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Abstract

As high-throughput sequencing is increasingly applied to the molecular diagnosis of rare

Mendelian disorders, a large number of patients with diverse phenotypes have their genetic

and phenotypic data pooled together to uncover new gene-phenotype relations. We intro-

duce Phenogenon, a statistical tool that combines, Human Phenotype Ontology (HPO) anno-

tated patient phenotypes, gnomAD allele population frequency, and Combined Annotation

Dependent Depletion (CADD) score for variant pathogenicity, in order to jointly predict the

mode of inheritance and gene-phenotype associations. We ran Phenogenon on our cohort of

3,290 patients who had undergone whole exome sequencing. Among the top associations,

we recapitulated previously known, such as "SRD5A3—Abnormal full-field electroretinogram

—recessive" and "GRHL2 –Nail dystrophy—recessive", and discovered one potentially

novel, “RRAGA–Abnormality of the skin—dominant”. We also developed an interactive web

interface available at https://phenogenon.phenopolis.org to visualise and explore the results.

Introduction

As DNA sequencing cost decreases, whole exome sequencing (WES) has become prevalent in

the molecular testing of individuals with rare Mendelian disorders. This has led to the identifi-

cation of many variants of unknown pathogenicity and clinical significance, with associated

difficulty in variant interpretation. A common practice for variant prioritisation is to search

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0230587 April 9, 2020 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pontikos N, Murphy C, Moghul I, Arno G,

Fujinami K, Fujinami Y, et al. (2020) Phenogenon:

Gene to phenotype associations for rare genetic

diseases. PLoS ONE 15(4): e0230587. https://doi.

org/10.1371/journal.pone.0230587

Editor: Obul Reddy Bandapalli, German Cancer

Research Center (DKFZ), GERMANY

Received: November 15, 2019

Accepted: March 3, 2020

Published: April 9, 2020

Copyright: © 2020 Pontikos et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Minimal data set can

be found at https://github.com/phenopolis/

phenogenon.

Funding: The study was funded by Retina UK,

Fight for Sight, NIHR (UCL-Moorfields Eyes

Hospital Biomedical Research Center), Moorfields

Eye Charity, Bloodwise, Rosetrees Trust, Charles

Wolfson Charitable Trust, UK Medical Research

Council, British Heart Foundation, Wellcome Trust

and the Japan Society for the Promotion of

Science. Funders did not play any role in the study

http://orcid.org/0000-0003-1782-4711
http://orcid.org/0000-0003-1356-959X
http://orcid.org/0000-0003-3653-2327
http://orcid.org/0000-0001-8001-8494
https://phenogenon.phenopolis.org
https://doi.org/10.1371/journal.pone.0230587
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230587&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230587&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230587&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230587&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230587&domain=pdf&date_stamp=2020-04-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230587&domain=pdf&date_stamp=2020-04-09
https://doi.org/10.1371/journal.pone.0230587
https://doi.org/10.1371/journal.pone.0230587
http://creativecommons.org/licenses/by/4.0/
https://github.com/phenopolis/phenogenon
https://github.com/phenopolis/phenogenon


for phenotypically similar disease cases with variants in known genes. Conventionally, this is

done by searching databases such as dbSNP [1] and ClinVar [2] for genetic variants, Online

Mendelian Inheritance in Man (OMIM) for genes, and targeted disease databases such as

RetNet [3] for retinal dystrophy. However, when no candidate genes or variants are found in

published cases with a known genetic diagnosis, an alternative solution is to group unsolved

cases with similar phenotypes to increase the chances of finding shared genetic variations

across genes.

The UK Inherited Retinal Dystrophy Consortium (UKIRDC) successfully applied this

approach by whole exome sequencing 365 unsolved pre-screened retinal dystrophy patients

from London, Leeds, Oxford and Manchester [4–9]. The WES and phenotype data were

deposited as part of our Phenopolis database (www.phenopolis.org) [10], which itself hosts

5122 (as of 2nd February 2019) exomes of patients with a range of disorders such as dementia,

Crohn’s disease, seizures and bone-marrow failure (S1 Table).

