
RESEARCH ARTICLE

Effectively training neural networks for stock

index prediction: Predicting the S&P 500 index

without using its index data

Jinho LeeID, Jaewoo Kang*

Department of Computer Science and Engineering, Korea University, Seoul, Korea

* kangj@korea.ac.kr

Abstract

We propose a novel method for training neural networks to predict the future prices of stock

indexes. Unlike previous works, we do not use target stock index data for training neural net-

works for index prediction. Instead, we use only the data of individual companies to obtain

sufficient amount of data for training neural networks for stock index prediction. As a result,

our method can avoid various problems due to training complex machine learning models

on a small amount of data. We performed numerous types of experiments to test methods

designed for predicting the future price of the S&P 500 which is one of the most commonly

traded stock indexes. Our experiments show that neural networks trained using our method

outperform neural networks trained on stock index data. Compared with other state-of-the-

art methods, our method is conceptually simpler and easier to apply, and achieves better

results. We obtained approximately a 5-16% annual return before transaction costs during

the test period (2006-2018).

Introduction

Predicting future prices of stock indexes such as the S&P 500 or the Nasdaq Composite is a

challenging and important task. A stock index is a collection of equities or securities usually

computed from the market capital of constituents. Therefore, a stock index provides a sum-

mary of overall market performance and helps investors in their investing activities. Also,

increasing the number of stock index-related securities has diversified the investing strategies

of investors. An investor can predict the future prices of stock indexes to hedge against market

risk or look for profitable opportunities. For these reasons, many previous works not only in

finance but also in computer science have focused on predicting prices of stock indexes.

With the success of Neural Networks (NNs), especially in the computer science domain,

several recent works have adopted NNs for stock market prediction. Some review papers [1, 2]

show that NNs are one of the most commonly used machine learning techniques for predict-

ing the future prices of individual stocks and stock indexes. Previous works used various types

of data as input features, which include macro economic indicators [3], investors’ sentiment in

web services [4, 5], search query frequency [6], or the information extracted from financial

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lee J, Kang J (2020) Effectively training

neural networks for stock index prediction:

Predicting the S&P 500 index without using its

index data. PLoS ONE 15(4): e0230635. https://doi.

org/10.1371/journal.pone.0230635

Editor: Stefan Cristian Gherghina, The Bucharest

University of Economic Studies, ROMANIA

Received: January 23, 2020

Accepted: March 4, 2020

Published: April 10, 2020

Copyright: © 2020 Lee, Kang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are availabe

at https://finance.yahoo.com/ and https://

norgatedata.com/data-content-tables.php#ushics

Source code used in this work is available at

https://github.com/lee-jinho/IndexPrediction/" We

used the data of constituent companies of the

Russel 3000 Index as our training and validation

data. The constituent companies of the S&P500

index and the data of the S&P500 index itself, are

used as our test data. The exact period of each

training, validation, and test is provided in Table 1.

http://orcid.org/0000-0003-3076-3722
https://doi.org/10.1371/journal.pone.0230635
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230635&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230635&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230635&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230635&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230635&domain=pdf&date_stamp=2020-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230635&domain=pdf&date_stamp=2020-04-10
https://doi.org/10.1371/journal.pone.0230635
https://doi.org/10.1371/journal.pone.0230635
http://creativecommons.org/licenses/by/4.0/
https://finance.yahoo.com/
https://norgatedata.com/data-content-tables.php#ushics
https://norgatedata.com/data-content-tables.php#ushics
https://github.com/lee-jinho/IndexPrediction/

news articles [7, 8]. However, for stock index prediction, the majority of the recent works used

historical price and volume data [9, 10] as input features because such data are publicly free

and easy to obtain.

Regardless of the domain, training NNs on a sufficient amount of training data is crucial.

For example, Sun et al. [12] showed that the performance of NN-based image classification

models increased logarithmically with the size of the training data. Also, training complex

machine learning models on a small amount of data often leads to overfitting. Although there

is enough data for training NNs to predict the future prices of individual stocks, there is an

insufficient amount of data for training NNs to predict future stock index prices. Because

unlike individual stocks, the number of stock indexes is very small. If a NN is trained to predict

the future price of the S&P 500 and a daily scale is used, only about 250 data points can be

obtained per year.

To address this problem, many previous works lengthened the training period. For exam-

ple, data collected over 10 years was used instead of data collected over only 1 year for training.

In fact, most of the previous works used data collected over a long period for training their

models to predict the future prices of stock indexes. However, increasing the size of the train-

ing data by simply collecting data over longer periods of time is a limited approach. For exam-

ple, collecting data that spans periods of 50 or 100 years is infeasible. Moreover, NNs trained

on relatively old data could be less effective in predicting the future prices of stock indexes.

Also, we argue that only several thousands of data points are an insufficient amount of data for

effectively training complex NNs to predict the future prices of stock indexes. In various fields,

such as natural language processing [11] or image classification [12], many works have

recently shown that training NNs on a larger amount of training data increases the perfor-

mance of models.

The most critical problem is using stock index data for training NNs to predict the future

price of a stock index. For example, lets assume that S&P 500 daily closing price data is used

for training NNs to predict the future price of the S&P 500. In this case, no more than approxi-

mately 250 data points can be obtained per year for training NNs since the S&P 500 is the only

stock index data used for training. In this paper, we propose a simple but effective method for

training NNs to predict the future price of the S&P 500 which is one of the most commonly

followed stock index. In our training process, we do not use S&P 500 data for training the NNs

used in our study, even though the NNs are used for predicting the future price of the S&P 500

in the test stage. Rather, we use the data of individual companies for training the NNs, as simi-

larly done in other individual stock price prediction studies. NNs used in our study are fed

with the past W days of data of individual companies and trained to predict a corresponding

individual company’s price change of the next day. In the test stage, the trained NNs are fed

with the past W days of data of�500 companies listed in the S&P 500, and the next day predic-

tion of the S&P 500 is made based on the past W days of data of�500 companies.

Using the data of individual companies instead of the data of stock indexes for training

NNs to predict the future price of the S&P 500 has two advantages. First, we can easily address

the data-shortage problem and thus avoid overfitting, which is one of the major problems in

machine learning, and commonly occurs when training complex models on a small amount of

data. Second, by using the data of individual companies, we can directly use the price data of

individual companies, which is generated from the investment activities of numerous inves-

tors. But if we use only the data of stock indexes for training NNs, such data is unavailable

because the price of a stock index is usually the weighted average of the market capital of con-

stituent companies and the price is not directly yielded by investors. Therefore, using the price

data generated from investors’ activities can help NNs learn richer representations of the

investment activities and perform better in the testing stage.

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 2 / 20

Funding: J Lee and J Kang were supported by

the National Research Foundation of Korea

(NRF-2017R1A2A1A17069645, NRF-

2017M3C4A7065887). URL: http://www.nrf.re.kr/

index The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0230635
http://www.nrf.re.kr/index
http://www.nrf.re.kr/index

In our experiments, we compared NNs trained on the data of individual companies and

trained on the data of S&P 500 index. Different types of NNs, such as Multilayer Perceptron

(MLP) and Convolutional Neural Networks (CNNs), were trained using different learning

algorithms such as supervised learning (SL) and reinforcement learning (RL) for comparison.

