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Abstract

Environmental data may be “large” due to number of records, number of covariates, or both.

Random forests has a reputation for good predictive performance when using many covari-

ates with nonlinear relationships, whereas spatial regression, when using reduced rank

methods, has a reputation for good predictive performance when using many records that

are spatially autocorrelated. In this study, we compare these two techniques using a data

set containing the macroinvertebrate multimetric index (MMI) at 1859 stream sites with over

200 landscape covariates. A primary application is mapping MMI predictions and prediction

errors at 1.1 million perennial stream reaches across the conterminous United States. For

the spatial regression model, we develop a novel transformation procedure that estimates

Box-Cox transformations to linearize covariate relationships and handles possibly zero-

inflated covariates. We find that the spatial regression model with transformations, and a

subsequent selection of significant covariates, has cross-validation performance compara-

ble to random forests. We also find that prediction interval coverage is close to nominal for

each method, but that spatial regression prediction intervals tend to be narrower and have

less variability than quantile regression forest prediction intervals. A simulation study is used

to generalize results and clarify advantages of each modeling approach.

Introduction

As we enter the age of “big data” [1, 2], innovative statistical methods are required for insights

from massive data sets [3]. While big data is an abstract concept [4], data for a statistical analy-

sis are generally prepared as tables, with records down the rows, and variables across the col-

umns [5]. While we immediately recognize big data problems for large numbers of records,

there are also issues when there are large numbers of columns [6]. We are interested in a spa-

tial data set in the United States of national importance based on an aquatic health index,

where there are thousands of rows and hundreds of columns. Two leading candidates for ana-

lyzing such data are random forests [7], because it handles large numbers of covariates with

nonlinear relationships, and spatial regression [8], because it accounts for possible spatial
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autocorrelation. The ultimate goal of the analysis is to predict the aquatic health index at over

one million watersheds throughout the country, while also gaining some understanding of

which covariates are important. The goal of this article is to use best practices for analyzing the

data with spatial regression and random forests, and then compare the methods.

Motivating data set

For this study, we use a data set containing the biological condition of 1859 sites from the US

Environmental Protection Agency’s 2008/09 National Rivers and Streams Assessment (NRSA)

[9]. The NRSA used a generalized random-tessellation design [10] to collect a spatially-bal-

anced and representative sample of stream sites across the conterminous United States

(CONUS). The target population for the design consisted of all rivers and streams within the

CONUS that had flowing water during the study period, which extended between April to Sep-

tember of 2008/09. Benthic macroinverabrates (e.g., aquatic insects, crustaceans, and worms)

were sampled to determine the biological condition of stream sites. A multimetric index

(MMI) was developed for the NRSA to summarize several measures of the condition of macro-

invertebrate assemblages (e.g., taxonomic composition, diversity, tolerance to disturbance,

etc.) into a combined index. The reported MMI values were calculated by summing six indi-

vidual measures, or ‘metrics’, and then normalized to a 0-100 scale [11]. The individual metrics

used for the MMI were selected separately for each of the nine ecoregions [12] to account for

some of the natural variation in climate, geology, hydrology and soils among stream sites. The

ecoregion boundaries and locations of the 2008/09 NRSA stream sites are shown in Fig 1. A

comprehensive description of the MMI developed for the NRSA can be found in [11, 13, 14].

For modeling the MMI we use a large suite of 209 covariates from the Stream-Catchment

(StreamCat) data set [15] (publicly available at https://www.epa.gov/national-aquatic-

resource-surveys/streamcat). StreamCat contains upstream landscape features (e.g., topograpy,

Fig 1. Locations of 2008/09 NRSA stream sites with point colors corresponding to sampled MMI scores. Ecoregions: Coastal

Plains (CPL), Northern Appalachians (NAP), Northern Plains (NPL), Southern Appalachians (SAP), Southern Plains (SPL),

Temperate Plains (TPL), Upper Midwest (UMW), Western Mountains (WMT), and Xeric (XER).

https://doi.org/10.1371/journal.pone.0229509.g001
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precipitation, landscape imperviousness, urban and agricultural land use) for 2.6 million

stream reaches across the CONUS and allows for spatially explicit prediction. The variables in

StreamCat can be linked to the National Hydrography Dataset Plus Version 2 (NHDPlusV2)

[16] and are available at two spatial scales: local catchment and full contributing watershed.

[15] defines a “catchment” as the local drainage area for an individual NHDPlusV2 stream seg-

ment, excluding upstream drainage area; and a “watershed” as the set of hydrologically con-

nected catchments that contribute flow to a given catchment (i.e., catchment plus upstream

catchments). Note that we only make MMI predictions for the 1.1 million perennial stream

reaches (as designated in NHDPlusV2) since the sample frame for the NRSA is limited to

these types of streams. Descriptions of StreamCat covariates used in this study are provided in

the Supplement (S1 File).

The MMI response data and StreamCat covariates, which were used to estimate the models

in this study, are available at https://github.com/ericwfox/slmrf.

Literature review

There have been surprisingly few attempts to compare random forests and spatial regression.

Most found random forests superior to various forms of linear regression with autocorrelated

errors [17–21], although [22], and [23] found spatial regression outperformed random forests.

All comparisons used either root-mean-squared prediction error (RMSPE) or mean absolute

prediction error (MAPE) on some form of K-fold cross-validation, and only [23] evaluated the

estimated prediction errors to examine whether prediction intervals contained the true values

with the correct proportion. None of the papers simulated spatially autocorrelated data to eval-

uate and compare the different modeling approaches.

The comparisons in our review used random forests and spatial regression mostly as black

box methods. By black box methods, we mean that data are used without much examination,

and methods that rely on default values and little user interaction. Generally, random forests

seems to outperform spatial regression, but only as a black box method. Can practitioners

with more experience make each of these methods work better, and then how will they com-

pare? It will be (or should be) rare that data, collected at great expense, are subjected to black

box methods. The history of regression has taught statisticians to use best practices for their

data analyses, including exploring data, making transformations, checking residuals, using

model diagnostics, and then possibly refitting models. We suggest that the results given in the

previously mentioned literature are not necessarily reflective of a considered approach to

many data analyses. In contrast, we will confine ourselves to a single data set, and a single

response variable, but we take considerable effort to make each method work as well as possi-

ble, and discuss the ramifications after the analyses. We will also use simulations to investigate

properties not seen in the real data.