This unique dataset provided the ideal opportunity to develop a novel statistical analysis

tool, Phenogenon, in order to uncover gene-phenotype associations from large and phenotypi-

cally diverse cohorts of patients. The complete workflow of Phenogenon is described in (S1

Fig). Phenogenon does not require explicit thresholds for variant filtering, which rely on

assumptions of disease prevalence and mode of inheritance, but instead bins genetic variants

according to their population frequencies (gnomAD) and predicted pathogenicity (CADD) to

produce a two-dimensional heatmap for each gene-phenotype association. The HPO Good-

ness of Fit (HGF) score is then calculated from each heatmap which allows for prioritisation of

genes per phenotype. In addition, the heatmap is also used to derive a predicted mode of inher-

itance (MOI) of a gene-phenotype relation, which is a common use case when a novel gene is

under consideration for a patient with unknown family history.

We applied Phenogenon to the Phenopolis exome dataset and were able to recapitulate

known gene-phenotype relations, such as "SRD5A3—Abnormal full-field electroretinogram—

recessive" and "GRHL2 –Nail dystrophy—recessive". We also discovered potentially a novel

relation, "RRAGA–Abnormality of the skin—dominant".

Scripts to perform Phenogenon analysis are available at https://github.com/phenopolis/

phenogenon and an interactive visualisation tool is available at https://phenogenon.

phenopolis.org.

Materials and methods

Patient phenotyping and selection

This study dataset includes 5122 exomes from the Phenopolis database comprising Mendelian

and common disease patients. We used Human Phenotype Ontology [11] (HPO) as the stan-

dardised phenotype vocabulary for recording patient phenotypes, which were entered manu-

ally from patient notes by medical coders and extracted computationally from patient letters

using cTAKES [12]. Patient relatedness was estimated using KING [13], and related individu-

als were excluded so as not to skew the genetic association tests. This resulted in a subset of

3290 exomes from unrelated individuals (Table 1).

Variant calling and filtering

The variant calling and annotation pipeline has been described previously [10]. In brief,

exomes were aligned using Novoalign to build GRCh37 of the human genome and variants

were called and filtered using the Genome Analysis Tool Kit (GATK) best practices. Variants

that did not pass the GATK filters, were not covered in gnomAD or were non-coding, defined

as more than 5 base pairs away from nearest coding region, were filtered out. Variants with a
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missing rate of more than or equal to 20% in our data were also discarded. This left a total of

973,426 variants which were annotated with gnomAD frequencies [14] and CADD Phred

score [15]. GnomAD was used as it remains the largest resource for population level variant

frequency annotation; and CADD due to its popularity, ability to predict indels and ease of

local installation.

Scoring “gene—Phenotype—Mode of inheritance” associations

We considered variant frequencies in gnomAD under both modes of inheritance (MOI), dom-

inant or recessive. In the case of dominant inheritance, we defined the variant gnomAD fre-

quency (GF) to be the gnomAD allele frequency, and in the case of recessive inheritance, the

estimated homozygote frequency:

GF ¼

AC
AN

; if recessive

2�HOM
AN

; if dominant

8
>><

>>:

Given a gene, HPO term and MOI, variants found on the gene are binned according to

their GF and CADD score (Fig 1A and 1B). We selected a bin height of 5 for CADD and a bin

width of 1/4000 = 0.00025 for GF. From here on, variants with a GF< 0.00025 are considered

to be rare variants. Binned variants are then used to identify patient carriers who are consid-

ered to be either cases or controls based on whether they had the selected HPO term or any of

its child terms (Fig 1B). A case/control Fisher’s exact test (Fig 1C) is applied to each bin

according to the contingency table in S1 Table. The Fisher test is repeated for all bins and a

heatmap is produced coloured by the negative logarithm of the p-values. This heatmap is

referred to as the Phenogenon profile for a “gene—HPO—MOI” relationship (Fig 1D). The z

scores of the bins are then weighted (wi), according to S2 Table, and summed using a variation

of Stouffer’s Z-score method, in order to obtain an overall Z score for the “gene—HPO—

Table 1. Total number of 3290 exomes by predominant phenotypes.

