle-specific parameters.

Notation Description h1 h2 h3

wh Curb weight (kg) 3500 4500 5500

CVh Maximum payload (kg) 4000 7500 12500

kh Engine friction factor (kJ/rev/L) 0.25 0.23 0.20

Nh Engine speed (rev/s) 38.34 37.45 36.67

Th Engine displacement (L) 4.5 4.5 6.9

Chd Coefficient of aerodynamics drag 0.6 0.64 0.7

Ah Frontal surface area (m2) 7.0 7.4 8.0

FVh Vehicle fixed cost (Yuan per time) 100 70 50

Phrc Power of refrigerating GC/RC/FC (kW/s) 0/5/8 0/8/10 0/10/15

https://doi.org/10.1371/journal.pone.0230867.t002
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5.4 Parameter turning (pm) and analyses on the pairs of MOEAs

The mutational probability pm has significant impacts on the performance of MOEAs. For the

proposed seven MOEAs (BiGE, GrEA, IBEA, NSGAIII, NSGAII, NSLS, and SPEA2), a situa-

tion may exist: a special pair of each algorithm and pm value could maximize performance in

obtaining the Pareto solutions. Hence, we evaluated the effects of the pm values on the perfor-

mance of seven MOEAs. The instances used in this section were the C20-4-no., C30-5-no.,

and C40-6-no., where no.2 {1,2,3,4}, i.e., the total 12 instances. Each MOEA performed four

runs on each instance. Moreover, we tested the impacts of the pm values in the range [0,1], i.e.,

pm2 {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Therefore, a total of 3696 runs were per-

formed. To rank MOEAs, we ranked 77 pairs using the scoring system of the CHESC-cross-

domain heuristic search challenge (http://www.asap.cs.nott.ac.uk/external/chesc2011/). In this

system, the top eight pairs score 10, 8, 6, 5, 4, 3, 2 and 1 respectively. The media used are per-

formance metrics (HV, IGD, and GD) obtained from the average of four runs. Therefore, the

highest score for each pair is 120 (12 instances). The results are shown in Table 3.

Looking at Table 3, the first two pairs with the best HV, IGD, and GD are NSGA-II (0.7),

NSGA-III (0.9), NSGA-II (0.6), SPEA2 (0.9), BiGE (0.1), and GrEA (0.1). They were used in

the following experiments to analyze the effects of problem parameters on performance

parameters of the Pareto frontier and the cold chain network. We could find that: (1) The pm
value has a great impact on the performance of MOEAs. In the context of HV values, the pro-

posed MOEAs favor different pm values. i.e., {0.6, 0.7,0.4/0.5, 0.9,0.7,0.6, 0.8} which are in the

range [0.4 0.9]. (2) In terms of average scores (neglecting types of MOEAs), the pm values are

0.7, 0.9, and 0.1 which can help obtain the best values of HV, IGD, and GD, as shown in Fig 4.

(3) Different instances favor different pm values, but the best pm values located in the range

[0.3,0.9] in terms of the whole performance (HV and IGD), which illustrated in the figures in

the S1 File. However, the performance of MOEAs using 0.1 as the pm value can achieve the

Table 3. Scores of 77 pairs evaluated by HV, IGD, and GD values.

MOEA Medium 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BiGE HV 0 0 0 0 0 9 20 17 13 0 0

GrEA 0 0 0 3 0 5 2 17 15 1 0

IBEA 0 0 0 4 20 20 8 14 14 4 0

NSGA-III 0 0 4 4 8 11 13 9 2 25 0

NSGA-II 0 0 3 3 5 8 17 49 33 15 6

NSLS 0 0 0 0 0 6 11 1 0 1 0

SPEA2 0 0 0 0 0 5 13 6 22 2 0

BiGE IGD 0 0 0 0 0 0 11 14 7 10 4

GrEA 0 0 0 0 0 0 1 0 12 8 0

IBEA 0 0 0 0 0 0 0 6 10 0 5

NSGA-III 0 0 0 0 9 10 8 16 21 9 3

NSGA-II 0 0 10 5 16 6 25 19 7 24 18

NSLS 0 3 0 3 0 0 7 14 7 11 6

SPEA2 0 4 6 3 18 3 13 16 17 33 10

BiGE GD 23 42 5 0 5 0 5 0 0 0 0

GrEA 20 47 23 9 3 9 0 0 1 0 0

IBEA 17 24 8 14 17 7 0 0 0 0 0

NSGA-III 5 18 4 13 10 0 8 0 0 0 0

NSGA-II 7 12 0 0 0 14 0 0 0 0 0

NSLS 25 4 2 0 0 0 3 0 0 0 0

SPEA2 6 12 8 10 19 6 0 0 3 0 0

https://doi.org/10.1371/journal.pone.0230867.t003
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best performance in terms of GD values. The reason is that the fewer mutation operators are

used, the higher the intensification of the algorithm, but the performance of MOEAs using 0

as the pm value will seriously deteriorate the performance of the algorithm. Therefore, it is very

important to use the perturbation operator in the search process.