Our objectives are to compare random forest and spatial regression modeling approaches

for predicting and mapping the MMI for all 1.1 million perennial stream reaches across the

CONUS. In a related study, [14] used random forest modeling to predict the binary “good”

and “poor” MMI condition classes with StreamCat predictor variables. The random forest

models developed in [14] were used to map the predicted probability of good stream condition

for all perennial CONUS stream reaches. In this article we instead model the MMI scores

directly, and include both random forests and spatial regression. We also evaluate each meth-

od’s ability to quantify the uncertainty of the MMI predictions. Previous studies have pro-

duced maps of random forest model uncertainties by interpolating the residuals [19, 24], or

taking the standard deviations of the predictions made by each tree in the ensemble [25]. In

this article we take a different approach, and formally construct random forest prediction
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intervals using the method of quantile regression forests [26], which has been studied primar-

ily in the context of non-spatial data. We also consider a hybrid random forest regression-kri-

ging approach, in which a simple-kriging model is estimated for the random forest residuals,

and simple-kriging predictions of residuals are added to random forest predictions. Although

we focus on a particular data set, we generalize the concepts through simulations, and our

overall goal is application to other large environmental data sets.

Spatial regression model

Here, we introduce the spatial regression model, likelihood-based estimation methods, and

kriging prediction and variance equations that we apply to the MMI and StreamCat data. The

reduced rank method, and covariate transformation and selection procedures will be discussed

in subsequent sections. A thorough review of the geostatistical modeling approach discussed

in this study is provided in [27] and [28].

Suppose that Y = (Y(s1), � � �, Y(sn))0 is a response vector that is spatially referenced at loca-

tions si 2 D � R2
. The spatial regression model can be written as

Y ¼ Xβþ z þ �; ð1Þ

where X is an n × p design matrix for the covariates, β is a p × 1 vector of unknown regression

coefficients, z is an n × 1 vector of spatially autocorrelated random variables, and � is an n × 1

vector of independent random errors. The n × n covariance matrix for the model can be

expressed as

Σ ¼ varðYÞ ¼ varðzÞ þ varð�Þ ¼ Rþ s2
�
I: ð2Þ

To simplify estimation of (2), we assume a stationary covariance function that depends on

Euclidean distance and takes an exponential form. That is, the (i, j) entry of R is given by

covðzðsiÞ; zðsjÞÞ ¼ s2
z exp ð� k si � sj k =aÞ; ð3Þ

where k�k denotes the Euclidean distance metric, and s2
z and α are parameters to be estimated.

In the geostatistical literature, the parameters s2
z , α, and s2

�
are, respectively, called the partial

sill, range, and nugget. The nugget parameter models residual variation in the response when

the separating distance is zero.

The model in (1) is also commonly referred to as the spatial linear model (SLM), and as the

universal-kriging model when used for spatial prediction, with the ordinary-kriging model

being the special case when X is a n × 1 column vector of 1’s. While numerous types of covari-

ance functions have been proposed for the SLM [29, pp. 80–93], we only consider the expo-

nential form in (3) since estimation of the SLM is computationally demanding with large data

sets. Moreover, for modeling MMI, we focus instead on estimating covariate transformations

in X. Regionally varying intercept terms are also included in X to account for differences in

MMI development in the nine ecoregions.

The parameters of a spatial regression model for a particular data set can be estimated using

maximum likelihood (ML) [27, p. 92] or restricted maximum likelihood (REML) [30, 31] esti-

mation. The negative log-likelihood can be expressed as

lðβ; θÞ ¼ 0:5fn log ð2pÞ þ log ðjΣðθÞjÞ þ ðY � XβÞ0ΣðθÞ� 1
ðY � XβÞ þ cg; ð4Þ

where, for ML, c = 0, and for REML, c = −p log(2π) + log|X0 S(θ)−1 X|; the covariance matrix,

S(θ), is written here to emphasize dependence on the unknown covariance parameters θ (i.e.,
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nugget, partial sill, and range). Minimizing (4) with respect to β gives

β̂ðθÞ ¼ ðX0ΣðθÞ� 1XÞ� 1X0ΣðθÞ� 1Y: ð5Þ

The ML or REML estimators of the covariance parameters, θ̂, are obtained by substituting

β̂ðθÞ into (4) and minimizing with respect to θ; estimators of the regression coefficients are

consequently found by substitution of θ̂ back into (5), i.e., β̂ðθ̂Þ. In practice, we obtain ML or

REML estimates of θ numerically using the general purpose optimization function optim()
provided in the statistical software package R [32]. Note that REML estimators tend to have

less bias and better performance (in terms of mean squared error) than ML estimators, espe-

cially when p is large relative to n [27, 33].

Once the parameters are estimated for the spatial regression model, we use universal kri-

ging to make predictions and construct prediction intervals [28, pp. 148–148]. The universal-

kriging prediction and variance equations for the response at a new location s0 are given by

Ŷ ðs0Þ ¼ xðs0Þ
0β̂ þ cðs0Þ

0Σ� 1ðY � Xβ̂Þ ð6Þ

varðŶ ðs0ÞÞ ¼ Cðs0; s0Þ � cðs0Þ
0Σ� 1cðs0Þ þ tðs0Þ

0
ðX0Σ� 1XÞ� 1tðs0Þ; ð7Þ

where t(s0) = x(s0) − X0 S−1 c(s0), c(s0) = cov(Y(s0), Y) = (C(s0, s1), � � �, C(s0, sn))0, and

x(s0) is the covariate vector at s0. Note that the covariance function is defined here as

Cðu; vÞ ¼ s2
z exp ðjju � vjj=aÞ þ Iðu ¼ vÞs2

�
for all locations u, v 2 D. Also, note that (6) is

derived as the homogeneously linear combination of the data, λ0Y where l 2 Rn, that mini-

mizes the mean-squared-prediction error, E(Y(s0) − λ0Y)2, subject to the unbiasedness con-

straint E(λ0Y) = E(Y(s0)) = x(s0)0β; and (7) is the minimized mean-square-prediction error,

often referred to as the kriging variance.

Reduced rank methods

For data sets with a large number of records, inverting the covariance matrix when optimizing

the log-likelihood function (4) can be computationally burdensome. For example, the motivat-

ing 2008/09 NRSA data set contains nearly 2000 records; thus there is a computational cost

when estimating a spatial regression model for this data set. To accelerate parameter estima-

tion for the SLM we consider reduced rank methods [34, 35]. In this section we specify the

reduced rank method used in the study; in a subsequent section we will discuss the application

of this method to a computationally efficient covariate selection routine.