Predominant phenotype(s) Number of samples

Dementia (with relation to prion disease) 1039

Inflammatory bowel disease 653

Retinal disorders 504

Healthy 272

Epilepsy 241

Bone Marrow Failure 190

primary immunodeficiency 109

Sudden Cardiac Death 92

Mitochondrial diseases 89

Dermotological disorders 47

Arrhythmogenic right ventricular cardiomyopathy 27

Nervous system disorders 14

Cataract 5

Mitochondrial diseases 4

Keratoconus 4

https://doi.org/10.1371/journal.pone.0230587.t001
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MOI” relationship (Fig 1D and 1E):

Z �
Pk

i ¼ 1
wiZiffiffiffiffiffiffiffiffi

krare

p ð1Þ

Where krareis the number of non-empty rare bins (GF < 0.00025). The motivation for the scale

factor krare is explained in the S1 File. Finally, the Z score is converted to a p-value assuming a

standard normal distribution and the negative logarithm of the p-value is used to define the

HPO Goodness of Fit (HGF) for that “gene—HPO—MOI” relationship:

HGF ¼ � logð1 � �ðzÞÞ ð2Þ

Where ϕ is the cumulative density function of the normal distribution.

For a given gene and HPO term, HGF scoring can be performed assuming either dominant

or recessive mode of inheritance (MOI). When testing for recessive MOI, patients are assumed

Fig 1. Phenogenon profiling workflow. A) The distribution of frequency vs CADD Phred score for variants of a single gene were binned

according to empirically chosen cut-offs. B) Variants within each binned area are further analysed. Individuals carrying these variants are

identified and then filtered on the basis of whether they have a selected HPO term. C) Fisher’s Exact test is then used to determine the

significance of the gene-phenotype relationship. D) A Phenogenon heatmap is produced using the Fisher Exact P-Values for each binned area.

E) Fisher Exact Scores for each of the binned area in the first column are collapsed into a single HPO goodness of fit score (HGF) using a

Scaled Stouffer transformation.

https://doi.org/10.1371/journal.pone.0230587.g001
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to be compound heterozygous if they carry a second variant, with a higher or equivalent

CADD score and a lower or equivalent GF.

The signal ratio is calculated for each “HPO-gene-MOI” relationship, based on the observa-

tion that if a wrong MOI is assumed, the Phenogenon heatmap profile tends to produce more

significant p-values bins for non-rare variants (GF > 0.00025) (S2 Fig).

The signal ratio (SR) is defined as:

SR ¼
Pkrare

i ¼ 1
� lnðpiÞ

Pkall
j ¼ 1
� lnðpjÞ

ð3Þ

Where kall represents the total number of non-empty non-rare bins with GF> 0.00025.

The “gene-HPO-MOI” score is then defined as:

M ¼
HGFrec � SR; if recessive

HGFdom � SR; if dominant

(

ð4Þ

The larger M value is deemed to be the most likely MOI.

Benchmarking Phenogenon

In order to benchmark our method and to choose an appropriate NP and HGF cut-off, we

selected a list of 12 known gene-HPO-MOI relationships (Table 2). Our list included SCN1A
(for dominant MOI) and ABCA4 (for recessive MOI). SCN1A encodes Sodium Voltage-Gated

Channel Alpha Subunit 1, mutations of which have been linked to epilepsy with divergent clin-

ical severity [16]. The mutations are either dominantly inherited or arise de novo [17] with the

majority of mutations found in the severe form of epilepsy (severe myoclonic epilepsy in

infancy; MIM# 607208) being mostly de novo [16]. ABCA4 encodes ATP Binding Cassette

Subfamily A Member 4, and biallelic mutation of the ABCA4 gene leads to a spectrum of reti-

nal diseases including Stargardt macular dystrophy, and cone-rod dystrophy [18].

We also compared the performance using our Phenogenon modified Stouffer’s Z-score

method compared to Fisher’s method. Similar to Stouffer’s Z-score method, Fisher’s method

also combines p-values to produce an overall p-value. However, it lacks the ability to assign

Table 2. Known HPO-gene-MOI relationships used to benchmark Phenogenon.