It would be ideal to conduct comparison experiments using all the types of NNs or learning

algorithms. But it is infeasible since there are countless types of NNs and numerous learning

algorithms. Yet, our experiments in which the same learning algorithms, types of NNs, and

input features are used empirically show that the NNs trained on the data of individual compa-

nies outperform the NNs trained on the data of the S&P 500. The NNs trained on only the

data of individual companies also outperform the NNs in the study by [13].

The main contributions of our work are as follows. First, we propose a novel method for

training NNs to predict the future price of the S&P 500. Our method uses only the data of indi-

vidual companies as training data to obtain a sufficient amount of data. With our method, we

can train NNs on a large amount of data, and as a result, effectively address the problems due

to training NNs on a small amount of data. Second, in our experiments, we empirically show

that when building NNs for stock index prediction, training the NNs on the data of individual

companies is more effective than training on the data of stock index. Finally, we consider

transaction costs in our experiments and introduce a simple method for controlling the num-

ber of transactions.

Background

In this section, we briefly discuss two basic NNs used in our experiments, which are the core

architectures of current state-of-the-art applications in broad areas such as NLP, image classifi-

cation, text generation, speech recognition, question answering, and financial time series anal-

ysis [14]. We also discuss two basic learning methods in machine learning, which are used to

train NNs in our experiments.

MLP has the most simple and basic NN structure and it is also commonly called a fully con-

nected NN. MLP typically consists of an input layer, several hidden layers, and an output layer.

Each hidden layer takes an output vector of the previous layer as input, and outputs a vector

which is inputted to the next layer. The input layer takes an input feature vector as input, and

the output layer usually outputs one-hot vector whose size is equivalent to the number of clas-

ses in classification problems. Each hidden layer consists of linear matrix multiplication and a

nonlinear activation function. Vanilla MLP may be sufficient to solve some simple problems,

but in most recent works, MLP is used as part of a more complicated structure.

CNN is widely used in image classification problems. Unlike MLP, CNN is designed to take

multiple vectors or matrices as input, which makes it suitable for 2D image processing. In

practice, it usually takes 2D images with three color channels as input. But it could also take

3D or 1D images as input. The core layers of CNN are as follows: convolutional layers followed

by a nonlinear activation function and pooling layers. Such stacked layers enable CNN to

extract high-level features from raw input images. However, recent works [15, 16] have shown

that stacking more convolutional layers helps to increase the performance of CNN models.

Thus recent CNN models have much more complex and sophisticated structures.

SL involves giving explicit answers to a model. If we want to use SL for training vanilla

CNNs to classify handwritten digits (from 0 to 9) in a raw pixel image, the raw pixel image and

its correct label are given to the CNNs during training. The CNNs are trained to learn the rela-

tionship between the input feature (raw pixel image) and label. In some cases, instead of cate-

gorical labels, numerical values are more suitable as an answer. In this case, regression can be

applied to train models, but the core idea is the same as when using a label for an answer. An

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 3 / 20

https://doi.org/10.1371/journal.pone.0230635

input feature and the correct answer are provided to a model which is trained to learn the rela-

tionship between the input feature and answer.

RL is another type of machine learning method widely used in sequential decision making

research areas such as game playing, robotics, or stock prediction [17]. In RL, an agent is

trained to choose the best action that would yield maximum cumulative rewards given the cur-

rent state. When training an agent using RL, a new episode (training sample) is generated

while the agent continues to perform actions and receive rewards.

Among different types of RL, we used Q-learning [18] in our experiments. In Q-learning,

an agent uses an action value which is an expected cumulative reward of the corresponding

action. During training, an agent is expected to learn an optimal action value and when the

training is finished, the agent can simply choose the action with the maximum value.

Materials and methods

In this section, we introduce a novel method for training NNs to predict the future prices of

stock indexes. Unlike previous works, we do not use stock index data; we use only the histori-

cal daily closing price and volume data of individual companies for training the target NNs.

There are two stages in our framework: Training Stage and Test Stage. In the training stage,

daily closing price data and volume data of individual companies are fed into the target NNs.

In the test stage, our trained target NNs take daily closing price data and volume data of S&P

500 companies as input, and output�500 predictions, each of which corresponds to the indi-

vidual prediction of each constituent company in the S&P 500. The�500 predictions are

aggregated into a single scalar value and the final prediction of the S&P 500 is made based on

the scalar value.

In the training stage, only the data of individual companies is used for training the target

NNs to predict the future prices of the S&P 500. Therefore, in the Experimental section, we

compare the performance of NNs trained on the data of individual companies with that of

NNs trained on S&P 500 data. Two different types of NNs (MLP, CNN) and learning algo-

rithms (SL, RL) with two types of input features (closing price only, closing price and volume)

are used in our experiments. Thus, a total of eight different target NNs (2×2×2) with different

combinations of NNs, learning algorithms and input features are used in our experiments. All

target NNs are trained (1) on the data of individual companies (our method) and (2) the data

of the S&P 500 (baseline method). By comparing the price prediction performance of our pro-

posed method and that of the existing method, we empirically show that training NNs on the

data of individual companies is more effective than training on S&P 500 data.

Data

We downloaded the daily closing price and volume data of individual companies and of the

S&P 500 collected over roughly a 22-year period (1996-2018) from Yahoo Finance (https://

finance.yahoo.com/). We downloaded not only the available data of the S&P 500 constituent

companies but also the data of the Russel 3000 Index constituent companies to obtain more

data of individual companies for training the target NNs. Note that we downloaded only the

data of the S&P 500 companies that made their data available in January 2018. Besides histori-

cal closing price and volume data, the historical weights of companies in the S&P 500 were

also downloaded from http://siblisresearch.com/data/weights-sp-500-companies. Since con-

stituents of the S&P 500 and weights of companies change over time, the exact list of the con-

stituent companies and their weights were downloaded and used in our experiments.

For our experiments, the entire data set was divided into the training set, the validation set,

and the test set. The training set was used for training the target NNs. The validation set was

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 4 / 20

https://finance.yahoo.com/
https://finance.yahoo.com/
http://siblisresearch.com/data/weights-sp-500-companies
https://doi.org/10.1371/journal.pone.0230635

used for hyper-parameter tuning, and the test set was used for testing and comparing the per-

formance of our method with that of the baseline. Table 1 shows the training, validation, and

test periods for our method and the baseline. For our method, the data of individual compa-

nies collected over four years was used as training data. However, for the baseline, the data of

the S&P 500 collected over eight years was used as training data. The entire test period was 12

years (2006-2018) and the training and validation periods were updated every four years.

Thus, the target NNs were reinitialized and retrained every four years.

Table 2 shows the data (individual companies and the S&P 500) used for generating the

input data (input x and answer y) fed into the target NNs. For our method, when generating

the training and validation sets, only the data of individual companies are used. When generat-

ing the test set for our method, the data of individual companies are used for generating input

x, and the data of the S&P 500 is used for generating answer y. For the baseline, all the input

data for the training, validation, and test sets are generated from the data of the S&P 500. The

process used to generate the input data is described in the following section.

Input and answer

For our experiments, two different types of NNs and learning algorithms were utilized to vali-

date our method. The shape of inputs and answers fed into the target NNs vary based on the

network and learning algorithm used. Fig 1 shows how the input and answer are fed into the

target NNs in the training process. The target NNs read input xt and output ρt at time t. The

answer yt, generated from the data of time t and t+1, evaluates the output of the target NNs ρt

at time t. Table 3 summarizes how the shape of input xt and the shape of answer yt differ

depending on the target NN and learning algorithm used.