Aiming at analyzing the effects of problem parameters on the performance indicators of

Pareto fronts and cold chain logistics, we used the top two MOEAs in terms of average HV,

IGD, and GD values, that is, NSGA-II (0.7), NSGA-III (0.9), NSGA-II (0.6), SPEA2 (0.9),

BiGE (0.1), and GrEA (0.1).

5.5 The effect of the cargo type

In this paper, the proposed strategy (S1) is assumed: the load of several vehicles may be mixed

cargos (GC and RC), and the FC must be served separately, i.e., dv1ij×dv1jk2 {1,2,4,9}. At the

same time, there is another version (S2): the type of cargos loaded in each vehicle must keep

the same, in other words, each vehicle only loads one type of cargos, i.e., dv1ij×dv1jk2 {1,4,9}.

To analyze these two strategies, this section uses the six MOEAs above to optimize instances

used S2, which are also used in Section 5.4. The results are shown in Table 4.

As shown in Table 4, the performance of S1 is much better than S2, especially C20-4-2,

C20-4-3, and C20-4-4. S1 could help increase the HV value by 1.75%, reduce the GD value by

91.62% and the IGD value of 99.46%. Based on the RNI values, S1 and S2 will provide 98% and

0.09% non-dominated solutions for RPF, respectively. The proposed strategy could obtain bet-

ter Pareto fronts than S2, as shown in Fig 5, and it can be concluded that most of the solutions

obtained by S1 dominate the solutions obtained by S2. Therefore, S1 will help provide decision

makers with better solutions to choose the right solutions.

Fig 4. Effects of pm values on the performance of algorithm.

https://doi.org/10.1371/journal.pone.0230867.g004
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Although the positions of Pareto fronts obtained by the two strategies are very close, the

RNI indicator can provide the proportion of non-dominant individuals in the construction of

RPF. Considering the length of this article, we also provided a partial enlargement of the

Pareto frontier in the S1 File and analyzed the impacts of two strategies on CE/fuel consump-

tion, vehicle travel distance, travel time, and total waiting time (VWT). And we could draw the

following conclusions for most instances: (1) S1 seems to produce more but not large CE than

S2; (2) The travel distance of S1 is less than the travel distance of S2; (3) The travel time of S1 is

much lower than the travel time of S2; (4) The VWT of S1 is also much lower than the VWT of

S2. Therefore, we conclude that for LRPLCCC, S1 is better than S2.

Table 4. Effects of strategies on the performance indicators.

HV GD IGD RNI (%)

S1 S2 S1 S2 S1 S2 S1 S2

C20-4-1 1.39E+05 1.37E+05 0.196 0.545 0.108 10.025 97.89 32.18

C20-4-2 2.44E+05 2.39E+05 0 6.692 0 34.395 100 5.35

C20-4-3 1.94E+05 1.93E+05 0 1.053 0 11.538 100 19.23

C20-4-4 2.76E+05 2.69E+05 0 2.674 0 38.075 100 8.89

C30-5-1 6.23E+05 6.14E+05 0 0.748 0 13.720 99.77 0.47

C30-5-2 1.55E+05 1.49E+05 0.083 0.840 0.290 28.118 97.74 4.18

C30-5-3 6.13E+05 6.00E+05 0 0.431 0.007 29.140 99.59 1.64

C30-5-4 3.22E+05 3.20E+05 0.024 1.785 0.077 21.914 98.65 6.97

C40-6-1 6.52E+05 6.41E+05 0.090 0.810 0.189 23.035 97.96 3.70

C40-6-2 1.31E+06 1.29E+06 0.106 0.433 0.189 10.816 97.11 2.89

C40-6-3 1.72E+06 1.70E+06 0 0.676 0 32.450 99.81 1.96

C40-6-4 5.34E+05 5.22E+05 0.098 0.555 0.285 21.805 97.90 4.27

https://doi.org/10.1371/journal.pone.0230867.t004

Fig 5. Pareto fronts of instances using S1 and S2.

https://doi.org/10.1371/journal.pone.0230867.g005
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5.6 Efficiency of the proposed model

Since this paper first studied the LRPLCCC, the proposed model utilizing FCCE costs as rout-

ing cost should be analyzed and compared with the traditional models using travel distance

(TD.) and travel time (TT.) as routing cost. In the models with TD. and TT., we assume that

prices per kilometer and minute of both models are 5 Yuan/km and 2.5 Yuan/min, respec-

tively. After the Pareto front of each instance was obtained by the models with TD. and TT.,

we used the proposed model to recalculate two objective values for comparing the Pareto

fronts. Table 5 is the performance indicators for the three models, where all individuals

(including the dominated solution) obtained by models using TD and TT were used to recal-

culate the Pareto fronts under FCCE. In addition, the non-dominated solution obtained by the

models with TD and TT are also used to recalculate the Pareto fronts under FCCE, the corre-

sponding data and figures are shown in the S1 File.

Looking at Table 5, for the HV values, the increment of the Pareto front obtained by the

model using the FCCE averaged 14.05% and 5.57% compared to the model with TD. and TT.