Rank Gene HPO MOI NP M score HGF score

1 SCN1A Seizures Dom 100 Dom 64.43

2 USH2A Visual impairment Rec 259 Rec 26.20

3 ABCA4 Macular dystrophy Rec 76 Rec 16.78

4 CNGB1 Constriction of the peripheral visual field Rec 41 Rec 9.43

5 CERKL Nyctalopia Rec 15 Rec 8.25

6 PROM1 Macular dystrophy Dom 60 Dom 7.02

7 GUCY2D Visual loss Rec 8 Rec 6.82

8 CRB1 Retinal dystrophy Rec 25 Rec 6.75

9 TERT Bone marrow hypocellularity Dom 48 Dom 6.28

10 BBS1 Constriction of the peripheral visual field Rec 10 Rec 5.61

11 RPGR Constriction of the peripheral visual field X-linked 28 Rec 4.77

12 IMPG2 Visual loss Rec 4 Rec 2.51

MOI = Mode of Inheritance; NP = the number of patients who carry rare variants for the corresponding MOI

https://doi.org/10.1371/journal.pone.0230587.t002
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weights, and therefore treats bins with different CADD phred scores equally. Specifically, Fish-

er’s method combines p-values using the following formula:

X2

2k � � 2
Xk

i ¼ 1

lnðpiÞ

Where X2 is a test statistic that follows a chi-squared distribution.

For each gene, we determined the MOI (using the M score) for each of the HPO terms with

an affected sample size> = 60, unless stated otherwise; then according to the determined MOI,

we calculated an HGF score for each of the HPO term. We calculated a mean and a standard

deviation of the HPO HGF scores for the gene, and chose HPO terms with an HGF score at

least one standard deviation higher than the mean as positive hits for the gene. We then com-

pare the positive HPO terms with a set of hand-curated truth set to determine an error rate.

We benchmarked Phenogenon on predictions for the HPO terms and the MOI for each

gene. A gene-HPO relation is deemed true if the relation is supported by the Human Pheno-

type Ontology.

We surmised that Phenogenon would not perform well for HPO terms that are too specific

or too general. Specific HPO terms have small number of affected patients (NP), which limit

the power of any measures of association analysis. On the other hand, general HPO terms,

such as ‘Phenotypic abnormality’ (HP:0000118) and ‘All’ (HP:0000001), include almost all the

samples for test, and will limit the analysis power in a similar way. To find out the optimal

sample sizes for predictions, we chose a number of NP cut-offs to choose to only predict HPO

terms with a NP equal or higher than the cut-offs.

We surmised that MOI prediction works best for gene-HPO relations supported with a

high HGF score. To assess MOI predictions, we first chose an HGF cut-off, and benchmark

MOI prediction on gene-HPO relations with a HGF score higher than the HGF cut-off. For

comparison, we chose to use HGF score only for MOI prediction, so that:

MOI ¼

dominant if HGFd > HGFr

recessive if HGFd < HGFr

undef if HGFd ¼ HGFr

8
><

>:

Where HGFd and HGFr are HGF scores assuming dominant and recessive MOI, respectively.

To demonstrate the benefit of using estimated homozygote frequency over allele frequency

for association analyses when assuming recessive MOI, we also included predictions for com-

parison to use allele frequency (instead of estimated homozygote frequency) to produce M and

HGF scores for recessive relations.

Phenogenon on a large patient cohort

Following the benchmarking, we applied Phenogenon to all protein coding genes in the Phe-

nopolis dataset (number of unrelated patients: 3290, number of protein coding genes with var-

iants: 21321), under both dominant and recessive inheritance modes. A breakdown of patient

phenotypes is shown in Table 1.
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Results

Phenogenon made correct predictions on both HPO and MOI in a

controlled environment

To benchmark Phenogenon, we selected 12 genes for which mutations have been reported to

be causal in the cohort. The HPO term with highest HGF score for each tested gene can be

found in Table 2.

As shown in Fig 2A, for both “ABCA4 –Macular dystrophy—recessive” and “SCN1A –Sei-

zures—dominant”, bins showing strong association correctly clustered with rare variants

(GF < 0.00025).

Phenogenon (green line, Fig 2B) outperformed Fisher (blue line, Fig 2B), demonstrating

the benefit of assigning higher weights to bins with higher CADD score.