Consider a set of r knot locations {ki: i = 1, � � �, r}, distributed over the same domain as the

observed data, such that r� n. Instead of modeling the covariance matrix for Y in terms of

the Euclidean distances between the observed locations, we can alternatively model the covari-

ance matrix in terms of the knot locations as

Σ ¼ SK � 1S0 þ s2
�
I; ð8Þ

where S is an n × r matrix with (i, j) element s2
z exp ð� k si � kj k =aÞ; K is an r × r matrix with

(i, j) element s2
z exp ð� k ki � kj k =aÞ; and s2

z , α, and s2
�

are parameters to be estimated. An

advantage of the specification in (8) is that application of the well-known Sherman-Morrison-

Woodbury formula (see [36] for a review) yields the following decomposition:

Σ� 1 ¼ s� 2
�
½I � Sðs2

�
K þ SS0Þ� 1S0�: ð9Þ

Since (9) only involves inverting an r × r matrix computation speed is greatly improved.

PLOS ONE Comparing spatial regression to random forests for large environmental data sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0229509 March 23, 2020 5 / 22

https://doi.org/10.1371/journal.pone.0229509


Note that (8) can be viewed as the covariance matrix for Y in the spatial mixed effects

model Y = Xβ + Sγ + �, where γ is an r × 1 vector of random effects such that var(γ) = K−1.

Also, one property of the covariance matrix specified in (8) is that if the knots are the observed

data locations {si}, then S = K = R, and consequently (8) is equivalent to the full rank covari-

ance matrix defined in (2).

Covariate transformations

Many of the covariates in the StreamCat data set have nonlinear relationships with MMI. For

example, Fig 2(a) and 2(c) shows highly skewed relationships between MMI and two Stream-

Cat covariates: watershed area in square km (WsAreaSqKm); and the percent of watershed

area classified as developed, medium intensity land use within a 100-m buffer of a stream

reach (PctUrbMd2006WsRp100). The log-transformation helps linearize the relationship

between MMI and PctUrbMd2006WsRp100 (Fig 2d), and also reveals a quadratic relationship

between MMI and WsAreaSqKm (Fig 2b). While not shown here, many of the other Stream-

Cat covariates exhibit similar types of nonlinearities, and further motivate considering covari-

ate transformations.

To linearize relationships between the covariates and response variable, we estimate Box-

Cox transformations [37] for the covariates. Specifically, we estimate transformations of the

form

gðx; l1; l2Þ ¼

ðxþ l2Þ
l1 � 1

l1

l1 6¼ 0

log ðxþ l2Þ l1 ¼ 0;

8
>><

>>:

ð10Þ

where x> −λ2. Note that Box-Cox transformations were first proposed as a way to transform

the response variable [37]; however, these types of power transformations have also been

applied to the independent variables in regression modeling [38, pp. 50–63].

Fig 2 suggests that StreamCat covariates can be zero-inflated (e.g., PctUrbMd2006WsRp100),

or have quadratic relationships with the response (e.g., log-transformed WsAreaSqKm). Differ-

ent types of transformation effects are considered depending on whether or not the StreamCat

covariate is zero-inflated. To estimate transformations for the zero-inflated covariates, we esti-

mate the following linear models for varying values of λ1 and λ2:

y ¼ b0 þ b1Iðxi 6¼ 0Þ þ �; ð11Þ

y ¼ b0 þ b1gðxi; l1; l2ÞIðxi 6¼ 0Þ þ �; ð12Þ

Fig 2. Scatter plots of MMI versus StreamCat covariates. (a) watershed area in square kilometers (WsAreaSqKm); (b) natural

logarithm of WsAreaSqKm; (c) percent of watershed area classified as developed, medium intensity land use in 2006 within a 100

meter buffer of a stream reach (PctUrbMd2006WsRp100); (d) natural logarithm of PctUrbMd2006WsRp100.

https://doi.org/10.1371/journal.pone.0229509.g002
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y ¼ b0 þ b1Iðxi 6¼ 0Þ þ b2gðxi; l1; l2ÞIðxi 6¼ 0Þ þ �: ð13Þ

Here y is MMI, xi is the ith StreamCat covariate, � is the error term, and I(a) is the indicator

function, equal to one if the argument a is true, and zero otherwise. For each zero-inflated

covariate, we use the Aikaike Information Criterion (AIC) [39] to select optimal (λ1, λ2) and

the type of transformation: zero/nonzero indicator (11), interaction between the indicator and

transformed covariate (12), or both (13). That is, out of several candidate values for (λ1, λ2), we

select the Box-Cox parameter values and type of transformation effect that corresponds to the

linear model (11, 12, or 13) with the lowest AIC. To estimate transformations for the other

covariates (not zero-inflated), we estimate the following linear models for varying values of λ1

and λ2:

y ¼ b0 þ b1gðxi; l1; l2Þ þ �; ð14Þ

y ¼ b0 þ b1gðxi; l1; l2Þ þ b2ðgðxi; l1; l2ÞÞ
2
þ �: ð15Þ

For each covariate that is not zero-inflated, we again use the AIC to select optimal (λ1, λ2)

and the type of transformation: linear (14) or quadratic (15) polynomial. In practice, we vary

the values of the exponent parameter λ1 between 0 and 3, and try several shifting parameters

λ2 to ensure that (10) is well defined. We also define a covariate xi as being zero-inflated if the

proportions of zeros is greater than 2%. Note that the transformations are estimated separately

for each covariate, and that spatial autocorrelation is ignored while estimating transformations

because otherwise the procedure would be too slow computationally.

Once transformations have been selected, a new design matrix containing the transforma-

tions for each StreamCat covariate can be used to fit either a multiple regression or spatial

regression model. Since we include indicator variables for zero-inflated covariates and qua-

dratic polynomial effects, the transformed design matrix is larger than the design matrix

without transformations. In the next section, we discuss a covariate selection approach for

reducing the number of parameters in a spatial regression model.

Covariate selection

Covariate selection for the spatial regression model is implemented in two phases. For the first

phase, we fit a multiple linear regression model (LM) with the full set of covariates from the

StreamCat data set. Dummy variables for the ecoregions (Fig 1) are also included as additional

covariates in the LM to account for regional variations in MMI development. Variables are

then selected using a backwards stepwise algorithm (i.e., the step() function from [32]).

Note, we start by selecting variables for an LM rather than an SLM since the LM can be rapidly

estimated, and software is readily available for variable selection.

For the second phase, we estimate an SLM with the variables selected for the LM. We then

conduct further variable selection for the SLM since some covariates may no longer be signifi-

cant once spatial autocorrelation is taken into account [8, 40]. Specifically, we repeatedly

remove the covariate with the largest absolute t-statistic and re-fit the SLM until the model’s

AIC score starts to increase. To speed up ML estimation of the SLM during this procedure we

use the reduced rank method. Once all variables are selected for the SLM, REML with the full

rank covariance matrix is used to estimate the final model. A step-by-step description of the

covariate selection procedure is provided in the Supplement (S1 File).