For the GD and IGD values, the proposed model can reduce the GD values of 96.61% and

96.29%, and the IGD values of 99.43% and 98.86%, respectively, compared with the model

with TD and TT. For the RNI values, the models with TD and TT could reduce by 98.41% and

97.63% when compared to the RNI obtained by the proposed model. Hence, the proposed

model in this paper is efficient in terms of Pareto solutions. Fig 6 is the Pareto fronts obtained

by three models.

From the Pareto fronts shown in Fig 6, we could conclude that the Pareto fronts of the pro-

posed model in this paper could dominate most solutions obtained by the models with TD

and TT, especially when the logistics costs are less than 0.5 the maximum costs. Moreover, the

Pareto fronts obtained by the model using TT are better than those obtained by the model

using TD. Besides, we also analyzed the effects of three models on the CE/fuel consumption,

travel distance, and travel time in the S1 File. As the results showed, the following can be

obtained for the most instances: (1) The model using FCCE costs as routing cost could pro-

duce the minimum CEs among three models, followed by the model with TT; (2) The model

using TD could serve clients within the minimum travel distance, which matches its nature,

followed by our proposed model; (3) The model using TT could serve the clients within the

Table 5. Performance indicators of three models.

HVa GD IGD RNI(%)

TD. TT. FCCE TD. TT. FCCE TD. TT. FCCE TD. TT. FCCE

C1 1.25 1.33 1.39 3.80 2.13 8.19E-1 44.58 22.60 7.47E-2 3.95 3.98 98.72

C2 2.30 2.30 2.44 4.53 3.37 0 59.65 32.04 0 1.54 2.58 100

C3 1.84 1.91 1.94 2.50 1.17 0 47.94 19.90 0 3.09 18.13 100

C4 2.56 2.63 2.76 3.07 1.34 0 66.24 33.32 3.69E-2 5.58 3.00 99.58

C5 6.84 6.93 7.18 12.36 4.51 1.54E-4 59.07 35.14 2.19 1.66 0.23 99.30

C6 1.58 1.65 1.75 7.21 7.32 0 76.80 36.49 1.94 0.38 0 99.62

C7 5.49 5.75 6.13 2.83 1.91 0 112.72 69.09 1.76E-1 0 0.41 99.59

C8 2.84 3.01 3.22 2.32 5.78 0 134.38 49.67 0 0.34 0 100

C9 5.09 5.88 6.52 8.75 12.24 1.05E-2 380.86 113.98 9.06E-3 0.46 0 99.54

C10 10.28 12.56 13.06 2.17 1.96 0 508.43 28.50 2.33E-2 0.15 0 99.85

C11 14.54 16.54 17.16 2.94 1.63 3.96E-2 257.10 46.70 5.54E-1 0.77 0 99.23

C12 4.32 4.92 5.34 1.85 9.39 3.26E-1 237.15 55.21 6.63E-2 1.05 0 99.16

a The HV values are divided by 105.

https://doi.org/10.1371/journal.pone.0230867.t005
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minimum travel time and VWT, which matches its nature, followed by our proposed model.

Hence, the proposed model using the FCCE cost as routing cost could improve economic,

environmental, and social effects.

5.7 The effect of depot capacity

In the literature, some studies on LRP solved the instances of an unlimited capacitated depots

[56]. We now analyze the impact of depot capacity variants on the Pareto frontier. To this end,

we have increased the capacity of candidate depots by five times (+ 10, + 20, + 30, + 40 and

+ 50%) and a variant with unlimited depot capacity. This section applied eight newly generated

instances with 50 and 60 clients. Table 6 lists the performance indicators for the eight cases.

Looking at Table 6, in terms of HV values, the HV values increase as the depot capacity

increases. As shown in Fig 7(A), the increments reach 1.23, 1.70, 2.71, 4.05, 4.51, and 7.61% on

average when compared to the HV values of the base instances. As to the average IGD values,

the IGD values decrease as the depot capacity increases. As shown in Fig 7(B), the decrements

reach 23.74%, 34.76%, 51.39%, 70.54%, 77.60%, and 100% on average when compared to the

IGD values of the base instances. From the perspectives of average RNI values, the RNI values

increase as the depot capacity increases, as shown in Fig 7(C).

Fig 8 is the Pareto fronts of seven variants of the eight instances. We could find that the

Pareto fronts of instances with unlimited depot capacity will dominate others. However, the

differences between the seven variants are not particularly large. The reason could be hard

time windows. The hard time windows for clients and depots limit the LRPLCCC logistics net-

work, so while the depot capacity increases, there are some clients that cannot be served by

some depots.

In the S1 File, we also analyzed and compared the effects of the depot capacity on the

FCCE, travel distance, travel time, VWT, and total costs of depots to open. As the results of

most instances showed that: (1) The exhausted CEs, travel distances, and travel time increase

Fig 6. Pareto fronts obtained by three models.

https://doi.org/10.1371/journal.pone.0230867.g006
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as the depot capacity increases; (2) The total waiting time of vehicles and costs of depots to

open decrease as the depot capacity increases. The reason is the higher the depot capacity, the

more clients a depot serves, resulting in that fewer depots can be opened and vehicle travel dis-

tance, CE, and travel time are increased. While the vehicle waiting time is related to the client

time windows, the results showed that the time windows match the cases with unlimited depot

capacity.

