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Abstract

Introduction

Articular cartilage (AC) is a viscoelastic tissue with a limited regenerative capability because

of the lack of vasculature. Mechanical stimulation contributes to the homeostasis of func-

tional AC since it promotes the delivery of nutrients, cytokines and growth factors between

the distant chondrocytes. We hypothesized that biomechanical stimulation might enhance

mobilization of endogenous mesenchymal stem/stromal cells (MSCs) from neighboring

niches as the bone marrow.

Aim

This study aimed to introduce a bioreactor for inducing mobilization of MSCs from one com-

partment to another above by mechanical stimulation in vitro.

Methods

A novel mechanical system for evaluating mobilization of cells in a 3D context in vitro is pre-

sented. The system consists of a compression bioreactor able to induce loading on hydro-

gel-based scaffolds, custom-made software for settings management and data recording,

and image based biological evaluation. Intermittent load was applied under a periodic

regime with frequency of 0.3 Hz and unload phases of 10 seconds each 180 cycles over 24

hours. The mechanical stimulation acted on an alginate scaffold and a cell reservoir contain-

ing MSCs below it. The dynamic compression exerted amplitude of 200 μm as 10% strain

regarding the original height of the scaffold.
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Results

The bioreactor was able to stimulate the scaffolds and the cells for 24.4 (±1.7) hours, exert-

ing compression with vertical displacements of 185.8 (±17.8) μm and a force-amplitude of

1.87 (±1.37; min 0.31, max 4.42) N. Our results suggest that continuous mechanical stimula-

tion hampered the viability of the cells located at the cell reservoir when comparing to inter-

mittent mechanical stimulation (34.4 ± 2.0% vs. 66.8 ± 5.9%, respectively).

Functionalizing alginate scaffolds with laminin-521 (LN521) seemed to enhance the

mobilization of cells from 48 (±21) to 194 (±39) cells/mm3 after applying intermittent

mechanical loading.

Conclusion

The bioreactor presented here was able to provide mechanical stimulation that seemed to

induce the mobilization of MSCs into LN521-alginate scaffolds under an intermittent loading

regime.

Introduction

Articular cartilage (AC) is a viscoelastic tissue with scarce number of chondrocytes and a rich

organized extracellular matrix (ECM), composed mainly of type-II collagen and proteogly-

cans. This enables compressibility to support weight and to distribute loads of the joints [1].

The absence of blood and lymphatic vessels restricts the direct access to nutrients and limits

healing capability [2]. In an avascular tissue where nutrients and cytokines are mainly distrib-

uted by diffusion, joint motion assists to the transport rate of solutes [3]. Mechanical activity

in joints supports the proper functionality of chondrocytes, improves ECM content, promotes

glycosaminoglycan synthesis, and fiber organization [4, 5]. Furthermore, mechanical stimula-

tion contributes to the synthesis of ECM components by chondrocytes even if isolated from

patients with osteoarthritis [6]. Thus, mechanical loading plays a pivotal role for the nutrients

delivery, waste disposal, repair and AC healthiness [7].

Bioreactors are biotechnological devices used in cartilage engineering to evaluate diverse

mechanical stimulation strategies as compression, tension, hydrostatic pressure and shear stress,

acting on natural cartilage tissue or cartilage-like constructs [8–11]. Of these mechanical stimuli,

direct compression has been widely examined, since it simulates the stress exerted on AC by the

opposite joint component [12]. Compressive forces have been applied either under static or

dynamic conditions, but dynamic stimulation mimics the physiological environment of the AC

better. Furthermore, it has been shown to induce proteoglycan and collagen-II synthesis [13].

The standard clinical procedures for treating AC defects are autologous chondrocytes

implantation (ACI), mosaicplasty, and microfracture. The current ACI therapy known as

matrix-induced ACI (MACI), consists on isolating the chondrocytes in a first surgery, in vitro
expansion for several weeks, cell implantation in a matrix, and its implantation in a second

surgical procedure [14]. Mosaicplasty implies the use of osteochondral autologous plugs taken

from non-weight bearing regions to transplant them in the defect area. Lastly, microfracture

focuses on stimulating the bone marrow through micro-perforations in the subchondral bone,

which promotes a blood clot formation in the defect site, containing progenitor cells and

growth factors that induces defect healing. Despite their wide application, the clinical out-

comes are not fully fulfilled yet, mainly because the repaired tissue is fibrotic with inferior

quality biochemical and mechanically in comparison to hyaline cartilage [15].
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To maintain tissue homeostasis in the body, stem and progenitors cells can be mobilized

from their niches to the injury site for repairing [16]. Mesenchymal stem/stromal cells (MSCs)

are target components for cell-based therapies, e.g., for bone and cartilage injuries, because of

their multi-lineage differentiation potential and properties that promote regeneration [17].