Comparison with LASSO. As a comparison, we also fit an MMI model using the LASSO,

a modern variable selection technique, which potentially performs better than stepwise
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methods when the number of covariates is large [41, pp. 68–69]. The parameters for the

LASSO model are estimated by minimizing the residual sum of squares, (Y − Xβ)0(Y − Xβ),

subject to the constraint
Pp

j¼1
jbjj � s, where s is a tuning parameter. The constraint has the

effect of shrinking the coefficients towards zero, and setting some coefficients exactly equal to

zero (thereby performing variable selection).

We estimate a LASSO model for MMI using the R package glmnet [42]. The software

selects the value of the tuning parameter, s, that minimizes an internal cross-validation error.

Note that incorporation of spatial autocorrelation parameters into a LASSO regression model

is not supported by the glmnet package, and is therefore not considered in this work. Our

motivation for including a LASSO model is to compare its performance with the stepwise

methods used to select covariates for the LM and SLM.

Random forest model

Random forest (RF) modeling has become a popular technique for regression and classifica-

tion with complex environmental data sets [25, 43–47]. In contrast to multiple regression, RF

is an algorithmic procedure that makes no a priori assumptions about the relationship between

the predictor variables and the response. RF has a reputation for good predictive performance

when the data contain a large number predictor variables, and when there are complex nonlin-

earities and interaction effects in the relationship between the predictors and response variable

[44, 48, 49]. In addition, RF provides several measures of variable importance that allow for

interpretation of the fitted model [41, p. 593].

An RF model can be defined as a collection of regression trees {Tb: b = 1, � � �, B} each built

from a bootstrap sample of the data set {Y, X}. When growing each tree Tb, at each parent

node a subset of m of the p predictor variables are randomly selected, and the best split-point

is found among those m variables to form two daughter nodes. The trees in the RF ensemble

are grown deep with no pruning. Bagging trees [50] are the special case when m = p (i.e., all

predictor variables are used as candidates for splitting at each node). An RF prediction at a

new site with predictor values x = (x1, � � �, xp) is found by averaging the predictions made by

each tree in the ensemble:

f̂ ðxÞ ¼
1

B

XB

b¼1

TbðxÞ:

RF is also commonly used for classification, in which case Tb(x) takes on discrete values

(e.g., 0/1 for binary classification) and the RF prediction can be defined as the majority vote

from the collection of class predictions {Tb(x)}. However, in this study we only consider RF for

regression. Note that the RF algorithm produces individual tree estimators with high variance.

That is, a regression tree fit to different portions of the data can yield very different predictions

at an unsampled site. The main idea behind RF is that averaging over many tree models is a

way to reduce variance, and thereby improve predictive performance relative to a single tree

model [7, 50]. Moreover, only considering a random subset of m< p predictors at each node

has the effect of decorrelating the trees in the ensemble, which can further improve the perfor-

mance of the RF model relative to bagging. See [41] for a comprehensive review of RF and rele-

vant theory.

We implement RF using the R package randomForest [51]. The main tuning parame-

ters when estimating an RF model with this package: the number of trees, ntree; the number

of predictor variables randomly selected at each node, mtry; and the minimum number of

cases in a tree’s terminal node, nodesize. However, RF is generally insensitive to choice of
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tuning parameters, and the defaults provided by the randomForest package perform ade-

quately for most data sets [25, 44, 51]. In practice, we use ntree = 1000, and the defaults

mtry = p/3 and nodesize = 5. We use more trees than the default value (500) since this is

recommended for data sets that have a large number of predictors [51]. For the RF model of

MMI, we also use the full set of StreamCat predictor variables, as well as an additional categori-

cal predictor for the ecoregions. We do not perform additional subset selection since the RF

algorithm is robust to handling large sets of predictor variables [7, 48, 49].

Quantile prediction intervals

Prediction intervals for RF can be computed using quantile regression forests (QRF) [26].

While RF provides information on the conditional mean of the response, QRF instead pro-

vides information on the conditional distribution function of the response. Approximation of

the conditional distribution function is useful for making quantile predictions and forming

associated prediction intervals. For instance, a 90% prediction interval for the response at a

new site with predictors x can be formed as the 0.05 and 0.95 quantile predictions denoted by

½Q̂0:05ðxÞ; Q̂0:95ðxÞ�. Here Qα(x) defines the α-quantile, that is, the value of the random response

variable Y such that the probability Y is less than Qα(x), for given x, is exactly equal to α; Q̂aðxÞ
denotes the QRF estimator of this quantity. A main distinction between the RF and QRF algo-

rithms is that RF only keeps track of the mean value of the response data at each leaf (terminal

node) of each tree. QRF, on the other hand, keeps track of all the response data at each leaf of

each tree and approximates the full conditional distribution with this additional information.

In practice, we implement the QRF method using the R package quantregForest [52],

which builds on the randomForest package also used in this study.

Random forest regression kriging

Random forest regression kriging (RFRK) has been proposed in a number of studies as a way

to account for spatial autocorrelation in RF modeling [18, 20, 21]. For RFRK, a prediction at a

new site is given by summing the RF prediction and the kriging prediction of the RF residual.

Formally, an RFRK prediction of Y(s0), at a new site s0, is given by

Ŷ ðs0Þ ¼ f̂ RFðxðs0ÞÞ þ êðs0Þ

where f̂ RF is the RF prediction with covariates x(s0), and êðs0Þ is the kriging prediction of the

residual. In practice, we use ML to estimate a simple-kriging model for the RF residuals that

assumes a zero mean (i.e, E(e(s)) = 0) and exponential model for the covariance matrix. Addi-

tionally, we use the simple-kriging variances for the residuals to construct prediction intervals.

Computational details are provided in the Supplement (S1 File).

Performance measures

We assess the performance of different models for MMI using 10-fold cross-validation. Nine

models of MMI are considered for the comparison: (1) an ordinary-kriging model, i.e., an

SLM with no covariates and a single intercept term (X is a n × 1 column vector of 1’s); (2) an

LM with no transformations; (3) an SLM with no transformations; (4) an LM with transforma-

tions; (5) an SLM with transformations; (6) a LASSO model; (7) a LASSO model with transfor-

mations; (8) an RF model; and (9) an RFRK model.

The root-mean-square prediction error (RMSPE) and coverage of the prediction intervals

are used to evaluate the cross-validation performance of the different models. Let Yi denote the

ith observed value and Ŷ i the 10-fold cross-validation prediction. The RMSPE is computed as
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the square root of the mean of ðYi � Ŷ iÞ
2

and coverage of the 90% prediction intervals is com-

puted as the mean of IðŶ i � 1:645seðŶ iÞ < Yi < Ŷ i þ 1:645seðŶ iÞÞ for all i in 1, � � �, n, where

I is the indicator function and seðŶ iÞ is the prediction standard error. Since we estimate quan-

tile prediction intervals for RF, the coverage of the 90% prediction intervals is computed as the

mean of IðQ̂0:05ðxiÞ < Yi < Q̂0:95ðxiÞÞ for all i in 1, � � �, n, where xi are the predictor variables at

the ith site and Q̂aðxiÞ is the 10-fold cross-validation prediction of the α-quantile.