As stated as Koc et al. (2019) [34], in practice, for some logistics enterprise and their logis-

tics items, the depot capacity is not very important, and our results of the instances with

unlimited depot capacity showed that Pareto fronts have better HV, IGD, and RNI values.

Table 6. Performance indicators of seven variants of depot capacity.

Base case +10% +20% +30% +40% +50% Unlimited

C50-7-1 HVa 0 56310.849 64541.450 73879.290 76330.541 77216.331 113984.637

IGD 62.887 22.574 20.279 12.885 11.505 10.822 0

RNI 0.027 0.094 0.128 0.354 0.485 0.685 1

C50-7-2 HVa 0 6564.255 9916.020 77506.232 129476.100 132404.634 180041.485

IGD 160.826 148.789 146.449 63.098 27.644 21.674 0

RNI 0.005 0.042 0.044 0.071 0.139 0.526 1

C50-7-3 HVa 0 6497.004 30924.099 103879.118 118714.232 120653.185 198597.871

IGD 126.795 119.606 83.829 41.922 31.353 29.710 0

RNI 0.052 0.079 0.128 0.173 0.301 0.417 1

C50-7-4 HVa 0 51708.518 73816.209 75256.234 76263.216 76753.747 130865.216

IGD 147.891 78.247 40.803 39.484 38.387 37.432 0

RNI 0.036 0.044 0.112 0.199 0.275 0.388 1

C60-8-1 HVa 0 11450.009 14579.565 18612.925 90170.385 136935.637 243076.760

IGD 198.291 184.658 176.999 173.445 94.042 46.017 0

RNI 0.009 0.018 0.090 0.123 0.149 0.257 1

C60-8-2 HVa 0 65013.370 75582.601 76807.830 83249.216 117285.169 211078.289

IGD 148.786 91.777 74.414 71.835 60.187 33.034 0

RNI 0.024 0.045 0.097 0.184 0.232 0.247 1

C60-8-3 HVa 0 17812.484 26224.729 27081.016 149437.982 156408.985 305548.635

IGD 175.396 150.995 136.212 135.606 46.158 45.775 0

RNI 0.022 0.082 0.108 0.128 0.167 0.173 1

C60-8-4 HVa 0 12200.861 19155.387 70919.389 115710.120 128323.260 246335.144

IGD 135.721 126.906 119.346 76.477 47.978 38.334 0

RNI 0.012 0.020 0.030 0.049 0.164 0.200 1

aThe HV values minus the minimum HV values of seven variants for each instance

https://doi.org/10.1371/journal.pone.0230867.t006

Fig 7. Effects of depot capacity on the performance indicators (only HV, IGD, and RNI).

https://doi.org/10.1371/journal.pone.0230867.g007
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5.8 The effect of hard time windows

Section 5.7 has analyzed the effects of the depot capacity on the Pareto fronts and several per-

formance indicators of the LRPLCCC, and we could obtain that the hard time windows of cli-

ents impact the selection of the sets of the depots to open and the tracings of the routes. Hence,

this section is provided to analyze the effects of the time windows of clients on the Pareto

fronts and other characteristics of the LRPLCCC. Again, we also generated six variants of the

base cases by changing the time window margins like our previous work [28], i.e., li = ei+(1+δ)

×sti (i2N) where δ2 {10%, 20%, 30%, 40%, 50%}, and a special case li =1 (i.e., δ =1). Table 7

presents the results on performance indicators of seven cases, i.e., HV, IGD, and RNI.

Looking at Table 7, we could obtain that: (1) The HV and RNI values of eight cases increase

as the δ values increase; (2) The IGD values of eight instances reduce as the δ values increase.

Fig 9 provides comparative analyses on three performance indicators. Six δ values could pro-

vide an average improvement of 0.88, 1.18, 1.46, 1.69, 2.10, and 6.33% of HV values, and 20.80,

28.40, 35.47, 41.68, 49.33, and 100% of IGD values. In terms of RNI values, six δ values could

provide 0, 2.69, 3.62, 4.85, 8.24, 11.56, 14.29, and 100% non-dominated solutions for the RPF.

Hence, we could conclude that the hard time windows of clients have significant impacts on

the performance indicators of the Pareto fronts. Fig 10 provides the Pareto fronts of seven vari-

ants of each instances.

As shown in Fig 9, the Pareto fronts of the instances using δ =1 values dominate most of

the solutions of the other cases. As to the others, we could find that there are small (but not

large) gaps among the Pareto fronts of the cases using the other six δ values. However, from

the results in Table 7, larger δ values could obtain a better Pareto front, but the range of varia-

tion gradually approaches a constant like the results in Section 5.7. Moreover, we could find

that the two poles of the Pareto front are extended with the increase of δ values, especially

when δ =1. The reason is that the larger closing time window of clients allows much more

selection of routings since the closing time window is a strong constraint.

