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Abstract

Plant-pollinator interactions are known to vary across time, both in terms of species compo-

sition and the associations between partner species. However, less is known about tropical

pollination networks, and tropical urban parks provide a unique opportunity to study network

stability in an environment where temperature and floral resources are relatively constant

due to both the tropical climate as well as park horticulture. The objectives of this study were

thus to examine the interactions between flowering plants and their potential pollinators in a

large, tropical city (Bangkok, Thailand) across 12 consecutive months, and to assess the

stability of network properties over time. We conducted monthly pollinator observations at 9

parks spaced throughout the city, and collected data on temperature, precipitation, floral

abundance and floral species richness. We found that neither pollinator abundance nor rich-

ness varied significantly across months when all parks were pooled. However, pollinator

abundance was significantly influenced by floral abundance, floral richness, and their inter-

action, and pollinator richness was significantly influenced by floral richness and precipita-

tion. Finally, we found that network properties did not change across months, even as

species composition did. We conclude that the year-round constancy of floral resources and

climate conditions appear to create a network in dynamic equilibrium, where plant and polli-

nator species compositions change, but network properties remain stable. The results of

this study provide useful information about how tropical pollinators respond to urban envi-

ronments, which is particularly relevant given that most urban development is predicted to

occur in the tropics.

Introduction

While the importance of plant-pollinator interactions has long been recognized [1,2], we have

only recently developed the computational methods needed to analyze entire networks, and

over extended periods rather than at a single point in time [3,4]. Analyzing complete pollina-

tion networks provides a more accurate understanding of the community, since both plants

and pollinators typically interact with more than one partner [5–7]. Moreover, studying

changes in pollination networks over time can (1) improve our understanding of pollination

services, as most angiosperm species rely on animal pollinators [8,9]; (2) provide clarity on
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whether species are specialists, generalists, or sequential specialists [10,11]; (3) facilitate predic-

tions of how plants, pollinators, and their interactions will respond to climate change [12]; and

(4) provide critical information that can help with conservation efforts of both pollinators,

which are undergoing population declines worldwide, and the plants that depend on them for

reproduction [13,14].

Previous studies examining pollination networks over time have found a range of temporal

patterns, from networks that appear highly stable to those that are highly dynamic [4]. Yet

most work to date has been conducted in temperate or arctic regions [10,15–24] and we still

know very little about the stability of tropical pollination networks (but see [25,26]). Thus,

while ecologists are interested in finding universal patterns and mechanisms behind plant-ani-

mal networks [3], we still lack data for tropical systems.

Additionally, given the rate at which humans are changing the environment, it is important

to study interactions not only in natural habitats, but also in human-modified landscapes [27].

For example, global urban land area is predicted to triple in size by 2030, compared to 2000,

and most urban expansion is projected to occur in tropical areas [28]. Therefore, studying

plant-pollinator interactions in cities can provide valuable information about how pollinators

fare in one of the few habitat types that is expected to increase in size in the near future [27,28].

Finally, the abundance of floral resources found year-round in tropical cities [29], often due to

the mix of native and exotic plant species found in cultivated parks, provides a unique oppor-

tunity to study plant-pollinator interactions in a relatively stable environment. Therefore, the

objectives of this study were to examine the interactions between flowering plants and their

potential pollinators at public parks in Bangkok, Thailand across 12 consecutive months, and

to assess the stability of network properties throughout this period.

Methods

Study area

Data were collected in Bangkok, Thailand between December 2017—November 2018. Bang-

kok is the most populated city in Thailand (over 9.6 million residents according to the 2010

census) with very little natural habitat; nearly all vegetation is cultivated and managed [30].

The climate is tropical; average monthly temperatures range between 22–32˚C and average

annual rainfall in the area ranges from 1,100–1,600 mm [31]. We collected data from 9 parks

spaced throughout the city (S1 Fig). These nine parks were selected because they are all at least

1 km apart, and represent a diversity of park sizes (S1 Fig) and management intensities [30].