Note that the covariate selection and transformation procedures are embedded in the

10-fold cross-validation of the LM and SLM. Specifically, at each iteration, the data is split into

10 equally sized folds, and one fold is held out as a test set. The remaining 9 folds are used for

training, i.e., to select covariates using the stepwise procedure, estimate Box-Cox transforma-

tions, and estimate the parameters of the LM or SLM. Therefore, a different set of covariates

and transformations are selected using the training data at each iteration of the cross-valida-

tion. This ensures that the data used to validate the models are completely independent from

the data used to select covariates and estimate transformations. See [41, pp. 241–249] for a

comprehensive review of K-fold cross-validation.

Results

The 10-fold cross-validation performance measures for modeling MMI are presented in

Table 1. In terms of RMSPE, RFRK and RF resulted in the best performance, respectively fol-

lowed by the SLM, LASSO, and LM with transformations. The SLM, LASSO, and LM without

transformations did not perform as well; and not surprisingly, the ordinary-kriging model had

the highest RMSPE. The results show that covariate transformations for the LM, LASSO, and

SLM were necessary to obtain performance comparable with RF. Accounting for spatial auto-

correlation also improved the performance of the SLM relative to the LM for both the trans-

formed and untransformed cases. Moreover, additional covariate selection for the SLM

resulted in a more parsimonious model than the LM. RFRK also performed better than RF,

although the difference was not substantial (the Pearson correlation between RF and RFRK

cross-validation predictions was greater than 0.98).

Table 1. Cross-validation performance results.

Model k RMSPE PIC90 PIC95

OK 4 18.55 0.900 0.962

LM 49 18.20 0.882 0.946

SLM 37 17.65 0.886 0.948

LM-TF 67 17.41 0.883 0.944

SLM-TF 51 16.82 0.882 0.937

LASSO 72 18.04

LASSO-TF 134 16.98

RF 16.52 0.914 0.955

RFRK 16.41 0.905 0.960

k is the number of parameters from the model fit using the entire data set (i.e., all n = 1859 observations); PIC90 and

PIC95 are the coverages of the 90% and 95% prediction intervals; OK is the ordinary-kriging model; LM-TF,

SLM-TF, and LASSO-TF are the LM, SLM, and LASSO with covariate transformations, respectively; and other

abbreviations are defined in the text. Computation of prediction intervals for LASSO is not supported by the

glmnet package.

https://doi.org/10.1371/journal.pone.0229509.t001
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The coverages of the 90% and 95% prediction intervals were close to nominal for all models

in Table 1. That is, for each method, the prediction intervals computed during cross-validation

contained the true observed MMI values with approximately the correct proportion (within

±2%). However, even though the coverages were similar, there were considerable differences

between the lengths of the prediction intervals from the different methods (Fig 3). The median

length of the RF quantile prediction intervals was larger than the SLM and RFRK predictions

intervals. This is reasonable since the coverages of the predictions intervals were slightly over

the nominal level for RF, and slightly under the nominal level for the SLM (Table 1). Addition-

ally, Fig 3 shows much greater variability in the lengths of the RF quantile prediction intervals

than the SLM and RFRK prediction intervals. The lengths of the prediction intervals for the

SLM also have a positive skew and outliers; this can be explained by the universal-kriging vari-

ances getting larger for sites that fall away from than bulk of the data in the covariate space

[53]. The distribution of the prediction interval lengths for RFRK were narrower and more

symmetric, in comparison, since the simple-kriging variances only account for the uncertainty

due to relative geographic distances between points, and not possible quantitative extrapola-

tion in the covariates.

Scatter plots of predicted versus observed values are presented in Fig 4. The scatter plots

reveal that the predictions from the different models tend towards the mean of the observed

MMIs (36.9). This effect was most pronounced for the ordinary-kriging, RF, and RFRK mod-

els; in comparison, the LM and SLM had wider distributions of predicted values. While most

of the predictions from the LM and SLM (with and without transformations) were within the

defined range of the MMI (0–100), a small percentage (<0.5%) of predictions were negative,

and set to zero. The predictions from the RF and RFRK models, on the other hand, were con-

tained within the observed MMI range. Note that, by definition, RF models cannot predict

Fig 3. Boxplots of the lengths of 90% prediction intervals. Prediction intervals for RF were computed using the quantile regression

forest method, while prediction intervals for RFRK and the SLM with transformations (SLM-TF) were computed using the kriging

variances.

https://doi.org/10.1371/journal.pone.0229509.g003

PLOS ONE Comparing spatial regression to random forests for large environmental data sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0229509 March 23, 2020 11 / 22

https://doi.org/10.1371/journal.pone.0229509.g003
https://doi.org/10.1371/journal.pone.0229509


outside the range of the observed data since each tree model within the forest makes predic-

tions by taking the mean of the response data falling within a given leaf (terminal) node.

Covariance parameter estimates (nugget, partial sill, and range) for the spatial regression

models are presented in Table 2. The ordinary kriging model has a larger estimated nugget

parameter, ŝ2
�
, and smaller nugget-to-sill ratio, ŝ2

�
=ðŝ2

z þ ŝ
2
�
Þ, than the SLM. This is expected

since the covariates in the SLM explain additional variation in MMI not accounted for by ordi-

nary kriging. Moreover, the spatially-referenced StreamCat covariates in the SLM account for

some spatial autocorrelation in MMI. To further assist interpretation, Table 2 also presents the

effective range, � â log ½0:01 � ðŝ2
z þ ŝ

2
�
Þ=ŝ2

z �, which is defined here as the distance beyond

which spatial autocorrelation is less than 0.01 (i.e., the distance h found by solving ρ(h) = C(h)/

C(0) = 0.01; [54]). The effective ranges for ordinary-kriging and the SLM reveal that spatial

autocorrelation in the data is close to zero for distances beyond 480–580km. Additionally, for

the RFRK model, both the effective range (160km) and nugget-to-sill ratio (0.951) indicate lit-

tle, perhaps negligible, spatial autocorrelation in the RF residuals. Note that, for the effective

Fig 4. Scatter plots of predicted versus observed MMI values. Predictions are from 10-fold cross-validation. The 1-1 line (solid)

and mean observed MMI value (36.9; dashed horizontal line) are also shown in each panel. Labels for the seven models are defined

in Table 1 and the text.

https://doi.org/10.1371/journal.pone.0229509.g004

Table 2. Estimated covariance parameters.