Fig 2 illustrates the shape of input xt for each of the target NNs. For MLP, input xt is a vector

with values min-max normalized over the last W days. The length of the vector is W when

only the closing price data is used as the input feature, and the length of the vector is 2×W

when both closing price and volume data are used. For CNN, a W by W matrix, which can be

used as a stock chart image, is used as input xt. We used the same method proposed in [19] to

Table 1. Training, validation, and test periods.

Method Training alidation Test

Ours 2000—2004 2004—2006 2006—2010

2004—2008 2008—2010 2010—2014

2008—2012 2012—2014 2014—2018

Baseline 1996—2004 2004—2006 2006—2010

2000—2008 2008—2010 2010—2014

2004—2012 2012—2014 2014—2018

https://doi.org/10.1371/journal.pone.0230635.t001

Table 2. The data used for generating input x and answer y. “IND” and “S&P500” denote the data of individual companies and the data of the S&P 500, respectively.

Method Training Validation Test

Ours Input x IND IND IND

Answer y IND IND S&P500

Baseline Input x S&P500 S&P500 S&P500

Answer y S&P500 S&P500 S&P500

https://doi.org/10.1371/journal.pone.0230635.t002

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 5 / 20

https://doi.org/10.1371/journal.pone.0230635.t001
https://doi.org/10.1371/journal.pone.0230635.t002
https://doi.org/10.1371/journal.pone.0230635

Fig 1. Overview of how the target NNs read input and output ρt.

https://doi.org/10.1371/journal.pone.0230635.g001

Fig 2. The shapes of input xt for MLP and CNN, respectively.

https://doi.org/10.1371/journal.pone.0230635.g002

Table 3. Eight different target NNs with different possible combinations of types of NNs (NNs), learning algorithms (Algs) and input features (Features). The nota-

tion of each target NN is listed in the first column. The shape of input xt and the shape of answer yt are listed in the last two columns, respectively. The shape (W) denotes a

vector with a length of W, and the shape (W,W) denotes a W by W matrix.

Notations NNs Algs Features Shape xt Shape yt

MSP MLP SL Price (W) (3)

MSPV MLP SL Price, Volume (2W) (3)

MRP MLP RL Price (W) (1)

MRPV MLP RL Price, Volume (2W) (1)

CSP CNNs SL Price (W, W) (3)

CSPV CNNs SL Price, Volume (W, W) (3)

CRP CNNs RL Price (W, W) (1)

CRPV CNNs RL Price, Volume (W, W) (1)

https://doi.org/10.1371/journal.pone.0230635.t003

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 6 / 20

https://doi.org/10.1371/journal.pone.0230635.g001
https://doi.org/10.1371/journal.pone.0230635.g002
https://doi.org/10.1371/journal.pone.0230635.t003
https://doi.org/10.1371/journal.pone.0230635

create an image-style input matrix for CNN. In the matrix, black cells indicate the value 1 and

the non-black cells indicate zero. The value 1 in the matrix indicates either relative closing

price data or both relative closing price and volume data. When both closing price and volume

data are included in the matrix, prices are indicted in the upper half (rows 1 to 3) and volume

in the lower half (rows 5 to 8). The two rows in the middle are always empty (filled with zeros)

to help CNN to distinguish closing price data from volume data. The size of the matrix is

always W by W with channel size 1. This matrix can be processed as a stock chart image cover-

ing the past W days, with price indicated in the upper half and volume in the lower half, when

using both closing price and volume data as input. Since CNN is widely used for image classifi-

cation problems, we decided to use image-style input rather than raw numeric values for

CNN.

When the vector and matrix are generated, the values of the closing price and volume data

are also min-max normalized over the last W days. The min-max normalization is described

in Eq 1. Only closing price is included in the equation but the equation is also applied to vol-

ume data. Note that the normalization process is done for each company in the data set over

the last W days, and not over the entire training period.

~Pi
t ¼ ðP

i
t � Pi

sÞ=ðP
i
b � Pi

sÞ ð1Þ

where Pi
b 6¼ Pi

s, and ~Pi
t indicates the min-max normalized value of the closing price of com-

pany i at time t. Subscripts b and s indicate the indexes of the biggest and smallest values,

respectively, from time t-W+1 to time t (W days). Therefore, b, s 2{t −W + 1, . . ., t}. If the val-

ues of Pi
b and Pi

s are the same, 0.5 is assigned to ~Pi
t .

In our experiments, the output of the target NNs is always a vector ρt with a length of 3

where elements correspond to Long, Neutral and Short positions, respectively. In other words,

the target NNs can take either a Long, Neutral, or Short position. Therefore, in SL, the three

positions are considered as three classes, and in RL, the three positions are considered as

actions.

As input xt, the method used for generating answer yt can vary depending on the learning

algorithm used. In SL, labels are assigned to the target NNs in the training stage, and yt is a

one-hot vector with a length of 3 where each element corresponds to one of the three classes:

Long, Neutral, or Short. In addition, the labels were equally divided between the training set

and validation set by the following process. First, the training data is sorted based on daily

returns in descending order. Then, for the top 33.33%, [1, 0, 0] is assigned to vector yt, for the

bottom 33.33%, [0, 0, 1] is assigned to vector yt, and for the median 33.33%, [0, 1, 0] is assigned

to vector yt.

In RL, instead of the labels, the rewards are given to the target NNs. The reward is calculated

based on the output of the target NNs ρ, and the daily return at time t+1. Thus in RL, yt is a

scalar value which is the daily return at time t+1. Eq 2 defines the daily return at time t+1.

Di
tþ1
¼ 100� ðPi

tþ1
� Pi

tÞ=P
i
t ð2Þ

where Pi
t indicates the closing price of company i at time t. As in SL, the training set and vali-

dation set are also neutralized. In other words, the average value of the daily returns from each

set is subtracted from each daily return. By doing this, the sum of the daily returns of the train-

ing set and validation set is zero.

To address the data imbalance problem, the training set and validation set are neutralized

in RL, and the labels are distributed equally in SL. Since stock market data has more positive

values than negative values, which can be attributed to the fact that the overall economy has

grown over the last several decades (or longer), naively using imbalanced data as the training

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 7 / 20

https://doi.org/10.1371/journal.pone.0230635

set may cause the model to output only the single label (Long) or perform well only when the

overall market tends to be bullish.

Training stage

In the training stage, the target NNs are trained on the historical closing price and volume

data. As shown in Table 3, eight different target NNs with possible combinations of NNs,

learning algorithms and input features are trained respectively. For our method, these eight

target NNs are trained on the data of individual companies. For the baseline, eight target NNs

are trained on S&P 500 data.

The overall process of feeding and training the target NNs in the training stage is shown in

Fig 1. The target NNs are trained to predict the return at time t+1 (price change from time t to

t+1 in percentage) based on the past W days of data which can be observed at time t. The out-

put of the target NNs is a vector ρt with a length of 3, where three elements correspond to

Long, Neutral, and Short positions, respectively.

When SL is used for training, the final layer of the target NNs is the softmax layer. There-

fore, each element of ρt represents the probability of the input xt being classified as its corre-

sponding label (Long, Neutral, or Short). The cross-entropy loss defined in Eq 3 is used for

training the target NNs. The subscript for timestep and the superscript for company are omit-

ted for simplicity.