We also analyzed the impacts of the hard time windows on CE/fuel consumption, travel

distance, and travel time in the S1 File. Let the second objective be the abscissa, we found that

when the damage quality is small (that is, the total cost is large), the above three curves almost

coincide, but when the damage quality is large, the curve will change greatly (i.e., the total cost

is small), especially CE/fuel consumption, travel distance, and travel time is the smallest in

Fig 8. Pareto fronts of seven variants of depot capacity.

https://doi.org/10.1371/journal.pone.0230867.g008
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most cases with δ =1. Hence, logistics enterprises should analyze the effects of the hard time

windows of clients.

Moreover, a novel conclusion could be reached by analyzed the Pareto fronts of this section

and Section 5.7: The Pareto front could rotate around a fixed point. This behavior is not shared

by most other problems and methods in the literature.

5.9 The effect of fleet composition

This section analyzes the benefits of using a heterogeneous fleet of vehicles over a homogenous

one. To this end, we have conducted four sets of experiments on the newly generated 50- and

Table 7. Performance indicators of seven variants of depot capacity.

Base case 10% 20% 30% 40% 50% 1

C50-7-1 HVa 0 14267.452 17203.765 29451.858 40307.588 57301.647 276095.465

IGD 182.991 172.624 168.454 157.731 146.948 127.169 0

RNI 0 0.002 0.015 0.022 0.044 0.090 1

C50-7-2 HVa 0 43378.606 48091.871 56427.444 71556.209 77275.918 196577.402

IGD 108.861 72.340 71.480 61.334 51.751 50.533 0

RNI 0 0 0 0.019 0.031 0.052 1

C50-7-3 HVa 0 64804.477 66511.850 102392.165 114183.324 162281.072 311845.660

IGD 158.756 111.376 105.997 79.479 66.599 47.390 0

RNI 0.004 0.011 0.025 0.032 0.141 0.165 1

C50-7-4 HVa 0 76998.961 81612.749 89413.921 90921.621 103548.905 293086.959

IGD 143.785 79.072 75.976 70.481 69.110 60.686 0

RNI 0.009 0.035 0.035 0.039 0.056 0.058 1

C60-8-1 HVa 0 10821.162 59484.107 89643.111 108796.154 137221.322 401376.519

IGD 215.902 210.434 159.657 137.601 124.188 105.904 0

RNI 0 0.002 0.008 0.022 0.030 0.049 1

C60-8-2 HVa 0 3378.158 5789.026 7042.933 19024.778 32907.905 140136.050

IGD 43.076 42.008 40.943 36.653 29.824 24.198 0

RNI 0.181 0.199 0.239 0.445 0.522 0.547 1

C60-8-3 HVa 0 62042.357 65775.846 68486.566 74384.570 78554.148 289463.659

IGD 148.437 92.574 91.904 91.181 86.303 85.775 0

RNI 0.020 0.027 0.031 0.034 0.053 0.063 1

C60-8-4 HVa 0 20713.845 64989.679 67776.946 69954.409 91566.502 328900.033

IGD 135.142 122.013 87.290 87.033 86.267 73.432 0

RNI 0.002 0.014 0.036 0.045 0.047 0.118 1

aThe HV values minus the minimum HV values of seven variants for each instance

https://doi.org/10.1371/journal.pone.0230867.t007

Fig 9. Effects of hard time windows on the performance indicators (only HV, IGD, and RNI).

https://doi.org/10.1371/journal.pone.0230867.g009
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60-client instances, each using a unique vehicle type, i.e., only h1 (H1), only h2 (H2), only h3

(H3), and heterogeneous fleet (HF). The performance indicators of four variants of each

instance are presented in Table 8.

Looking at Table 8, in terms of the HV values, the instances using HF could obtain the high-

est values, which provide more 7.66, 3.56, and 18.63% of the HV values compared to the oth-

ers. From the IGD and GD values, the instances with HF could obtain the best values with all

indicators of 0. Fig 11 is the Pareto fronts of eight instances, and the Pareto fronts of the

instances using HF could dominate most solutions of other variants. Moreover, the Pareto

fronts of the instances using H1 are close to those of instances with HF when the total logistics

costs are high, this could obtain from the GD values which are much lower than others.

Hence, the HF could provide much better solutions for the decision-makers.

Table 9 is the composition of the vehicle types used in the HF case. We could find that the

most commonly used fleet consists of H1 and H2 in the non-dominated solutions of the HF

cases, but the combination of H2 and H3 does not provide any non-dominated solutions for

the Pareto fronts. Therefore, the instances in this section favor H1 and H2 except for the H2

and H3, other combinations could provide more or less non-dominated solutions. The best

fleet composition depends on many factors, such as delivery and pick-up demands and hard

time for customers.

Fig 10. Pareto fronts of seven variants of hard time windows of clients.

https://doi.org/10.1371/journal.pone.0230867.g010

Table 8. Performance indicators of four variants of fleet composition.