OK SLM SLM-TF RFRK

Nugget 278.08 257.17 226.78 261.08

Partial Sill 135.05 68.59 53.03 13.52

Range 139.09 189.31 167.98 100.66

Effective Range 485.03 576.87 494.19 160.44

Nugget-to-Sill Ratio 0.67 0.79 0.81 0.95

The effective range is the distance (km) beyond which spatial autocorrelation is less than 0.01, and the nugget-to-sill

ratio is given by ŝ2
�
=ðŝ2

z þ ŝ
2
�
Þ.

https://doi.org/10.1371/journal.pone.0229509.t002
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range calculations we use 0.01 instead of 0.05, which is more common, since the nugget-to-sill

ratio for RFRK is greater that 0.95.

Maps of the RF and SLM predictions of MMI are presented in Fig 5(a) and 5(b). The maps

show MMI predictions for 1.1 million perennial stream reaches within the CONUS. Again,

predictions were made only for perennial stream reaches since the sampling frame for the

2008/09 NRSA is limited to these types of streams. Overall, the maps show similar spatial pat-

terns in the MMI predictions from the two models. As expected, regions dominated by urban

or agricultural land use tend to have lower MMI predictions than more remote regions. The

most noticeable difference between the prediction maps is that the SLM shows a wider distri-

bution of predicted values than RF, with sharper differences between regions with low and

high MMI predictions (e.g., Willamette Valley versus Cascades in Oregon; Piedmont versus

Blue Ridge Mountains in Georgia, S. and N. Carolina, and Virginia). Also note that the RF pre-

dictions never reach zero, while about 1.2% of the SLM predictions are negative and set to zero

in Fig 5 since MMI is defined between 0–100.

In contrast to the prediction maps, the maps of the RF and SLM prediction errors (lengths

of 90% prediction intervals) are strikingly different (Fig 5c and 5d). There is much greater vari-

ability in the lengths of prediction intervals in the map for the RF model than the SLM (note,

this is consistent with the cross-validation results in Fig 3). Moreover, the SLM prediction

intervals show greater precision in regions that are more densely sampled (e.g., Mississippi

Basin). In contrast, the precision of the RF quantile prediction intervals do not appear to scale

with the density of sampling locations.

Both the SLM and RF models provide measures of variable importance. For the SLM,

covariates can be ranked in terms of the absolute t-statistics for the coefficients. For RF, covari-

ates can be ranked using a permutation-based measure (i.e., the average increase in mean-

square error when each covariate is permuted in the out-of-bag data; [41, p. 593]). The

highest ranked variables for modeling MMI were similar for the RF model and SLM with

Fig 5. Maps of MMI predictions and prediction errors. The maps show the MMI predictions and lengths of 90% prediction

intervals for RF (a,c) and SLM with transformations (b,d). The prediction sites are the 1.1 million perennial stream reaches

(catchments) in the NRSA sampling frame. Note the different scales in the maps of prediction interval lengths (c,d).

https://doi.org/10.1371/journal.pone.0229509.g005
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transformations. Specifically, the covariates for watershed area, average topographic wetness

index, and ecoregions were ranked in the top five for both models. An SLM regression coeffi-

cient summary and RF variable importance plot are provided in the Supplement (S1 File;

Table S1 and Fig S2).

Last, some diagnostics for the SLM are provided in the Supplement (S1 File). A map of

the SLM squared residuals (Fig S3) reveals little geographic pattern, which suggests that the

assumption variance stationarity is reasonable. Directional semivariograms of the SLM residu-

als (Fig S4) look similar, with a little autocorrelation at short ranges, and do not reveal any

obvious directional dependence.

Simulation

The motivating MMI data set for comparing spatial regression to RF had a high amount of

nonlinearity in the covariates, and apparently little autocorrelation in the residuals. The results

from modeling this data indicated a slight advantage to the RF approach in terms of predictive

performance. However, the performance of the SLM was improved, and made competitive

to RF, by considering linearizing transformations of the covariates. Since this is but a single

applied data set, in this section we use simulations to generalize the comparison to spatial data

sets with different characteristics. Specifically, we use simulations to explore the effect of non-

linear relationships between response and covariates, R2, and varying amounts of autocorrela-

tion. The goal of this simulation study is to illustrate the relative strengths of each modeling

approach when generating spatial data with specified characteristics.

Data for this simulation study are generated from the following model:

yðsÞ ¼ f ðx1; � � � ; x4Þ þ dðsÞ ¼ c½agðx1; x2Þ þ hðx3; x4Þ� þ dðsÞ

¼ c½a sin ð5px1x2Þ þ 2x3 � x4� þ dðsÞ:
ð16Þ

Here δ(s) = z(s) + � is a spatially autocorrelated error term such that covðzðsÞ; zðsþ hÞÞ ¼
s2
z exp ð� k h k =aÞ and varð�Þ ¼ s2

�
is the nugget effect. The parameter c governs the propor-

tion of variance in y explained by the covariates in the systematic component of the model f.
The parameter a governs amount of nonlinearity in f, which is decomposed into a nonlinear

term g and linear term h. Note that the sine function, with multiplicative interaction between

x1 and x2, in (16) was chosen since it is difficult to recover with a linear model, and so RF is

expected to have advantages if the data are generated from this type of nonlinear function.

The following characteristics of the simulated data are varied by adjusting the values of the

parameters in (16):

• The amount of spatial autocorrelation in the error term δ(s). We set s2
z ¼ 1 and s2

�
¼ 9 for a

low amount of autocorrelation, and s2
z ¼ 9 and s2

�
¼ 1 for a high amount of autocorrelation.

The range parameter is always α = 0.5.

• The empirical R2, i.e., the proportion of variation in y explained by f. The value of parameter

c is adjusted in each simulation run to give an empirical R2 which is either high (0.9) or low

(0.1).

• Whether the linear or nonlinear term dominates. The value of parameter a is adjusted in

each simulation run so that the proportion of variance in f explained by the nonlinear term g
is either high (0.9) or low (0.1).

This gives a total of 23 = 8 cases since there are 2 levels (high/low) for each characteristic

(spatial autocorrelation, empirical R2, and amount of nonlinearity). The 8 cases are summa-

rized in Table 3.
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For each simulation case, we generated 20 data sets [y;x1, � � �, x4] of 1500 points with loca-

tions randomly generated over the unit square. For each data set, 500 points were used for

training, and the other 1000 as a test set. Values for the covariates xi were drawn from Unif

[0, 1]. Data from the spatially autocorrelated error term δ(s) in (16) were generated using the

Cholesky decomposition method [27, p. 201]. Values of parameters c and a were selected to fix

the empirical R2 and amount of nonlinearity in the simulated data sets generated for each case.