LossS ¼
P
� y � log r ð3Þ

where � represents element-wise multiplication and y is a one-hot vector with three elements

representing Long, Neutral, and Short positions, respectively. The summation is calculated

over each of the randomly sampled mini-batch sizes of β. The training algorithm is described

in Algorithm 1.

As mentioned in the Introduction section, for RL, we used Q-learning as our training algo-

rithm. We adopted the methods of using experience replay and periodically updating target

parameter proposed in [20] to stabilize our training process. But when performing the gradient

step, we used the modified version of experience replay proposed in [19] to include more com-

panies in one mini-batch.

In Q-learning, each element of ρt represents its corresponding action value which is the

expected cumulative reward of the action. Therefore, when the training is finished, the optimal

behavior of the target NNs is simply choosing the action with the maximum action value. To

train the target NNs using RL, we first need to define the reward function.

rit ¼ ait � Di
tþ1
� P � jait � ait� 1

j ð4Þ

where ai
t is a scalar value that represents the chosen action of company i at time t. The values

1, 0, and -1 are assigned to ai
t for Long, Neutral, and Short actions, respectively. P is the trans-

action penalty used during the training to prevent the target NNs from changing their position

too frequently.

For our training algorithm, we use the same loss function proposed in [20]. The loss func-

tion utilizes the Bellman equation which defines the relationship between the action value at

the current time step and that at the next time step, and iteratively updates the action value

until it converges to the optimal action value. The loss function is defined below. The subscript

for time step and the superscript for company are omitted for simplicity.

LossR ¼
P
½r þ gmaxa0Qðs0; a0; y

�
Þ � Qðs; a; yÞ�

2 ð5Þ

where γ denotes the discount factor, and s, a, r, s’ and a’ represent the current input xt, the

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 8 / 20

https://doi.org/10.1371/journal.pone.0230635

chosen action at given the current input xt, the immediate reward rt, the subsequent input xt+1,

and the next action at+1 given input xt+1, respectively. Q(s,a;θ) which is parameterized by θ
denotes the action value of the chosen action given the current input s. For example, if the cho-

sen action at is Long given the current input xt, then Q(s,a;θ) is exactly equal to ρt[0]. When

choosing an action given the current input xt, the ε-greedy policy is used. The ε-greedy policy

chooses the action with the maximum action value with a probability of 1-ε or chooses a ran-

dom action with a probability of ε.

To apply experience replay, at every iteration, we store our randomly sampled experience

eb = {s,a,r,s’} in the memory buffer with the size of M. Then the mini-batch size of β is ran-

domly sampled from the memory buffer at every B iteration to perform the gradient step for

minimizing LossR, with respect to the parameter θ. Thus, the summation in Eq 5 is calculated

over each of the mini-batch sizes of β. The two parameter sets θ and θ� are maintained

throughout our training to avoid the moving target problem. The parameter θ� is only updated

every B×C iteration by simply copying the parameter θ to θ�. The training algorithm is

described in Algorithm 2.

Training details

In this subsection, we will briefly discuss the training details, such as how we chose the hyper-

parameters and the best performing model parameter θ. First of all, we chose the optimal

hyper-parameter values by repeating the training-validation process on the training and vali-

dation sets, each from 2000-2004 and 2004-2006, respectively. We mostly conducted grid

search to select the values rather than random searching. The values of hyper-parameters are

listed in Table 4. The network structure selected in this stage is highlighted in Table 8. While

constructing the network structure, batch normalization layers [21] are added after each layer

for both MLP and CNN. The Adam optimizer [22] is used to perform a gradient step on LossS

and LossR. Once the hyper-parameters and the network structures are selected in this stage,

those selected hyper-parameters and network structure are used for entire test period both for

our method and the baseline.

Next, we chose the optimal model parameter θ as follows. In the training stage, we store

parameter θ every 0.1 ×maxiter iterations and evaluate the parameter on the validation set

rather than simply using the parameter θ after maxiter iterations. When training is finished,

the parameter that obtained the best performance on validation set is selected and used for the

test set. The process of obtaining optimal parameter θ is carried out for each validation period.

Table 4. List of hyper-parameters and their values used while training.

Algo Notations Description Values

SL β The batch size 64

maxiter The maximum number of iterations 200,000

learning rate The learning rate 0.001

RL M The size of the memory buffer 1,000

B The update interval of parameters θ 10

C The update interval of parameters θ� 1,000

P The transaction penalty 0.1

β The batch size 32

γ The discount factor 0.99

maxiter The maximum number of iterations 3,000,000

learning rate The learning rate 0.00001

https://doi.org/10.1371/journal.pone.0230635.t004

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 9 / 20

https://doi.org/10.1371/journal.pone.0230635.t004
https://doi.org/10.1371/journal.pone.0230635

For example, the validation set from period 2012-2014 is used to choose the optimal parameter

θ for the test set from period 2014-2018. The same process is used for the baseline for fair

comparison.

Test stage

In the test stage of our method, the eight target NNs with two NNs, different learning algo-

rithm and input feature combinations trained on the data of individual companies were tested.

The target NNs trained on the data of the S&P 500 were also tested as a baseline. In this subsec-

tion, the exact method of aggregating the output of the target NNs trained on the data of indi-

vidual companies will be discussed. Fig 3 shows how the target NNs aggregate the predictions

of individual companies and make the final prediction ηt of the future price of the S&P 500 at

time t.

The target NNs take input generated from every constituent company of the S&P 500 over

the last W days at time t, and predict the future price of the S&P 500 at the subsequent time

step. In other words, the target NNs decide which optimal position [Long, Neutral, Short]

should be taken at time t based on all the constituent companies. For the remainder of this

paper, we use N as the number of constituent companies of the S&P 500 used in our experi-

ments. Even though the S&P 500 has 505 constituent companies, we use N to denote the num-

ber of constituent companies because we were unable to obtain the data of some constituents.

Therefore, the value N varies depending on the experimental period.

The final prediction ηt is calculated as follows. First, at time t, the target NNs independently

take input xi
t N times, and independently output vectors ρi

t N times. Each vector ρi
t represents

the prediction made by a target NN for company i at time t. In SL, each element in vector ρi
t

represents the probability of the input xi
t being classified as its corresponding label. In RL,

each element in vector ρi
t represents the action value of its corresponding action. Therefore, in

SL and RL, the subtracted value (ρi
t[0]—ρi

t[2]) of each company is calculated for representing

the probability of price of company i rising at subsequent time step t+1. The final prediction ηt

is a weighted sum of the subtracted values each of which weighted by the market capitalization

of the corresponding companies at time t. Whether to take a Long, Neutral, or Short position

in the S&P 500 at time t is decided based on the value of ηt. For example, we can take a Long

position in the S&P 500 if ηt is bigger than 0; if ηt is smaller than 0, we can take a Short position

at time t. The exact equation for calculating ηt is as follows.

Zt ¼
XN

i¼0

Capit � ðr
i
t½0� � r

i
t½2�Þ ð6Þ

Fig 3. Overview of how ηt is aggregated from the outputs of individual companies ρi
t.

https://doi.org/10.1371/journal.pone.0230635.g003

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 10 / 20

https://doi.org/10.1371/journal.pone.0230635.g003
https://doi.org/10.1371/journal.pone.0230635

where Capi
t represents the market capital ratio of company i at time t and satisfies

(
PN

i¼0
Capi

t = 1.0).