All nine parks were regularly watered, but experienced different degrees of floral rotation;

some parks periodically brought in new flowering plant species as previously planted species

dropped their flowers, while other parks did not rotate plant species at all (A. Stewart, pers.

obs.). It is common for parks in Bangkok to have both native and exotic plant species [30].

Data collection

Monthly pollinator observations were conducted over 12 consecutive months (December

2017—November 2018). The order in which parks were visited during each month was ran-

dom, and sampling was only conducted on sunny days. All sampling at each park was con-

ducted within a single day, and up to three parks were observed in a single day. During each

month, the first and last parks were sampled within 16–25 days of each other. During each

sampling event, we conducted 15-minute observations at all of the most abundant plant spe-

cies that were in flower. In order to be efficient with sampling, we only observed plant species

with at least 20 flowers or inflorescences; this resulted in approximately 80–90% of the flower-

ing plant community being sampled at each park in each month. We chose this sampling
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method because we wanted to maximize the number of flowering plant species sampled in

order to track floral resource availability across months, and to record as many plant-pollina-

tor interactions as possible, but were limited by manpower. For each plant species observed, a

2 x 2 m plot with abundant flowers of the focal species was selected, and all animals that con-

tacted floral reproductive structures while visiting flowers (i.e., potential pollinators) were

recorded. As we did not quantify actual pollen transfer, we cannot confirm that all recorded

taxa were true pollinators; it is likely that observed animal taxa differ in pollination effective-

ness, and some taxa may not have contributed to pollination at all. We chose to conduct non-

destructive pollinator sampling (i.e., relying on visual observation) because collecting individ-

uals may have reduced pollinator abundance and richness at adjacent plots within the park.

Unknown pollinators were either photographed or collected with a net, and insects were iden-

tified with the help of local field guidebooks and entomologists (see acknowledgments). Plots

were not fixed; they varied by month according to which plant species were flowering

(mean ± SE plant species sampled per park per month: 13.8 ± 0.7 species; range: 1–33 species).

Permission to work with insects was granted by MUSC-IACUC (Faculty of Science, Mahidol

University–Institute Animal Care and Use Committee; license number MUSC60-038-388).

We also obtained data on average monthly temperature (hereafter, “temperature”), total

monthly precipitation (hereafter, “precipitation”), floral abundance, and floral species rich-

ness. Temperature and precipitation data were acquired from the Thai Meteorological Depart-

ment (www.tmd.go.th). Floral abundance was determined at each plot as the number of

flowers per 2 x 2 m plot; these values were then averaged to obtain a mean number of flowers

per plot for each park in each month. Floral richness was determined as the number of flower-

ing plant species sampled at each park in each month.

Data analysis

All analyses were conducted in R 3.6.0 [32]. We used linear mixed modelling (LMM; package

“lme4”) to examine which predictors influenced pollinator abundance and richness. The

response variables examined were total pollinator abundance, total pollinator richness, and the

abundance and richness of the most common insect orders (Hymenoptera, Lepidoptera, and

Diptera). The fixed factors tested were month, temperature, precipitation, temperature x pre-

cipitation, floral abundance, floral richness, and floral abundance x floral richness; park was

included as a random factor. QQ plots (package “stats”) were used to check the normality of

the residuals. In the model prediction graphs, when two explanatory predictors were found to

be significant, one predictor was plotted along the x-axis and the second predictor was repre-

sented using various colors; this method also clearly shows when the two predictors have a sig-

nificant interaction (non-parallel lines) or not (parallel lines).

We also examined pollination networks using the package “bipartite” [33,34]. One overall

network was created using data from all parks and all months, and we also created separate net-

works for each month at each park to examine changes in the pollinator community over time

(S2 Fig). We examined network properties at the network level (connectance, weighted connec-

tance, links per species, number of compartments, and Shannon’s diversity), group level (num-

ber of species within each trophic level, mean number of links within each trophic level, and

niche overlap within each trophic level), and species level (normalized degree averaged across all

species, and paired differences index averaged across all species within each trophic level).