Since values of c and a varied, Table 3 presents the averaged values.

The LM, SLM, RF, and RFRK models are compared in the simulations. The SLM is fit using

REML with the full rank covariance matrix, and no covariate transformations are considered.

Model performance measures (RMSPE and prediction interval coverage) are averaged over

the 20 simulated data sets generated for each case. The simulation code is provided in an R

package available at https://github.com/ericwfox/slmrf.

Simulation results

Simulation results for the RMSPE are presented in Table 3. When there was a high amount of

autocorrelation in the error term and R2 = 0.1 (case 2,6), SLM and RFRK performed substan-

tially better than LM and RF. When R2 = 0.9 and the nonlinear component dominated (case

3,4), RF and RFRK performed substantially better than LM and SLM; RFRK also performed

better than RF when there was a high amount of autocorrelation in the error term (case 4).

When R2 = 0.9 and the linear component dominated (case 7,8), the SLM had the best perfor-

mance among all methods; RFRK also performed better than LM when there was a high

amount of autocorrelation in the error term (case 8). When the nugget effect dominated (case

1,5), all models performed similarly in terms of RMSPE, and the SLM had slightly better per-

formance than other methods. For all cases, SLM performed better than LM, and RFRK per-

formed at least as well as RF. However, this is reasonable since there was some amount of

autocorrelation in the data generated for each case. Moreover, when there was only a small

amount of autocorrelation in the error term and R2 = 0.9 (case 3,7), the spatial models per-

formed approximately as well as the non-spatial models (i.e., RF performed as well as RFRK in

case 3, and LM performed approximately as well as SLM in case 7).

The coverages of the 90% prediction intervals for LM, SLM, and RFRK were close to nomi-

nal for all simulation cases (Table 4). The quantile prediction intervals for RF showed over-

Table 3. Simulation results.

R2
s2
�

s2
z a c RMSPE

LM SLM RF RFRK

1 NL 0.1 9 1 2.94 0.51 3.28 (0.028) 3.22 (0.020) 3.32 (0.027) 3.26 (0.022)

2 NL 0.1 1 9 2.94 0.43 2.77 (0.145) 1.57 (0.029) 2.80 (0.146) 1.64 (0.033)

3 NL 0.9 9 1 2.94 4.56 9.03 (0.074) 9.02 (0.073) 7.45 (0.067) 7.45 (0.065)

4 NL 0.9 1 9 2.94 3.87 7.65 (0.394) 7.40 (0.369) 6.29 (0.322) 5.96 (0.290)

5 L 0.1 9 1 0.33 1.52 3.16 (0.025) 3.09 (0.018) 3.24 (0.026) 3.18 (0.021)

6 L 0.1 1 9 0.33 1.29 2.66 (0.140) 1.34 (0.010) 2.74 (0.143) 1.53 (0.024)

7 L 0.9 9 1 0.33 13.69 4.23 (0.038) 4.19 (0.033) 4.54 (0.036) 4.51 (0.032)

8 L 0.9 1 9 0.33 11.61 3.58 (0.186) 2.82 (0.116) 3.85 (0.201) 3.16 (0.138)

The first column indicates the case number and the second column indicates whether the linear (L) or nonlinear (NL) structural component of the model in (16)

dominates. Values for the RMSPE, and parameters a and c, were averaged over 20 independent simulation runs. The standard errors of the RMSPE scores are shown in

parenthesis. Note that the standard errors were computed as SDRMSPE=
ffiffiffiffiffi
20
p

, where SDRMSPE is the standard deviation of the RMSPE scores over the 20 runs.

https://doi.org/10.1371/journal.pone.0229509.t003
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coverage when the linear term dominated and R2 = 0.9 (case 7,8), but were otherwise reason-

able, although not as precise as the other methods.

Discussion

In this article we compared spatial regression and RF methods for modeling stream condition

(MMI) with over 200 potential covariates. We used the models for prediction and uncertainty

quantification of MMI at 1.1 million perennial stream reaches across the CONUS. Initial

exploratory analysis revealed highly nonlinear relationships between StreamCat covariates and

MMI scores, which motivated the application of Box-Cox transformations for the covariates in

the spatial regression model. To summarize the modeling results: First, the SLM with transfor-

mations and RF model performed comparably well in terms of cross-validation RSMPE, with

RF having a slight advantage (0.3 difference in RMSPE; Table 1). Second, the SLM performed

better than the multiple linear regression and LASSO models, which did not account for spatial

autocorrelation and used more covariates. Third, the maps of the SLM and RF predictions

showed similar spatial trends in stream condition, although the RF predictions were smoother

and had greater tendency to concentrate around the mean. Fourth, many of the top predictors

identified by the t-statistics for the coefficients in the SLM and the variable importance mea-

sures for RF were similar.

A novel contribution of this study was the assessment and comparison of prediction

intervals for the spatial regression and RF methods. The construction of prediction intervals

is not yet common practice in RF modeling. In contrast to geostatistics, there is no consen-

sus in the RF literature on best practices for uncertainty quantification. We investigated two

ways to construct prediction intervals for RF models: first, by using the quantile regression

forest method [26]; and second, by fitting the RFRK model and using the simple-kriging

variances for the RF residuals to form intervals. We found that coverages of the prediction

intervals for the SLM, RF, and RFRK models of stream condition were close to nominal

(Table 1). However, the lengths of the RF prediction intervals, computed using quantile

regression forests, had much greater variability than the SLM and RFRK prediction inter-

vals. One explanation for these differences is that the kriging variances are optimized by

minimizing the mean-square-prediction error, whereas the RF quantile prediction intervals

are not found by directly minimizing a loss function. The large amount of variability in the

prediction interval lengths for quantile regression forests was also acknowledged in [26] in

applications to a variety of data sets.

Table 4. Simulation results for coverage of 90% prediction intervals.

LM SLM RF RFRK

1 0.897 0.893 0.869 0.892

2 0.901 0.894 0.874 0.897

3 0.916 0.914 0.914 0.897

4 0.914 0.917 0.916 0.894

5 0.897 0.892 0.866 0.892

6 0.903 0.894 0.869 0.894

7 0.900 0.899 0.959 0.899

8 0.899 0.907 0.955 0.905

The first column indicates the different cases, which are summarized in Table 3. Values were averaged over 20

independent simulation runs.

https://doi.org/10.1371/journal.pone.0229509.t004
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The results of this study indicate that there are several trade-offs when deciding between an

RF or spatial regression approach to modeling a large environmental data set. We summarize

these below:

• RF performed slightly better than the SLM with covariate transformations for modeling

stream condition on a national scale. One explanation is that tree-based methods account

for a wider range of nonlinearities than Box-Cox transformations. There was also a low

amount of spatial autocorrelation in the MMI response data since the sampled stream sites

were far apart. To quantify this, the average distance between each sampling location and its

closest, neighboring sampling location was 30.07 km.