In most cases, when using the final prediction value ηt to decide which position should be

taken in the S&P 500 at time t, the average value of ηt is not zero. In other words, the strategy

of taking a Long position in the S&P 500 when ηt is bigger than 0 or a Short position when it is

smaller than 0 may lead to taking either a Long or Short position too frequently. To balance

the two positions, we calculate the mean μη and standard deviation ση of ηt over each validation

set. We use the mean μη and standard deviation ση to decide which position to take in the S&P

500. For example, we can take a Long position in the S&P 500 when ηt is bigger than μη + ση or

a Short position when ηt is smaller than μη—ση. The exact method for deciding which position

to take in the S&P 500 using μη and ση is described in Algorithm 3 and will be discussed in the

next section.

Algorithm 1: Supervised Learning
1: Initialize parameter θ
2: for all b = 0, maxiter
3: Random sample mini-batch of size β from training data
4: Calculate LossS in mini-batch
5: Perform gradient step to minimize LossS with respect to the param-
eter θ
6: if b% (0.1 × maxiter) == 0 then
7: Store current parameter θ and obtain performance on validation
set.
8: end if
9: end for

Algorithm 2: Reinforcement Learning
1: Initialize the memory buffer to capacity M
2: Initialize parameter θ
3: Initialize parameter θ� θ
4: for all b = 0,maxiter do
5: Random sample current state s from the training set
6: With ε-greedy policy, choose action a, given the current state s
7: Observe immediate reward r and next state s’
8: Store experience eb = {s,a,r,s’} in the memory buffer
9: if b% B == 0 then
10: Random sample mini-batch of size β from the memory buffer
11: Calculate LossR in mini-batch
12: Perform gradient step to minimize LossR w.r.t. the parameter θ
13: end if
14: if b% (B×C) == 0 then
15: Set θ� θ
16: end if
17: if b% (0.1 × maxiter) == 0 then
18: Store current parameter θ and obtain performance on validation
set.
19: end if
20: end for

Experiments

Comparison with baseline

In this subsection, the experimental results of the eight different target NNs with various com-

binations of types of NNs, learning algorithms and input features are provided. The target

NNs were (1) trained on the data of individual companies and the S&P 500 and tested on the

data of the S&P 500. The notations of the eight target NNs are provided in Table 3. In this

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0230635

paper, we are proposing a new method, rather than a unique neural network structure or a

learning algorithm, for training neural networks for stock index prediction. The comparison

of our method and existing method demonstrates that training target NNs on a large amount

of data of individual companies is more effective in improving performance than changing the

network structure or learning algorithm.

Figs 4 and 5 show the cumulative assets obtained by each of the eight different NNs

throughout the entire test period (12 years). For visualization purposes, the results are divided

and shown in the two figures. In Fig 4, the experimental results of four target NNs trained

Fig 4. Cumulative assets obtained by target NNs trained using RL. Cumulative assets obtained over the entire test period. The notations

and final assets are listed at the right side of the figure.

https://doi.org/10.1371/journal.pone.0230635.g004

Fig 5. Cumulative assets obtained by target NNs trained using SL. Cumulative assets obtained over the entire test period. The notations and

final assets are listed at the right side of the figure.

https://doi.org/10.1371/journal.pone.0230635.g005

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 12 / 20

https://doi.org/10.1371/journal.pone.0230635.g004
https://doi.org/10.1371/journal.pone.0230635.g005
https://doi.org/10.1371/journal.pone.0230635

using RL are provided. In Fig 4, for our method, the target NNs trained on the data of individ-

ual companies are labeled with the prefix “Ours” and for the baseline method, the target NNs

trained on the data of the S&P 500 are labeled with the prefix “S&P.” In Fig 5, the experimental

results of the target NNs trained using SL and our method and the baseline method are pro-

vided. The cumulative asset obtained by the buy-and-hold strategy of the S&P 500 is labeled as

“S&P 500” and shown in Figs 4 and 5. For each NN, the asset is assumed to be 1.0 at the initial

point. Every four years, the parameters of the target NNs are replaced with re-trained parame-

ters and used for the subsequent four years. The transaction cost is not considered in this

experiment.

As shown in Figs 4 and 5, most of the target NNs trained using RL and SL and trained on

the data of individual companies outperforms the target NNs trained on the data of the S&P

500. It is difficult to say whether MLP or CNN is better for predicting the future price of the

S&P 500. Also, adding the volume data for input features does not help improve the perfor-

mance of the target NNs. But the target NNs trained using RL performs better than the target

NNs trained using SL when the data of individual companies are used for training.

Figs 4 and 5 show that when the same learning algorithms and input features are used, the

target NNs trained on the data of individual companies outperforms the target NNs trained on

the data of the S&P 500 in predicting the future price of the S&P 500. The results also show

that training the target NNs on a sufficient amount of data of individual companies is more

effective than changing the network structure or learning algorithm for improving

performance.

Comparison with previous work

In this subsection, we compare our method with a state-of-the-art method [13] that adopts

deep Q-learning and transfer learning [23] to predict the future prices of stock indexes and

determine the number of shares to trade. In their experiments, the authors either chose 6 or 10

constituent companies in each stock index, and used the price data of these constituent compa-

nies for pretraining. After the pretraining, the price data of each stock index was used for fine-

tuning. The authors conducted four independent experiments on the following four stock

indexes: S&P 500, KOSPI, HSI, and EuroStoxx50. But we considered only the experimental

results on the S&P 500 since our experiments are conducted on only the S&P 500. Also, since

determining the number of shares to trade is not the main focus of our work, we did not com-

pare their experiments with ours.

Among our eight target NNs reported in the previous subsection, we chose the following

four target NNs for the experiment: CRp, MRp, CSp, and MSp. Since the model proposed in

previous work [13] used only daily price data as input, we chose four NNs that use only price

data as input. Also, we recalculated the profit from the same test period (Jun. 5, 2006-Dec. 29,

2017) used in the previous work [13]. We also used the same evaluation metric used in the pre-

vious work, which is defined in Eq 7.

Profitt ¼ at � ðPtþ1 � PtÞ=Pt ð7Þ

where Pt is the closing price of the S&P 500 at time t and at is a position taken at time t. The

superscript i for a company is omitted for simplicity. The values 1, 0, and -1 are assigned to at

for Long, Neutral, and Short actions, respectively. Thus, for example, a profit of 1.0 at the end

of the test period could be interpreted as a 100% asset gain over the entire test period assuming

that the profit earned from the trade is not reinvested.

Table 5 compares the profits gained by our method and those gained by the method pro-

posed in [13]. For better understanding, we will briefly explain the notations used in Table 5.

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0230635

In the previous work of [13], the constituent companies were chosen based on the past price

sequence similarity between the constituent companies and the stock indexes. The authors

used correlation and NNs to measure the past price sequence similarity. In their work, the

notations CR and NE denote correlation and NN, respectively. The subscripts H, HL, and L

denote high, high and low, and low, respectively. Thus, for example, “CRH” denotes a model

pretrained on the data of the constituent companies that have a high correlation with the stock

index. As shown in Table 5, on average, our method outperforms the method in [13]. The two

target NNs that use CNN (CRp and CSp) yielded more profit than the best performing NEL

from the previous work.