Descriptions of each network property are provided in S1 Text. We examined whether each net-

work property changed over time using LMM, where month was a fixed factor and park was a

random factor. We also calculated species turnover (proportion of species lost or gained between

two consecutive months) for both plants and pollinators using the “codyn” package [35].
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Results

Pollinator abundance and richness

Over all 12 months of data collection (Fig 1), we observed 8,053 potential pollinators compris-

ing 58 taxa from 4 orders (S1 Table) visiting 136 plant taxa from 48 orders (S2 Table). Hyme-

noptera were by far the most abundant (95.2%), followed by Diptera (2.5%), Lepidoptera

(1.8%), and Hemiptera (0.5%). We observed 23 taxa of Hymenoptera, 23 species of Lepidop-

tera, 11 taxa of Diptera, and 1 taxon of Hemiptera. The most abundant taxa were Tetragonula
stingless bees (60.2%), Apis florea (Fabricius, 1787) (17.6%), A. cerana (Fabricius, 1793)

(6.9%), A. dorsata (Fabricius, 1793) (4.9%), Lasioglossum sweat bees (3.7%), and Tephritidae

flies (2.1%); all other taxa comprised less than one percent of total abundance (S1 Table).

When examining total pollinator abundance, we found that neither month, temperature,

precipitation, nor temperature x precipitation had a significant effect, but both floral abun-

dance and floral richness had positive effects, and their interaction was significant as well

(Table 1; Fig 2A). For total pollinator richness, both precipitation and floral richness had sig-

nificant positive effects (Table 1; Fig 2B). Hymenoptera abundance was significantly influ-

enced by floral abundance (positive effect), floral richness (positive effect), and their

interaction (Table 1; Fig 2C), while Hymenoptera richness was influenced by precipitation and

floral richness (positive effects; Table 1; Fig 2D). Both Lepidoptera abundance and richness

were positively influenced by floral richness (Table 1; Fig 2E and 2F). For Diptera abundance

and richness, none of the predictors included in the model were significant (Table 1).

Pollination networks

The overall plant-pollinator network (using data from all parks across all months) had a con-

nectance of 0.057, a weighted connectance of 0.092, an average of 2.05 links per species, 3 com-

partments, and a Shannon diversity index of 4.46. At the group level, pollinators had an

average of 5.29 links, while plants had an average of 5.96 links. The average number of shared

partners was 0.54 for pollinators and 1.02 for plants. Niche overlap was 0.081 for pollinators

and 0.44 for plants. When examining whether network properties changed over time, we

found that none of the tested properties varied by month (Table 2; S2 Fig). We did, however,

find that both plant and pollinator composition changed across months; species turnover

between consecutive months was close to 50% for both plants (mean ± SE: 0.45 ± 0.04) and

pollinators (0.46 ± 0.04).

Discussion

Neither total pollinator abundance nor richness varied significantly by month. The steady

numbers of both individuals and species likely reflect the fact that tropical areas have mild cli-

mates, which allows pollinators to be active year-round [8,36]. Yet even tropical environments

can have seasonal fluctuations in insect abundance and diversity, because floral (food) avail-

ability is often markedly different between the rainy and dry seasons in most natural land-

scapes [26]. Therefore, the second factor contributing to constant pollinator abundance and

richness is likely the constancy of floral resources found in our study parks. Urban parks often

favor plant species with showy flowers, and cultivate a mix of native and exotic species that

provide abundant floral resources year-round [29,37,38]. Indeed, of the 136 plant taxa

observed in this study, 73 species were exotic and 47 were native; the remaining 16 could not

be verified (S2 Table). The benefits of reliable floral resources in urban habitats have also been

demonstrated in temperate bees [23] and tropical butterflies [39], where the abundance and

richness of these taxa were less variable in urban environments than natural habitats.
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Fig 1. Temporal variation in weather and pollinator communities in Bangkok, Thailand over 12 months (December 2017—November 2018).