• The SLM stands out as a better descriptive model for ecological processes than RF. The ini-

tial exploratory analysis and transformation procedure provided insights into the functional

relationships between the covariates and MMI response variable. In contrast, the ways in

which RF deals with nonlinearities and interactions are hidden in the ensemble of trees and

difficult to interpret.

• RF has a computational edge over the SLM. The RF algorithm is easy to implement using the

randomForest package, and RF models are generally insensitive to values of the tuning

parameters. However, computational considerations for fitting an SLM are also not overly-

demanding with modern approaches such as REML and reduced rank methods.

• Predictions from RF will always be within the range of the observed data, whereas spatial

regression can extrapolate outside this range. In the context of modeling MMI, this was an

advantage of the RF approach since the MMI is bounded between 0-100; the SLM also gener-

ated some negative MMI predictions that needed to be set to zero in the prediction map

(Fig 5). However, in applications to other data sets, predicting within the range of sampled

values is not, in general, an advantage. For instance, for an unbounded normally distributed

response variable, if only 1% of the data were sampled, then we would expect that, in the

other 99% unsampled sites, there will be values both greater and less than the values in the

sample.

• The MMI modeling results suggest advantages to the spatial regression approach for uncer-

tainty quantification. The SLM prediction intervals were narrower, on average, than the RF

quantile prediction intervals. Moreover, the prediction intervals for the SLM are more suit-

able for spatial data since they scale with sampling density.

It is important to note that the cross-validation RMSPE of all models considered in Table 1

were close (ranging between 16.41-18.55) in relation to the MMI response scale (0-100). The

RMSPE was just one criterion we used to compare the different models. As summarized

above, there are other strengths and weaknesses of each modeling approach in terms of

computational efficiency, assessing covariate relationships, and uncertainty quantification.

Generally, in applications to similar types of large environmental data sets, RF has considerable

advantages over the SLM when treating each approach as a black box method, as we discussed

in the Introduction. We recommend the SLM if the practitioner takes a more careful approach

to modeling by exploring the data and estimating transformations to account for nonlineari-

ties. Alternatively, the RFRK model provides a compromise between the two methods by

combining the RF approach for handling nonlinearities and high-order interactions, and a

residual-kriging approach for constructing prediction intervals and mapping prediction

errors.

The simulations demonstrated that no single type of model performs best under all condi-

tions, and that each method is designed for specific purposes. For data sets with a high amount
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of nonlinearity in the covariates, and transformations to linearity are difficult or impossible,

RF or RFRK are superior methods that can uncover patterns and interactions that are difficult

to recover with an LM or SLM. However, for data sets with a high amount of spatial autocorre-

lation and linear structure in the covariates, the SLM is the superior method. Also, if the data

have a small amount spatial autocorrelation, then it may not be worth the computational effort

to fit a spatial model, and either RF or LM are sufficient. The simulation results also indicate

that the SLM prediction intervals generally have better coverage than the RF quantile predic-

tion intervals.

Alternative approaches and future directions

SSN modeling. The spatial regression models for MMI stream condition can potentially

be improved by using a Spatial Stream Network (SSN) [55] approach that uses stream distance,

instead of straight-line, Euclidean distance, to construct a valid covariance function. SSN mod-

els also account for the topology of the stream network; i.e., whether pairs of sites are “flow-

connected” (water from the upstream site flows into the downstream site) or “flow-uncon-

nected” (water from one site does not flow into the other site). However, one limitation is that

the software for fitting SSN models [56, 57] has been primarily developed for stream network

data sets on small to moderately sized geographic scales, with a limited number of records

(<2000). A substantial amount of additional work would be required to prepare the spatial

information (shape files, hydrologic distances, and topological relationships) necessary to fit

an SSN model to the nationally-scaled MMI stream data. Moreover, given the low amount of

spatial autocorrelation found when modeling MMI using Euclidean distance, it may not be

worthwhile to also consider more complex SSN models.

Spatial regression with large n. In this study we used a reduced rank method, based on

the Sherman-Morrison-Woodbury matrix decomposition, to speed up estimation and covari-

ate selection for the SLM. However, there are many viable alternatives to this method [58]. In

fact, recent studies have found shortcomings to reduced rank methods such as a tendency to

over-smooth predictions [59]. Alternatives, discussed in [58], are methods that introduce spar-

sity in the covariance matrix such as spatial partitioning or covariance tapering. For instance,

the approach taken in spatial partitioning is to divide the spatial domain into subregions, and

assume independence between observations in each subregion. This creates a block-diagonal

structure in the covariance matrix that allows for parallelization during likelihood estimation.

Further research is needed to determine the extent to which these types of methods can

improve the performance and computational efficiency of the SLM in comparison to algorith-

mic modeling approaches such as RF.

RF prediction intervals. The development of prediction intervals for random forests is

currently an active area of research. In this study we focused on the QRF method to construct

prediction intervals, which is one of the most commonly used approaches. However, a

reviewer has made us aware of several other approaches [60–62]. In particular, [61] proposed a

method based on the empirical distribution of the out-of-bag predictions errors. Through sim-

ulations and the analysis of real data sets, [61] found that the intervals constructed using their

method have coverage rates close to the nominal levels and tend to be narrower than compet-

ing methods such as QRF. Therefore, we recommend that practitioners also consider these

more recent approaches to constructing prediction intervals for random forest models.

Concluding remarks

Going back to our introductory paragraph, environmental data may be large in n (rows) or p
(columns). For spatial models, research for large n is very active, including the reduced rank
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approaches, among others. Less attention is given to large p, although many proven techniques

can be combined into an overall strategy. We suggest that modelers of spatial data carefully

consider transformations to linearity and subsequent removal of covariates to obtain a parsi-

monious set of (transformed) covariates, including possible interactions. We provided one

such example, creating indicator variables for covariates with excessive zeros, using Box-Cox

transformations on nonzero covariate values, and creating their interaction. Model selection

was possible for large p in the presence of large n using reduced rank methods. We stress that

this is not the only strategy, but rather an example of how to proceed for both large n and p,

which has received little attention. Given such a strategy, we created an SLM model that per-

formed comparably well with RF, and had some advantages for uncertainty quantification.

Conclusively, there is no correct way to statistically analyze and model large environmental

data sets. The results of this study suggest that a variety of modeling approaches can be

considered, and that each approach can lead to different insights into the data set and applied

problem. By comparing spatial regression to RF we ultimately found ways to improve both

techniques.
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