Considering transaction cost

In this subsection, we discuss how to use our method in real practice. We conducted an experi-

ment considering transaction costs and adopting other financial indicators besides cumulative

assets. In the subsection Comparison with Baseline, we compare the cumulative returns of the

target NNs trained on the data of individual companies with those of NNs trained on the S&P

500 data to show that our method is more effective in training NNs for stock index prediction.

However, in real practice, it is important to also consider transaction costs and other indicators

such as annual return, Maximum Drawdown [24], the number of transactions, and the ratio of

Long to Short positions.

Table 6 shows additional information obtained by the eight target NNs trained on the data

of individual companies (our method) and the data of the S&P 500 (baseline method). The

results of the same target NNs used in the previous subsection are provided in Table 6. As

shown in Table 6, the target NNs trained on the data of individual companies earned annual

returns of about 5%-15%, which are much higher than the annual returns of the target NNs

trained on the data of the S&P 500. Typically, the ratio of Long to Short positions is slightly

less than 0.5. Training the target NNs on a neutralized training set and using the mean μη of ηt,

calculated over each of the validation sets, helped balance the ratio of Long to Short positions.

Also, the profits per transaction are mostly around 0.05%-0.2%, except for CRP. As listed in

column TR in Table 6, the number of transactions of the target NNs trained using RL is less

than that of the target NNs trained using SL, due to the transaction penalty which is applied in

the training stage of RL and described in Eq 4.

Table 5. Comparison of the total profit gained by our method and that obtained by the method proposed in [13].

The profit is summed over the entire test period (Jun. 5, 2006-Dec. 29, 2017). “Average” denotes the average profit.

Notations Profit

Ours CRP 1.782

MRP 1.527

CSP 1.956

MSP 0.869

Average 1.533

Jeong & Kim CRH 0.925

CRHL 1.039

CRL 1.431

NEH 1.292

NEHL 1.076

NEL 1.595

Average 1.226

https://doi.org/10.1371/journal.pone.0230635.t005

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 14 / 20

https://doi.org/10.1371/journal.pone.0230635.t005
https://doi.org/10.1371/journal.pone.0230635

Algorithm 3: Lagged Position Change
Function laggedPosChange (ηt, αt-1, μη, ση, τw, τs)
UprTHs μη + τs × ση
UprTHw μη + τw × ση
LwrTHs μη—τs × ση
LwrTHw μη—τw × ση
if ηt < LwrTHs or UprTHs < ηt then
if ηt < LwrTHs then
return -1

else
return 1

else
if LwrTHw � ηt and ηt � UprTHw then
return 0

else
if ηt < LwrTHw then
if αt-1 == 1 then
return 0

else
return αt-1

else
if αt-1 == -1 then
return 0

else
return αt-1

However, the profits per transaction listed in Table 6 are still too small after considering the

transaction cost. Therefore, we introduce Lagged Position Change which is a simple algorithm

that reduces the number of transactions and increases the profit per transaction using the

mean μη and standard deviation ση, both of which are discussed in the Methods section (E.

Test Stage). The intuition behind this algorithm is as follows. A Long position is taken when

the prediction value ηt is certainly positive, and a Short position is taken when the value is

Table 6. Comparison of the annual returns and returns per transaction of our method and those of the baseline. The columns Return, TR, Long, and perTR list the

annual returns in percentage, the number of transactions per year, the Long to Short position ratio, and the returns per transaction, respectively. The results are averaged

over the entire test period.

Notations cumAsset Return (%) TR Long perTR (%)

Ours CRP 5.78 17.04 37.99 0.46 0.45

CRPV 1.78 6.89 42.4 0.42 0.16

MRP 3.98 13.82 58.96 0.44 0.23

MRPV 2.29 9.05 51.8 0.42 0.16

CSP 5.20 16.12 91.05 0.47 0.18

CSPV 1.35 4.49 89.85 0.47 0.05

MSP 1.98 7.74 111.84 0.44 0.07

MSPV 1.96 7.75 105.06 0.47 0.07

Baseline CRP 0.54 -3.67 83.39 0.48 -0.04

CRPV 0.72 -1.67 77.39 0.32 -0.02

MRP 0.82 -0.16 78.46 0.43 0.0

MRPV 0.64 -2.27 91.19 0.54 -0.03

CSP 0.52 -4.21 97.7 0.48 -0.04

CSPV 1.21 2.97 94.38 0.57 0.03

MSP 1.38 4.24 101.76 0.49 0.04

MSPV 0.53 -3.86 95.33 0.47 -0.04

https://doi.org/10.1371/journal.pone.0230635.t006

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 15 / 20

https://doi.org/10.1371/journal.pone.0230635.t006
https://doi.org/10.1371/journal.pone.0230635

certainly negative. When the prediction value ηt is weak, a neutral position is taken. If the

value is somewhere between weak and strong, the same position that was taken at the previous

time step is taken to prevent changing the position too frequently. Algorithm 3 describes the

function laggedPosChange which returns the current position αt based on the current predic-

tion value ηt and the previous position αt-1. The return value of the function laggedPosChange
αt could be 1, 0, or -1 which correspond to Long, Neutral, or Short positions, respectively. The

two arguments τw and τs are scalar values multiplied by the standard deviation ση, which satis-

fies τw� τs. The arguments are used to determine how strong the prediction value ηt should

be, to take a Long or Short position. In our experiment, we limited the value of τs to 0.75. If a

value that is too large is assigned to τs, the target NNs would take only the Neutral position in

most cases. The results listed in Table 6 in the previous subsection are exactly the same as the

results obtained by the function laggedPosChange with the arguments τw and τs both equal to

zero.

Table 7 lists the results obtained by the function laggedPosChange with the value τs

between 0 and 0.75. Only the results of the target NNs trained on the data of the individual

companies (Ours) are listed. The values in the first 8 rows are the averaged results of the target

NNs trained using RL (CRP, CRPV, MRP, and MRPV). For example, the cumulative asset of

3.46 in the first row is the averaged cumulative asset (5.78+1.78+3.98+2.29)/4, listed in the col-

umn cumAsset in Table 6. Each row provides the averaged result obtained by changing the

value τs and transaction cost. Also, the values in the last 8 rows are the averaged results of the

target NNs trained using SL (CSP, CSPV, MSp, and MSPV).

As Table 7 shows, when we increase the value τs, the number of transactions and the non-

neutral position (column NNP) ratio decrease. The NNP measures the non-neutral position

ratio which is calculated by dividing the sum of the Long and Short positions by the sum of the

Long, Neutral, and Short positions. Therefore, when we increase the τs, the target NNs buy or

sell the S&P 500 and change the current position only when the situation is more certain. The

column perTR clearly shows that increasing the value τs increases the return per transaction;

Table 7. The averaged results obtained using the function laggedPosChange for the target NNs trained on the data of individual companies (Ours). The column

TRCost and the column cumAsset list the transaction costs and cumulative assets, respectively. The column NNP and the column MDD list the non-neutral position ratios

and Maximum Drawdowns, respectively.