(A) Average monthly temperature (triangles, red line) and total monthly precipitation (circles, blue line). Neither (B) pollinator abundance nor (C)

pollinator species richness varied significantly across months; points and error bars represent mean ± SE.

https://doi.org/10.1371/journal.pone.0230490.g001
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The factors that significantly influenced total pollinator abundance were floral abundance,

floral richness, and their interaction. Therefore, pollinator abundance was greatest when both

floral abundance and richness were high, and pollinator abundance remained low (even at

high floral abundances) when floral richness was low. It is important to note that our measures

of pollinator abundance were obtained from our study plots of flowering plant species, and

that many areas of the parks had substantially lower floral abundance; such areas would

undoubtedly have fewer pollinators than was observed at our study plots. The importance of

floral abundance and richness to pollinators seems to be relatively consistent worldwide and

across diverse insect taxa [30,40–45]. Such findings are hardly surprising, given the importance

of food resources in supporting pollinator communities [29,30,41–46].

However, our study did not find a significant effect of temperature or precipitation on total

pollinator abundance, which is contradictory to several prior studies. For example, Andrade-

Silva et al. [47] found that temperature was the most important determinant of euglossine bee

abundance in a Brazilian forest, and Silva et al. [48] found that most orders of insects were

influenced by temperature in a Brazilian savannah. However, Silva et al. [48] also explained

that a likely mechanism behind their results was the increase of leaves and flowers during the

transition from the dry to wet season. This justification is also consistent with our results; if

insect abundance is primarily driven by food abundance, it seems logical that the year-round

supply of flowers in our study parks are able to maintain high pollinator abundance across sea-

sons. We also hypothesize that temperature and water availability in our study area were not

variable enough to affect local pollinator abundance. The average monthly temperature during

our study period ranged a mere 3 degrees (26.6–29.7˚C), and plants within our study parks

were never water limited due to regular watering by gardeners.

We also found that total pollinator richness was significantly influenced by floral richness

and precipitation. Previous studies in both temperate [49] and tropical [25,50] regions have

also found positive correlations between floral diversity and pollinator diversity. It is likely that

Table 1. Results of linear mixed modelling examining the effect of 7 predictors on pollinator abundance and species richness.

All pollinators Hymenoptera Lepidoptera Diptera

Abund.

R2
m ¼ 0:19

R2
c ¼ 0:40

Rich.

R2
m ¼ 0:20

R2
c ¼ 0:52

Abund.

R2
m ¼ 0:19

R2
c ¼ 0:04

Rich.

R2
m ¼ 0:21

R2
c ¼ 0:42

Abund.

R2
m ¼ 0:10

R2
c ¼ 0:34

Rich.

R2
m ¼ 0:08

R2
c ¼ 0:36

Abund.

n/a

Rich.