Instance HVa IGD GD

H1 H2 H3 HF H1 H2 H3 HF H1 H2 H3 HF

C50-7-5 265710.26 329596.10 0 452785.26 170.10 30.56 169.57 0 1.78 5.27 70.35 0

C50-7-6 344670.39 517738.20 0 642162.62 109.97 21.96 111.55 0 0.74 6.34 71.88 0

C50-7-7 307479.15 472195.83 0 656261.59 213.51 41.19 160.02 0 1.05 2.39 49.96 0

C50-7-8 377016.12 533627.79 0 667499.85 180.35 23.45 145.20 0 0.92 8.53 85.30 0

C60-8-5 433433.47 515170.52 0 663679.60 144.97 23.50 167.26 0 1.32 4.69 45.63 0

C60-8-6 352120.71 667047.68 0 802593.70 259.37 25.56 164.07 0 2.75 10.05 94.78 0

C60-8-7 421141.24 659051.54 0 788787.80 213.01 34.97 175.58 0 1.28 5.18 42.91 0

C60-8-8 367551.78 522333.36 0 671650.01 138.93 27.95 150 0 1.45 6.83 85.44 0

aThe HV values minus the minimum HV values of seven variants for each instance

https://doi.org/10.1371/journal.pone.0230867.t008
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In the S1 File, we also analyzed the impacts of the fleet composition on CE/fuel consump-

tion, driving distance, travel time, and total vehicle waiting time. In most instances, the results

showed that: (1) The HF in will achieve the lowest CE/fuel consumption, while the use of H3

will bring the highest CE/fuel consumption in the same damage. The reason is that HF’s strat-

egy could choose the best types of vehicles for LLRLCCC based on FCCE and vehicle load and

total cost. (2) The use of H3 can complete the task at the minimum travel distance, travel time

and VWT, which can be explained by the fact that the larger the capacity of the vehicle, the

more the vehicle can serve more clients.

Moreover, the limitation of this section is that the fleet composition depends on the nature

of the instance, such as vehicle load, hard time window, etc. In other words, if the instance

meets the specific requirements, any fleet composition can get the most benefit. However, the

generated instances using HF could provide the best Pareto fronts in this paper.

In short, the above sections analyzed efficiency of the proposed strategy and model, and

analyzed the effects of the problem parameters such as depot capacity, hard time windows, and

fleet composition on the performance indicators of Pareto fronts and LRPLCCC logistics net-

work, such as CE/fuel consumption, travel distance, travel time, and the total waiting time of

vehicles. Hence, the logistics enterprises should also analyze the problem parameters on key

performance indicators of the logistics network, aiming at improving the sustainable develop-

ment in economy, environment, and society.

Fig 11. Pareto fronts of four variants of fleet composition.

https://doi.org/10.1371/journal.pone.0230867.g011

Table 9. Analysis on the number of solutions with different fleet compositions (a special RNI).

Instance H1 H2 H3 H1&H2 H1&H3 H2&H3 H1&H2&H3 All Solutions

C50-7-5 0 1.61 0 95.97 0.27 0 2.15 372

C50-7-6 0 0.35 0 98.94 0.71 0 0 565

C50-7-7 4.72 0.47 0 94.10 0.24 0 0.47 424

C50-7-8 16.44 0 0 82.65 0.90 0 0 663

C60-8-5 0 0.18 0 96.29 0 0 3.53 566

C60-8-6 0 1.12 0 97.91 0.96 0 0 623

C60-8-7 1.85 1.85 0.18 93.73 0.55 0 1.85 542

C60-8-8 0 0 0 99.24 0.38 0 0.38 526

https://doi.org/10.1371/journal.pone.0230867.t009
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6 Concluding remarks

In this work, a novel bi-objective mathematical model for cold chain-based low-carbon loca-

tion-routing problem was developed. In the proposed model, the first objective consisted of

three parts: fixed costs of depots to open, fixed costs of renting vehicles, and the total routing

costs, where the latter can be defined with respect to the cost of fuel consumption and carbon

emission, and the second objective was used to minimize the total damage on the quality of

cargos. Therefore, the bi-objective model can improve economic, environmental and social

benefits. This paper also proposes a strategy for mixing cargos, which are the clients’ needs.

Besides, several practical constraints were considered in the proposed model: simultaneous

pickup and delivery, hard time windows, and a heterogeneous fleet. In the proposed method,

we proposed a simple and effective framework inserted in seven well-known multi-objective

evolutionary algorithms to solve the proposed model.

In the experiments, we first evaluated the effects of mutational probability in the seven

MOEAs, and we determined the top two MOEAs in terms of average HV, IGD, and GD values

to optimize the rest experiments. Then, we examined the efficiency of the proposed strategy

and model. Extensive analyses are performed to empirically assess the effect of various prob-

lem parameters, such as depot capacity, hard time windows, and fleet composition on key per-

formance indicators of Pareto fronts and LRPLCCC network, including fuel consumption,

carbon emission, travel distance, travel time, and the total waiting time of vehicles.