Algo τw τs TRCost cumAsset return (%) TR perTR (%) Long NNP MDD

RL 0 0 0 3.46 11.7 47.79 0.25 0.44 1 -21.93

0 0.25 0 3.37 11.72 36.65 0.33 0.42 0.69 -18.67

0 0.50 0 3.28 11.34 28.79 0.4 0.42 0.58 -17.39

0 0.75 0 2.56 8.98 21.74 0.42 0.41 0.47 -16.45

0 0 0.1 2.02 6.92 47.79 0.15 0.44 1 -24.83

0 0.25 0.1 2.2 8.05 36.65 0.23 0.42 0.69 -21.4

0 0.50 0.1 2.33 8.46 28.79 0.3 0.42 0.58 -19.02

0 0.75 0.1 1.98 6.81 21.74 0.32 0.41 0.47 -17.46

SL 0 0 0 2.62 9.03 99.44 0.09 0.46 1 -25.86

0 0.25 0 2.58 8.97 75.09 0.12 0.46 0.63 -20.18

0 0.50 0 2.6 9.02 58.79 0.15 0.47 0.51 -18.68

0 0.75 0 2.26 7.87 44.43 0.18 0.47 0.4 -18.63

0 0 0.1 0.85 -0.92 99.44 -0.01 0.46 1 -34.39

0 0.25 0.1 1.09 1.47 75.09 0.02 0.46 0.63 -26.1

0 0.50 0.1 1.31 3.14 58.79 0.05 0.47 0.51 -21.99

0 0.75 0.1 1.34 3.43 44.43 0.08 0.47 0.4 -21.15

https://doi.org/10.1371/journal.pone.0230635.t007

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 16 / 20

https://doi.org/10.1371/journal.pone.0230635.t007
https://doi.org/10.1371/journal.pone.0230635

the cumulative asset or annual return only slightly decreases, which may be due to the decrease

in the non-neutral position ratio. Increasing τs increases both the cumulative asset and the

return per transaction even more when transaction cost is applied. The target NNs did not

yield positive returns especially in the SL cases where the number of transactions is quite high.

Also, increasing τs also helped reduce the Maximum Drawdown.

Robustness verification

The results of our previous experiments show that training the target NNs on the data of indi-

vidual companies improves performance more than changing the learning algorithm or add-

ing additional input features. However, the performance of the NNs is known to vary

depending on their network structure such as the number of layers or the number of parame-

ters of each layer.

In this subsection, we discuss an experiment conducted with the target NNs (MLP and

CNN) with different network structures. We changed the number of layers or the number of

parameters of each layer of each target NNs, and trained each target NNs using either SL or

RL. As similarly done in the previous experiments, we trained the target NNs with different

learning algorithms and network structures on the data of individual companies and the data

of the S&P 500. But for this experiment, we used only the closing price data as input because

using the volume data did not help improve the performance of the target NNs. Table 8 lists

the network structure details and all the target NNs with various learning algorithms and net-

work structures used in this experiment. Also, Table 8 lists the cumulative assets obtained by

the target NNs trained on the data of individual companies (our method) and the target NNs

trained on the data of the S&P 500 (baseline method) over the entire test period. We tested

four different network structures including the same network structure used for MLP and

CNN in the previous subsections. For example, in Table 8, MSP2 and MRP2 have the same

Table 8. Sixteen target NNs with different learning algorithms (Algs) and network structures. The first column lists the notation of each NN. The network structures

(MSp, MRp, CSp, and CRp) used in the previous experiments are highlighted. The column Layers lists the number of fully connected layers of MLP and the number of con-

volutional layers for CNN. The column Units/Filters lists the number of units in the hidden layers of MLP and the number of filters in the convolutional layers of CNN.

The columns Ours and Baseline list the cumulative assets obtained by the target NNs over the entire test period.

Notation NNs Algs Layers Units / Filters Ours Baseline

MSp MLP SL 4 64, 32, 16, 3 1.98 1.38

MSP1 MLP SL 4 128, 64, 32, 3 2.18 1.31

MSP2 MLP SL 3 64, 32, 3 6.7 2.57

MSP3 MLP SL 3 128, 64, 3 4.48 1.82

MRP MLP RL 4 64, 32, 16, 3 3.98 0.82

MRP1 MLP RL 4 128, 64, 32, 3 3.45 1.27

MRP2 MLP RL 3 64, 32, 3 5.0 1.62

MRP3 MLP RL 3 128, 64, 3 6.04 1.16

CSP CNNs SL 4 8, 8, 16, 16 5.2 0.52

CSP1 CNNs SL 4 16, 16, 32, 32 2.28 1.07

CSP2 CNNs SL 2 16, 32 2.72 0.38

CSP3 CNNs SL 2 32, 64 1.24 0.71

CRP CNNs RL 4 8, 8, 16, 16 5.78 0.54

CRP1 CNNs RL 4 16, 16, 32, 32 2.92 1.3

CRP2 CNNs RL 2 16, 32 3.84 0.98

CRP3 CNNs RL 2 32, 64 4.79 1.0

https://doi.org/10.1371/journal.pone.0230635.t008

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 17 / 20

https://doi.org/10.1371/journal.pone.0230635.t008
https://doi.org/10.1371/journal.pone.0230635

network structure. Therefore, in total, sixteen target NNs with possible combinations of types

of NNs, network structures and learning algorithms were tested in this experiment.

Table 8 and Fig 6 compare the cumulative assets obtained by each of the 16 target NNs

trained on the data of individual companies, and the same target NNs trained on the data of

the S&P 500. The cumulative assets obtained by the target NNs trained on the data of individ-

ual companies (our method) are highlighted in red, and the cumulative assets obtained by the

target NNs trained on the S&P 500 data (baseline method) are highlighted in blue. The perfor-

mance results of the 16 target NNs are presented in 16 different graphs for comparison. Thus,

for example, in Fig 6, the graph titled “MS_p2” compares the cumulative assets obtained by

MSP2 trained on the data of individual companies with the cumulative assets obtained by MSP2

trained on the data of the S&P 500.

Fig 6. Cumulative assets over the entire test period. Comparison of the cumulative assets obtained by sixteen different target

NNs. Cumulative assets obtained by the target NNs trained on the data of individual companies (our method) are highlighted in

red. Cumulative assets obtained by the target NNs trained on the data of the S&P 500 (baseline method) are highlighted in blue.

https://doi.org/10.1371/journal.pone.0230635.g006

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 18 / 20

https://doi.org/10.1371/journal.pone.0230635.g006
https://doi.org/10.1371/journal.pone.0230635

As shown in Table 8 and Fig 6, the target NNs trained on the data of individual companies

mostly outperformed the target NNs trained on the data of the S&P 500. When CNNs were

used as the target NNs and trained on the S&P 500 data, they did not yield profit in most cases.

When MLPs were used as the target NNs and trained on the data of the S&P 500, they yielded

competitive returns (MSP2) in some cases. However, the target NNs trained on the data of indi-

vidual companies consistently outperformed the target NNs trained on the data of the S&P

500, and yielded profit regardless of the network structure, learning algorithm, or input feature

used.

Theoretically, numerous network structures can be constructed. But it is infeasible to test

and compare all network structures. Therefore, we chose four different network structures for

the NNs and report the performance of the target NNs with different network structures.

Through these experiments, we empirically verify the followings: First, when the same network

structure and learning algorithm are used, the target NNs trained on the data of individual

companies mostly outperform the target NNs trained on the data of the S&P 500. Second, the

performance of the target NNs varies depending on their network structure. For example, in

the case of CSP3, the cumulative asset is 1.24, but in the case of MSP2, the cumulative asset is

6.7. Training the target NNs on the data of individual companies obtains more consistent per-

formance than training the target NNs on the data of the S&P 500.