Fig 2. Using phenogenon to predict gene-HPO-mode of inheritance (MOI) relationships for the 12 known genes. A. Examples of using

Phenogenon to profile known relationships: ABCA4—Macular dystrophy (HP:0007754) -recessive, and SCN1A—Seizures (HP:0001250)—

dominant. The color scales represent the HGF score. The majority of high-scoring bins are for rare variants (HGF< 0.00025). B. Error rate in

predicting HPO when number of patients selected per gene is higher than ‘HPO NP cut-off’. The lines give the trend of error rates for each

prediction model. C. Error rate for MOI when HPO selected per gene is higher than HGF cut-off. The lines give the trend of error rates for each

prediction model. Orange line: model using gnomAD allele frequency instead of estimated homozygote frequency for recessive MOI; Red line:

model using HGF for both HPO association and MOI prediction; Blue line: model using Fisher method to combine p values; Green line: our

current model for Phenogenon.

https://doi.org/10.1371/journal.pone.0230587.g002
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Phenogenon correctly predicted HPO terms for which there are at least 55 patients affected

(NP> 55) (green line, Fig 2B), although as expected, the error rate increased when including

HPO terms see in fewer patients (NP< 20). Interestingly, the error rate increased when HPO

NP> 100 (Fig 2B), suggesting that there are divergent genetic causes for less specific HPO

terms. In addition, it also made wrong HPO prediction when assuming wrong MOI.

The M score (green line, Fig 2C) was more accurate in predicting the MOI than using HGF

alone (red line, Fig 2C). Furthermore, as shown in Fig 2B and 2C, using GF defined as the gno-

mAD allele frequency when assuming recessive MOI (orange line) had a poorer performance

than using estimated homozygote frequency (green line) in predicting HPO and MOI.

Phenogenon found known gene-HPO-MOI relationships in a large patient

cohort

We performed Phenogenon on the 3290 unrelated samples of the Phenopolis cohort. As

shown in Table 3, from the top 10 relations discovered using Phenogenon, six were known

(SCN1A and USH2A are shown in Table 2 instead); the MOI of all were predicted correctly.

We were also able to uncover other strong gene-phenotype relationships when including HPO

terms with at least 60 individuals affected (Table 3). For instance, GRHL2 (OMIM: 608576)

known to cause recessive ectodermal dysplasia/short stature syndrome, which involves nail

dystrophy [19], was correctly linked to Nail dystrophy with recessive MOI by Phenogenon

(HGF score: 10.54). STAT1 (OMIM: 600555) known to cause dominant or recessive immuno-

deficiency, was also correctly linked to Severe combined immunodeficiency, with dominant

MOI (HGF score: 10.38). Other examples include SRD5A3 –Abnormal full-field electroretino-

gram (HGF: 11.13) with recessive MOI (known to cause recessive congenital disorders of gly-

cosylation, which may involve retinal disorders [20].) and PDE6A –Retinal dystrophy (HGF:

9.40) with recessive MOI (known to cause recessive retinitis pigmentosa [21]). Among the top

10 findings, there are four relations that were previously unreported. Whilst three of them

were likely false positives, we think that the association of “RRAGA—abnormality of the skin

—dominant” may reflect a novel disease mechanism. RRAGA encodes Ras-related GTP-bind-

ing protein A that activates mTORC [22], which was found to regulate skin morphogenesis

and epidermal barrier formation [23], therefore its mutations are the possible pathogenic

Table 3. Top-ranked gene-phenotype-MOI relations reported by phenogenon.

Gene Gene Description Predicted HPO Predicted

MOI

Known MOI HGF

score

Known

RRAGA Encodes Ras-related GTP-binding protein A that activates Mtorc [22],

which regulates skin morphogenesis and epidermal barrier formation

[23].

Abnormality of the skin dominant / 11.43 No

SRD5A3 Steroid 5α-reductase type 3 is known to cause congenital disorders of

glycosylation, which may involve retinal disorders [20].

Abnormal full-field

electroretinogram

recessive recessive 11.13 Yes

AIP Known to cause pituitary adenoma [24] Dementia recessive / 11.03 No

NUP205 NUP205 encodes a nucleoporin, known to cause steroid-resistant

nephrotic syndrome [25].

Abnormal electroretinogram recessive / 10.98 No

GRHL2 Transcription factor involved in multiple cancers and keratin

development [19,26],

Nail dystrophy recessive recessive 10.54 Yes

STAT1 Gain of function variants in this transcription factor exhibit diverse

immune dysfunction [27,28]

Severe combined

immunodeficiency

dominant dominant/

recessive

10.38 Yes

TTN Involved in cardiomyopathy [29]. Very large gene prone to artefacts

[30].

Abnormality of the anterior

segment of the globe

dominant / 9.74 No

PDE6A PDE6A expresses in cells of the retinal rod outer segment, and is known

to cause retinitis pigmentosa [21].