n/a

Month w2
1
¼ 0:09

P = 0.76

w2
1
¼ 0:16

P = 0.69

w2
1
¼ 0:09

P = 0.77

w2
1
¼ 0:43

P = 0.51

w2
1
¼ 2:13

P = 0.14

w2
1
¼ 2:53

P = 0.11

w2
1
¼ 3:43

P = 0.06

w2
1
¼ 3:04

P = 0.08

Temperature w2
1
¼ 0:22

P = 0.64

w2
1
¼ 0:59

P = 0.44

w2
1
¼ 0:24

P = 0.62

w2
1
¼ 1:33

P = 0.25

w2
1
¼ 0:61

P = 0.43

w2
1
¼ 1:01

P = 0.31

w2
1
¼ 0:03

P = 0.87

w2
1
¼ 0:09

P = 0.77

Precipitation w2
1
¼ 2:75

P = 0.10

w2
1
¼ 4:23

P = 0.04

w2
1
¼ 2:70

P = 0.10

w2
1
¼ 4:53

P = 0.03

w2
1
¼ 0:24

P = 0.62

w2
1
¼ 0:003

P = 0.96

w2
1
¼ 0:07

P = 0.80

w2
1
¼ 0:04

P = 0.84

Temperature x precipitation w2
1
¼ 1:29

P = 0.26

w2
1
¼ 0:01

P = 0.92

w2
1
¼ 1:52

P = 0.22

w2
1
¼ 0:20

P = 0.66

w2
1
¼ 1:50

P = 0.22

w2
1
¼ 1:47

P = 0.23

w2
1
¼ 1:29

P = 0.26

w2
1
¼ 0:09

P = 0.77

Floral abundance w2
1
¼ 6:72

P = 0.03

w2
1
¼ 1:07

P = 0.30

w2
1
¼ 6:77

P = 0.03

w2
1
¼ 1:59

P = 0.21

w2
1
¼ 0:01

P = 0.92

w2
1
¼ 0:23

P = 0.63

w2
1
¼ 1:36

P = 0.24

w2
1
¼ 0:84

P = 0.36

Floral richness w2
1
¼ 13:7

P = 0.001

w2
1
¼ 8:63

P = 0.003

w2
1
¼ 13:6

P = 0.001

w2
1
¼ 8:90

P = 0.003

w2
1
¼ 6:57

P = 0.01

w2
1
¼ 5:28

P = 0.02

w2
1
¼ 0:21

P = 0.65

w2
1
¼ 0:01

P = 0.92

Floral abundance

x richness

w2
1
¼ 4:31

P = 0.04

w2
1
¼ 0:38

P = 0.54

w2
1
¼ 4:39

P = 0.04

w2
1
¼ 0:82

P = 0.36

w2
1
¼ 1:13

P = 0.29

w2
1
¼ 0:47

P = 0.49

w2
1
¼ 0:17

P = 0.68

w2
1
< 0:001

P = 0.98

Separate analyses were conducted for total pollinator abundance, total pollinator richness, and the abundance and richness of each of the three most common insect

orders observed (Hymenoptera, Lepidoptera, and Diptera). Significant predictors are highlighted in yellow with p-values in bold. Marginal (R2
m) and conditional (R2

c ) R2

values are listed for each final model.

https://doi.org/10.1371/journal.pone.0230490.t001
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Fig 2. Model predictions of pollinator abundance and richness in Bangkok, Thailand. (A) Total pollinator abundance was significantly influenced by

floral abundance (x-axis), floral richness (denoted by color; red: 6.6 spp., blue: 13.9 spp., green: 21.1 spp.), and their interaction. (B) Total pollinator

richness was significantly influenced by floral richness (x-axis) and precipitation (denoted by color; red: 58 mm, blue: 155 mm, green: 251 mm). (C)

Hymenopteran abundance was significantly influenced by floral abundance (x-axis), floral richness (denoted by color; red: 6.6 spp., blue: 13.9 spp., green:

21.1 spp.), and their interaction. (D) Hymenopteran richness was significantly influenced by floral richness (x-axis) and precipitation (denoted by color;

red: 58 mm, blue: 155 mm, green: 251 mm). (E) Lepidopteran abundance and (F) Lepidopteran richness were significantly influenced by floral richness

(x-axis).

https://doi.org/10.1371/journal.pone.0230490.g002
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the higher diversity of flowering plant species attracts a higher diversity of insect pollinators.

Less conclusive is the effect of precipitation on pollinator richness. In this study, the rainiest

months were September and October, which correspond with the greatest numbers of pollina-

tor species observed. Precipitation likely had little effect on park vegetation and floral

resources, given regular watering and park horticulture, but it possibly influenced other

aspects of insect life history and/or behavior. Findings from previous studies are mixed. For

example, studies of butterflies in Brazil have found the highest species richness to occur during

the rainy season [51], during the dry season [25], and during the transition from rainy to dry

season [52]. Therefore, it appears that the effects of precipitation on species richness are com-

plex and likely linked to other factors as well, such as plant [51] and predator [52]

composition.

When examining the three most common insect orders separately, we found that Hyme-

noptera results were consistent with the overall results, Lepidoptera abundance and richness

were influenced only by floral richness, while Diptera abundance and richness were not

explained by any of the tested predictors. Hymenoptera abundance was influenced by the

same three factors as total pollinator abundance (floral abundance, floral richness, and their

interaction); indeed, Hymenoptera abundance was the driving force behind our results for

total pollinator abundance, since Hymenoptera accounted for 95% of all observed pollinators.

Lepidoptera were found to forage on fewer plant species than Hymenoptera (S2 Fig), so it

seems logical that their foraging is driven by high floral richness, as the presence of numerous

floral species would increase the odds of there being at least one species attractive to butterflies.

The lack of significant findings for Diptera may be due to small sample sizes, or it is possible

that their abundance and richness are influenced by other factors not measured in this study.