This study has some limitations. The model presented in this paper was based on the

assumption that the type of cargos for each client remains the same. However, in real-world

applications, the client’s cargo types could be mixed, i.e., general, refrigerated, and frozen car-

gos. Hence, the future works may focus on the cold chain logistics considering environmental

effects that the types of cargos of each client are mixed. Moreover, the proposed framework

randomly selects operators to guide the search rather than adaptively selection based on the

performance of each operator. Hence, the future works also may develop a strategy that can

monitor the efficiency of operators and adaptively select the promising operators to optimize

the problems.

Supporting information

S1 File.

(PDF)

S1 Appendix.

(DOCX)

Acknowledgments

The authors would like to thank Professor Ling Wang (Department of Automation, Tsinghua

University) for helping to define models and conduct experiments.

Author Contributions

Conceptualization: Longlong Leng, Yanwei Zhao.

Data curation: Longlong Leng, Jingling Zhang, Chunmiao Zhang.

Formal analysis: Longlong Leng, Jingling Zhang, Chunmiao Zhang.

Funding acquisition: Jingling Zhang, Chunmiao Zhang, Yanwei Zhao, Wanliang Wang,

Gongfa Li.

PLOS ONE Bi-objective model of cold chain based location-routing decision and environmental effects

PLOS ONE | https://doi.org/10.1371/journal.pone.0230867 April 9, 2020 26 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230867.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230867.s002
https://doi.org/10.1371/journal.pone.0230867


Investigation: Longlong Leng, Jingling Zhang, Chunmiao Zhang.

Methodology: Longlong Leng, Jingling Zhang, Chunmiao Zhang, Wanliang Wang.

Supervision: Yanwei Zhao, Wanliang Wang, Gongfa Li.

Validation: Longlong Leng, Jingling Zhang, Chunmiao Zhang.

Writing – original draft: Longlong Leng, Chunmiao Zhang.

Writing – review & editing: Longlong Leng, Jingling Zhang, Chunmiao Zhang.

References
1. Zhang D Z, Wang X, Li S Y, Ni N, Zhang Z. Joint optimization of green vehicle scheduling and routing

problem with time-varying speeds. PLOS ONE, 2017, 13(2): e0192000. https://doi.org/10.1371/journal.

pone.0192000

2. Wang S Y, Tao F M, Shi Y H, Wen H L. Optimization of vehicle routing problem with time windows for

cold chain logistics based on carbon tax. Sustainability, 2017, 9(5): 694. https://doi.org/10.3390/

su9050694

3. Hoang H M, Brown T, Indergard E, Leducp D, Alvarez G. Life cycle assessment of salmon cold chains:

comparison between chilling and superchilling technologies. Journal of Cleaner Production, 2016, 126:

363–372. http://dx.doi.org/10.1016/j.jclepro.2016.03.049

4. Hariga M, As’ad R, Shamayleh A. Integrated economic and environmental models for a multi stage cold

supply chain under carbon tax regulation. Journal of Cleaner Production, 2017, 166: 1357–1371. http://

dx.doi.org/10.1016/j.jclepro.2017.08.105

5. Li M Q, Yang S X, Liu X H. Bi-goal evolution for many-objective optimization problems. Artificial Intelli-

gence, 2015, 228: 45–65. http://dx.doi.org/10.1016/j.artint.2015.06.007

6. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. http://dx.doi.org/10.1109/4235.

996017

7. Zitzler E, aumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. In Pro-

ceedings of the Evolutionary Methods for Design, Optimization and Control with Applications to Indus-

trial Problems, Athens, Greece, 19–21 September 2001.

8. Chen B, Zeng W, Lin Y, Zhang D. A new local search-based multiobjective optimization algorithm. IEEE

Transactions on Evolutionary Computation, 2015, 19(1): 50–73. http://dx.doi.org/10.1109/TEVC.2014.

2301794

9. Yang S, Li M, Liu X, Zheng J. A grid-based evolutionary algorithm for many-objective optimization.

IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721–736. http://dx.doi.org/10.1109/

TEVC.2012.2227145

10. Zitzler E, Kunzli S. Indicator-based selection in multiobjective search. In Proceedings of the Parallel

Problem Solving from Nature-PPSN VIII, International Conference on Parallel Problem Solving from

Nature, Birmingham, UK, 13–17 September 2004, Yao, X., Ed., Springer: Berlin, Germany. 2004, 3242:

832–842. http://dx.doi.org/10.1007/978-3-540-30217-9_84

11. Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point based non-

dominated sorting approach, Part I: Solving problems with box constraints. IEEE Transactions on Evo-

lutionary Computation, 2014, 4: 577–601. http://dx.doi.org/10.1109/TEVC.2013.2281535

12. Zhao Y W, Leng L L, Zhang C M. A novel framework of hyper-heuristic approach and its application in

location-routing problem with simultaneous pickup and delivery. Operational Research, 2019. https://

doi.org/10.1007/s12351-019-00480-6

13. Jiang Z B, Yang Q. A discrete fruit fly optimization algorithm for the traveling salesman problem. PLOS

ONE, 2016, 11(11): e0165804. https://doi.org/10.1371/journal.pone.0165804 PMID: 27812175

14. Zhao Y W, Leng L L, Qian Z Y, Wang W L. A discrete hybrid invasive weed optimization algorithm for

the capacitated vehicle routing problem. Procedia Computer Science, 2016, 91: 978–987. https://doi.

org/10.1016/j.procs.2016.07.127

15. Jawarneh S, Abdullah S. Sequential insertion heuristic with adaptive bee colony optimization algorithm

for vehicle routing problem with time windows. PLOS ONE, 2015, 10(7): e0130224. https://doi.org/10.