Retinal dystrophy recessive recessive 9.40 Yes

https://doi.org/10.1371/journal.pone.0230587.t003
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cause of the skin disorders observed on the patients in the Phenopolis dataset. AIP encodes a

receptor for aryl hydrocarbons and a ligand-activated transcription factor, and was associated

with Dementia by Phenogenon. This is likely a false positive since all the variants contributing

to the HPO’s high HGF score had low sequencing depths (2 to 7) and were all called as homo-

zygote by GATK. Given that the gnomAD allele frequencies of the variants are zero, the likeli-

hood of observing multiple homozygous carriers of the variants in our unrelated samples is

low. Considering their low alignment depths, they are likely genotyping errors. NUP205
encodes a nucleoporin, and was associated with Abnormal electroretinogram by Phenogenon.

On the other hand, majority of the variants in the low p value bins in “NUP205 –Abnormal

electroretinogram—dominant” have a GF higher than 0. This contradicts the presumption

that most retinal disorders in the Phenopolis dataset are rare Mendelian disorders, therefore

we believe “NUP205 –Abnormal electroretinogram—dominant” is a false positive. Interest-

ingly, despite that experts in the consortium have ruled out TTN as a causative gene for retinal

disorders, the reason why Phenogenon associated TTN with Abnormality of the anterior seg-

ment of the globe remains unclear.

Discussion

Aggregated databases of high throughput sequencing data of large numbers of HPO-annotated

patients are indispensable for the genetic diagnosis of rare disease patients.

However, phenotypic and genetic biases are often inherent to these datasets. Phenotypic

bias may be caused by certain patients such as in our dataset, eye patient, having more HPO

terms than other types of patients, such as neurological patients, that typically only have one

HPO term. Genetic bias may be caused by exome capture biases in coverage which we

attempted to control for by imposing strict thresholds on the missingness. Despite these phe-

notypic and genetic biases, using our new tool, Phenogenon, we were able to recapitulate sev-

eral known gene-phenotype-MOI relationships (Table 3).

Phenogenon can also be applied to a combination of phenotype terms. For example, con-

sidering patients affected by both ‘Rod-cone dystrophy’ (HP:0000510) and ‘Hearing

impairment’ (HP:0000365), the top two genes predicted are USH2A (HGF: 9.53) and

ADGRV1 (HGF: 8.31), both known to cause Usher syndrome that affects both visual and hear-

ing systems. However, a caveat of such an approach is a reduced sample size hence decreased

predictive power.

We recognise our reported novel relations require further scrutiny, in particular in the case

of dominant MOI associations, as the results of these are sensitive to various parameters such

as the version of CADD used. In particular, we witnessed CADD score increases for a number

of synonymous variants between version 1.3 and 1.4 of CADD. Furthermore, the association

signal can also be driven by uncharacteristic variants with a higher GF and CADD than

expected. For instance, in the predicted relation “NUP205—Abnormal electroretinogram—

dominant”, around 70% of the enriched rare variants have GF> 0 while having a CADD > 15

(S3 Fig). The “TTN–Abnormality of the anterior segment of the globe—dominant” also war-

rants further investigation as this is a large gene prone to artefact (S4 Fig). We therefore rec-

ommend that these relationships are examined more closely using our interactive webtool

https://phenogenon.phenopolis.org.

Until the release of the gnomAD database, there was no reliable source to estimate variant

homozygote frequency, and therefore to date, all gene-phenotype association tools have used

allele frequency, regardless of the MOI. We argue that using homozygote frequency when

assuming recessive MOI improves the model performance.

PLOS ONE Phenogenon: Gene to phenotype associations for rare genetic diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0230587 April 9, 2020 9 / 12

https://phenogenon.phenopolis.org
https://doi.org/10.1371/journal.pone.0230587


In conclusion, we have developed a statistical tool, Phenogenon, to detect and visualise