Previous studies have demonstrated that different species of Diptera [48] can peak during dif-

ferent seasons, resulting in unclear patterns at the level of order.

When examining plant-pollinator networks across 12 consecutive months, we found that

network properties remained constant even as plant and pollinator composition changed. Our

networks reflect the large majority of plant species found in the parks, although our inability to

collect data on the rarest plant species may have influenced some network property estimates.

Table 2. Results of linear mixed modelling examining whether plant-pollinator network properties varied across 12 months (December 2017—November 2018).

Network property Mean SE Chi-square P

Network level Connectance 0.356 0.016 w2
1
¼ 2:29 0.13

Weighted connectance 0.209 0.008 w2
1
¼ 2:10 0.15

Links per species 0.845 0.018 w2
1
¼ 1:85 0.17

Number of compartments 1.987 0.106 w2
1
¼ 1:11 0.29

Shannon’s diversity 1.796 0.063 w2
1
¼ 0:64 0.43

Group level Number of pollinator species 5.228 0.304 w2
1
¼ 0:40 0.53

Number of plant species 6.582 0.341 w2
1
¼ 0:17 0.68

Links per pollinator species 3.614 0.224 w2
1
¼ 0:39 0.53

Links per plant species 1.927 0.095 w2
1
¼ 2:07 0.15

Niche overlap among pollinators 0.256 0.026 w2
1
¼ 0:13 0.72

Niche overlap among plants 0.433 0.029 w2
1
¼ 0:52 0.47

Species level Normalized degree 0.356 0.016 w2
1
¼ 2:29 0.13

Paired differences index (pollinators) 0.923 0.007 w2
1
¼ 2:33 0.13

Paired differences inex (plants) 0.938 0.009 w2
1
¼ 0:70 0.40

Network property descriptions are provided in S1 Text. Mean and SE were calculated from 108 plant-pollinator networks (nine parks over 12 months).

https://doi.org/10.1371/journal.pone.0230490.t002
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The temporal stability of pollination network properties has been highly investigated in recent

years, across a broad range of taxa and landscapes; results vary from reporting temporally sta-

ble network properties [10,19–21] to highly dynamic network properties [15,16,18]. We sug-

gest that the stability of network properties depends on both the timescale at which the

network is analyzed, as well as the stability of environmental conditions. Networks examined

over longer timescales (e.g., over multiple years) are more likely to reveal temporally stable net-

work properties (as found by [10,19–21]), while networks examined over shorter timescales

(e.g., within or between seasons) are more likely to find temporally dynamic network proper-

ties (as found by [15,16,18]). Moreover, the stability of network properties is likely correlated

with the stability of environmental conditions. While our study spanned different seasons, it

was conducted in a tropical, urban landscape where both temperature and floral resources

remained relatively constant year-round. This reason may explain why we observed no differ-

ences in network properties across months, unlike previous year-long or season-long studies

conducted in temperate [16] and arctic [15,18] environments.

Conclusions

The findings from this study reveal that tropical urban parks are capable of supporting stable

pollinator communities year-round. Even though our study was conducted in Bangkok, a city

with little natural vegetation, the city’s parks provide abundant floral resources throughout the

year due to landscaping efforts, which favor plant species with showy flowers. However, it is

important to note that (1) our networks included only the most abundant plant species, which

may over- or underestimate some network properties, and (2) these parks are likely only suit-

able for pollinator species with generalist foraging and nesting habits, and that are tolerant of

human activity. For example, we only observed 58 insect taxa visiting flowers, in contrast to a

recent study in Thai mixed fruit orchards that recorded 316 insect pollinator taxa [53]. More-

over, our results suggest that the temporal stability of plant-pollinator network properties is

driven by the stability of environmental conditions, including both climate and resource stabil-

ity. In our study area, the constant floral resources and climate conditions throughout the year

appear to create a network in dynamic equilibrium, where plant and pollinator species compo-

sitions change, but network properties remain stable year-round. These findings provide

insight into how tropical pollinators respond to urban habitats, which will be useful as urban

centers continue to grow world-wide.
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