Discussion

In this work, we proposed a novel method for training various types of NNs to predict the

future price of the S&P 500, one of the most commonly traded stock indexes. Unlike previous

works, we trained the target NNs only on the data of individual companies, which is a suffi-

cient amount of data; this helped avoid problems due to training NNs on a small amount of

data. We conducted various types of experiments to empirically show that training NNs on a

sufficient amount of data is critical in improving their performance. Different types of NNs

trained on the data of individual companies outperformed the target NNs trained on the data

of the S&P 500.

Our method is conceptually simple and easy to apply. To the best of our knowledge, no pre-

vious works have attempted to predict the future price of a stock index without using the data

of the stock index in the training process. Although we tested our method on only basic NNs,

it could be easily applied to more sophisticated NNs or other machine learning models, as long

as the data of individual companies are available.

Author Contributions

Conceptualization: Jinho Lee.

Formal analysis: Jinho Lee.

Methodology: Jinho Lee.

Supervision: Jaewoo Kang.

Validation: Jinho Lee.

Writing – original draft: Jinho Lee.

References
1. Atsalakis GS, Valavanis KP, Surveying stock market forecasting techniques–part ii: Soft computing

methods Expert Systems with Applications. 2009 Apr; 36(3):5932–5941. https://doi.org/10.1016/j.

eswa.2008.07.006

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 19 / 20

https://doi.org/10.1016/j.eswa.2008.07.006
https://doi.org/10.1016/j.eswa.2008.07.006
https://doi.org/10.1371/journal.pone.0230635

2. Cavalcante RC, Brasileiro RC, Souza VLF, Nobrega JP, Oliveira ALI, Computational Intelligence and

Financial Markets: A Survey and Future Directions. Expert Systems with Applications. 2016 Aug; 55

(15):194–211. https://doi.org/10.1016/j.eswa.2016.02.006

3. Sheta AF, Ahmed SEM, Faris H, A Comparison between Regression, Artificial Neural Networks and

Support Vector Machines for Predicting Stock Market Index. International Journal of Advanced

Research in Artificial Intelligence. 2015; 4(7).

4. Bollen J, Mao H, and Zeng X, Twitter mood predicts the stock market. Journal of computational science.

2011 Mar; 2(1):1–8. https://doi.org/10.1016/j.jocs.2010.12.007

5. Huang D, Jiang F, Tu J, Zhou G, Investor Sentiment Aligned: A Powerful Predictor of Stock Returns

The Review of Financial Studies. 2014 Oct; 28(3):791–837. https://doi.org/10.1093/rfs/hhu080

6. Preis T, Moat HS, Stanley HE, Quantifying trading behavior in financial markets using google trends.

Scientific reports. 2013 Apr; 3:1684. https://doi.org/10.1038/srep01684 PMID: 23619126

7. Ding X, Zhang Y, Liu T, Duan J, Deep Learning for Event-Driven Stock Prediction. In Proceeding of the

International Joint Conference on Artificial Intelligence. 2015 June; 2327–2333.

8. Pinheiro LDS, Dras M, Stock market prediction with deep learning: A character-based neural language

model for event-based trading. Proceedings of the Australasian Language Technology Association

Workshop 2017. 2017 Dec: 6–15.

9. Kara Y, Boyacioglu MA. Baykan OK. Predicting direction of stock price index movement using artificial

neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Sys-

tems with Applications. 2011 May; 38(5):5311–5319. https://doi.org/10.1016/j.eswa.2010.10.027

10. Deng Y, Bao F, Kong Y, Ren Z, Dai Q, Deep direct reinforcement learning for financial signal represen-

tation and trading. IEEE Transactions on Neural Networks and Learning Systems. 2016 Feb; 28

(3):653–664. https://doi.org/10.1109/TNNLS.2016.2522401 PMID: 26890927

12. Devlin J, Chang MW, Lee K, Toutanova K, BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. arXiv:1810.04805 [cs.CL] 2018 Oct. Available from: https://arxiv.org/abs/

1810.04805v2

11. Sun C, Shrivastava A, Singh S, Gupta A, Revisiting unreasonable effectiveness of data in deep learning

era. In ICCV. 2017.

13. Jeong G, Kim HY, Improving financial trading decisions using deep Q-learning: Predicting the number

of shares, action strategies, and transfer learning. Expert Systems with Applications. 2019 March; 117

(1):125–138. https://doi.org/10.1016/j.eswa.2018.09.036

14. LeCun Y, Bengio Y, Hinton G, Deep learning. nature. 2015 May; 521:436–444. https://doi.org/10.1038/

nature14539 PMID: 26017442

15. He K, Zhang X, Ren S, Sun J, Deep Residual Learning for Image Recognition. The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016:770-778

16. Xie S, Girshick R, Dollar P, Tu Z, He K, Aggregated Residual Transformations for Deep Neural Net-

works. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:1492-1500

17. Sutton RS, Barto AG, Reinforcement Learning: An Introduction Reading, Massachusetts. MIT PRess.

1998 Mar.

18. Watkins C, Dayan P, Q-learning. Machine learning. 1992 May; 8(4):279–292. https://doi.org/10.1007/

BF00992698

19. Lee J, Kim R, Koh Y, Kang J, Global Stock Market Prediction Based on Stock Chart Images Using

Deep Q-Network. IEEE Access. 2019 Dec;7.

20. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG et al., Human-level control through

deep reinforcement learning. nature, 2015 Feb; 518:529–533 https://doi.org/10.1038/nature14236

PMID: 25719670

21. loffe S, Szegedy C, Batch normalization: accelerating deep network training by reducing internal covari-

ate shift. arXiv:1502.03167 [cs.LG] 2015 Feb. Available from: https://arxiv.org/abs/1502.03167v3

22. Kingma DP, Ba J, Adam: a method for stochastic optimization. arXiv:1412.6980 [cs.LG] 2014 Dec.

Available from: https://arxiv.org/abs/1412.6980v9

23. Pan SJ, Yang Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineer-

ing, 2010 Oct; 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191

24. Magdon-Ismail M, Atiya AF, Pratap A, Abu-Mostafa YS, On the maximum drawdown of a brownian

motion. The Journal of applied probability. 2004 March; 41(1):147–161 https://doi.org/10.1239/jap/

1077134674

PLOS ONE Predicting the S&P 500 index without using its index data

PLOS ONE | https://doi.org/10.1371/journal.pone.0230635 April 10, 2020 20 / 20

https://doi.org/10.1016/j.eswa.2016.02.006
https://doi.org/10.1016/j.jocs.2010.12.007
https://doi.org/10.1093/rfs/hhu080
https://doi.org/10.1038/srep01684
http://www.ncbi.nlm.nih.gov/pubmed/23619126
https://doi.org/10.1016/j.eswa.2010.10.027
https://doi.org/10.1109/TNNLS.2016.2522401
http://www.ncbi.nlm.nih.gov/pubmed/26890927
https://arxiv.org/abs/1810.04805v2
https://arxiv.org/abs/1810.04805v2
https://doi.org/10.1016/j.eswa.2018.09.036
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
https://arxiv.org/abs/1502.03167v3
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1239/jap/1077134674
https://doi.org/10.1239/jap/1077134674
https://doi.org/10.1371/journal.pone.0230635