“gene—HPO—MOI” relationships. Our approach has suggested some strong candidate rela-

tionships and correctly recapitulated existing relationships. The adoption of the HPO nomen-

clature by large rare disease sequencing projects leads us to believe Phenogenon will be of

increasing utility in understanding gene-phenotype-MOI relationships as genetics is phased

into routine NHS practice.
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23. Ding X, Bloch W, Iden S, Rüegg MA, Hall MN, Leptin M, et al. mTORC1 and mTORC2 regulate skin

morphogenesis and epidermal barrier formation. Nat Commun. 2016; https://doi.org/10.1038/

ncomms13226 PMID: 27807348

24. Vierimaa O, Georgitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, et al. Pituitary adenoma predis-

position caused by germline mutations in the AIP gene. Science (80-). 2006; https://doi.org/10.1126/

science.1126100 PMID: 16728643

25. Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, et al. Mutations in nuclear pore

genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;

https://doi.org/10.1038/ng.3512 PMID: 26878725

26. Chen W, Shimane T, Kawano S, Alshaikh A, Kim SY, Chung SH, et al. Human Papillomavirus 16 E6

Induces FoxM1B in Oral Keratinocytes through GRHL2. J Dent Res. 2018; https://doi.org/10.1177/

0022034518756071 PMID: 29443638

27. Hartono SP, Vargas-Hernández A, Ponsford MJ, Chinn IK, Jolles S, Wilson K, et al. Novel STAT1 Gain-

of-Function Mutation Presenting as Combined Immunodeficiency. Journal of Clinical Immunology.

2018. https://doi.org/10.1007/s10875-018-0554-3 PMID: 30317461

28. Ovadia A, Sharfe N, Hawkins C, Laughlin S, Roifman CM. Two different STAT1 gain-of-function muta-

tions lead to diverse IFN-γ-mediated gene expression. npj Genomic Med. 2018; https://doi.org/10.1038/

s41525-018-0063-6 PMID: 30131873

29. Freiburg A, Gautel M. A molecular map of the interactions between titin and myosin-binding protein C

Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem. 1996;

https://doi.org/10.1111/j.1432-1033.1996.00317.x PMID: 8631348

30. Akle S, Chun S, Jordan DM, Cassa CA. Mitigating False-Positive Associations in Rare Disease Gene

Discovery. Hum Mutat. 2015; https://doi.org/10.1002/humu.22847 PMID: 26378430

PLOS ONE Phenogenon: Gene to phenotype associations for rare genetic diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0230587 April 9, 2020 12 / 12

https://doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
https://doi.org/10.1111/j.1528-1167.2009.02115.x
http://www.ncbi.nlm.nih.gov/pubmed/19469841
http://www.ncbi.nlm.nih.gov/pubmed/20301494
https://doi.org/10.3109/13816810.2011.565397
http://www.ncbi.nlm.nih.gov/pubmed/21510770
https://doi.org/10.1016/j.ajhg.2014.08.001
https://doi.org/10.1016/j.ajhg.2014.08.001
http://www.ncbi.nlm.nih.gov/pubmed/25152456
https://doi.org/10.1001/jamaophthalmol.2017.0046
http://www.ncbi.nlm.nih.gov/pubmed/28253385
https://doi.org/10.1093/hmg/ddv275
http://www.ncbi.nlm.nih.gov/pubmed/26188004
https://doi.org/10.1038/ncb1753
http://www.ncbi.nlm.nih.gov/pubmed/18604198
https://doi.org/10.1038/ncomms13226
https://doi.org/10.1038/ncomms13226
http://www.ncbi.nlm.nih.gov/pubmed/27807348
https://doi.org/10.1126/science.1126100
https://doi.org/10.1126/science.1126100
http://www.ncbi.nlm.nih.gov/pubmed/16728643
https://doi.org/10.1038/ng.3512
http://www.ncbi.nlm.nih.gov/pubmed/26878725
https://doi.org/10.1177/0022034518756071
https://doi.org/10.1177/0022034518756071
http://www.ncbi.nlm.nih.gov/pubmed/29443638
https://doi.org/10.1007/s10875-018-0554-3
http://www.ncbi.nlm.nih.gov/pubmed/30317461
https://doi.org/10.1038/s41525-018-0063-6
https://doi.org/10.1038/s41525-018-0063-6
http://www.ncbi.nlm.nih.gov/pubmed/30131873
https://doi.org/10.1111/j.1432-1033.1996.00317.x
http://www.ncbi.nlm.nih.gov/pubmed/8631348
https://doi.org/10.1002/humu.22847
http://www.ncbi.nlm.nih.gov/pubmed/26378430
https://doi.org/10.1371/journal.pone.0230587