1371/journal.pone.0130224 PMID: 26132158

16. Lopes R B, Ferreira C, Santos B S. A simple and effective evolutionary algorithm for the capacitated

location–routing problem. Computers & Operations Research, 2016, 70: 155–162. http://dx.doi.org/10.

1016/j.cor.2016.01.006

PLOS ONE Bi-objective model of cold chain based location-routing decision and environmental effects

PLOS ONE | https://doi.org/10.1371/journal.pone.0230867 April 9, 2020 27 / 29

https://doi.org/10.1371/journal.pone.0192000
https://doi.org/10.1371/journal.pone.0192000
https://doi.org/10.3390/su9050694
https://doi.org/10.3390/su9050694
http://dx.doi.org/10.1016/j.jclepro.2016.03.049
http://dx.doi.org/10.1016/j.jclepro.2017.08.105
http://dx.doi.org/10.1016/j.jclepro.2017.08.105
http://dx.doi.org/10.1016/j.artint.2015.06.007
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2014.2301794
http://dx.doi.org/10.1109/TEVC.2014.2301794
http://dx.doi.org/10.1109/TEVC.2012.2227145
http://dx.doi.org/10.1109/TEVC.2012.2227145
http://dx.doi.org/10.1007/978-3-540-30217-9_84
http://dx.doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1007/s12351-019-00480-6
https://doi.org/10.1007/s12351-019-00480-6
https://doi.org/10.1371/journal.pone.0165804
http://www.ncbi.nlm.nih.gov/pubmed/27812175
https://doi.org/10.1016/j.procs.2016.07.127
https://doi.org/10.1016/j.procs.2016.07.127
https://doi.org/10.1371/journal.pone.0130224
https://doi.org/10.1371/journal.pone.0130224
http://www.ncbi.nlm.nih.gov/pubmed/26132158
http://dx.doi.org/10.1016/j.cor.2016.01.006
http://dx.doi.org/10.1016/j.cor.2016.01.006
https://doi.org/10.1371/journal.pone.0230867


17. Jacobsen S K, Madsen O B G. A comparative study of heuristics for a two-level routing-location prob-

lem. European Journal of Operational Research, 1980, 5(6), 378–387. https://doi.org/10.1016/0377-

2217(80)90124-1

18. Madsen O.B.G., 1983. Methods for solving combined two level location-routing problems of realistic

dimensions. European Journal of Operational Research, 12(3), 295–301. https://doi.org/10.1016/0377-

2217(83)90199-6

19. Koc C, Bektas T, Jabali O, Laporte G. The fleet size and mix location-routing problem with time win-

dows: Formulations and a heuristic algorithm. European Journal of Operational Research, 2016, 248:

33–51. http://dx.doi.org/10.1016/j.ejor.2015.06.082

20. Demir E, Bektas T, Laporte G. A comparative analysis of several vehicle emission models for road

freight transportation. Transportation Research Part D: Transport and Environment, 2011, 16(5): 347–

357. http://dx.doi.org/10.1016/j.trd.2011.01.011

21. Demir E, Bektas T, Laporte G. A review of recent research on green road freight transportation. Euro-

pean Journal of Operational Research 2014, 237, 775–793. http://dx.doi.org/10.1016/j.ejor.2013.12.

033

22. Xiao Y Y, Zhao Q H, Falu I. Development of a fuel consumption optimization model for the capacitated

vehicle routing problem. Computers & Operations Research, 2012, 39(7): 1419–1431. https://doi.org/

10.1016/j.cor.2011.08.013

23. Poonthalir G, Nadarajan R. A fuel efficient green vehicle routing problem with varying speed constraint.

Expert Systems with Applications, 2018, 100: 131–144. https://doi.org/10.1016/j.eswa.2018.01.052

24. Hickman J, Hassel D, Joumard R, et al. MEET-Methodology for calculating transport emissions and

energy consumption. European Commission, DG VII. Technical report, 1999. <http://www.

transportresearch.info/Upload/Documents/200310/meet.pdf> (03.04.19).

25. Kouridis C, Gkatzoflias D, Kioutsioukis I, et al. Uncertainty estimates and guidance for road transport

emission calculations. Technical report, European Commission Joint Research Centre Institute for

Environment and Sustainability, 2010. <http://publications.jrc.ec.europa.eu/repository/handle/

111111111/14202> (03.04.19)

26. Barth M, Younglove T, Scora G. Development of a heavy-duty diesel modal emissions and fuel con-

sumption model. Technical report. UC Berkeley: California Partners for Advanced Transit and Highways

(PATH), California, USA, 2005. <http://www.path.berkeley.edu/PATH/Publications/PDF/PRR/2005/

PRR-2005-01%.pdf> (03.04.19).
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