Alternative to their application as ex vivo expanded cell products, induction of endogenous

mobilization may provide a better outcome than current therapies. MSCs with chondrogenic

differentiation potential reside in bone marrow, stroma, synovium, infrapatellar fat pad and

periosteum [18, 19], of which the bone marrow has been the most common reservoir to obtain

MSCs in cartilage defects research [20]. Although, AC on the joint is spatially separated from

the bone marrow by the subchondral bone lamella.

We hypothesize that mechanical stimuli are involved in endogenous cartilage repair

induced by the mobilization of stem cells besides other factors when the subchondral bone is

opened. To imitate the process in vitro, a compression bioreactor dedicated to cultivate and

remodel cartilage replacement material [21] has been modified allowing cell cultivation and

load application in the same device.

This study aimed to introduce a novel bioreactor system in vitro, capable of inducing

dynamic mechanical loading on a scaffold; and evaluate whether MSCs could shift from a

compartment beneath to a scaffold after the mechanical stimulation, as cells might move when

the subchondral bone is opened.

Materials and methods

Bioreactor specifications

A compression bioreactor was designed and built based on a model that was previously

described [21] (Fig 1). To evaluate the shift of location of cells from one compartment to

another in a 3D model, the bioreactor had to be completed with a lower chamber serving as

cell reservoir, assembled below the target scaffold. The scaffold was surrounded by an elastic

compressible ring of 2 mm height with an outer diameter of 30 mm and an inner diameter of

10 mm (Fig 2).

In the experiments, an upper positioned piston (20 mm Ø) was moved vertically down-

wards driven by a stepper motor (L4118S1404-T6x1-A25, Nanotec Electronic GmbH & Co,

Feldkirchen, Germany) (Fig 1). The displacement of the piston induced compression acting

simultaneously on the scaffold and the elastic ring. A force sensor (AUMMA-K001, Althen

GmbH; Kelkheim, Germany), located underneath the cells reservoir measured the induced

forces (Fig 1B).

The bottom of the cartridge was covered by a membrane (Permeaflon PTFE, Berghof Fluor-

oplastic Technology GmbH, Germany) to isolate the external environment and to communi-

cate the displacements of the scaffold holder to the force sensor below via a rod (Fig 1B).

The compression bioreactor had to be dimensioned to be able to set it up in a CO2 incuba-

tor (Fig 3). Mechanical parameters of the experiments as the displacement were set by the cus-

tom-made software EasyMotion Studio (TECHNOSOFT SA, Neuchâtel, Switzerland), which

handled the stepper motor through a motion controller (iPOS3604 MX Intelligent Drive, 144

W, CANopen / EtherCAT; Technosoft SA, Neuchâtel, Switzerland) (Fig 3). Right before start-

ing an experiment, the motion controller synchronizes the information with EasyMotion

software.

A digital gauge (DT32P, Sony, Tokyo, Japan) and its interpolator (MT11, Sony, Tokyo,

Japan) were placed for measuring independently the vertical displacements given by the piston

(Fig 1A), providing a resolution of 5 μm and an accuracy of ± 5 μm according to the informa-

tion of the manufacturer.
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The signals of the force sensor generated by the displacement were processed by an ampli-

fier (SG-AP, Althen GmbH; Kelkheim, Germany). The amplified force signal was plugged to

the connector block SCB-68A (National Instruments Corporation, Austin, Texas, USA), com-

municating the information to the PC-Card (PCI-6220, National Instruments Corporation,

Austin, Texas, USA) for data acquisition (Fig 3).

Once the experiments were running, the synchronized data for the displacement of the pis-

ton, the forces, and time were visualized and registered by the custom-made data acquisition

software “Bioreactor”, programmed in LabView 2011 (National Instruments Corporation,

Austin, Texas, USA) at a rate of 50 Hz. The data were then exported and analyzed with the sta-

tistical software Origin 9.0G (OriginLab Corporation, Northampton, USA) (Fig 3).

Cells isolation and cultivation

Porcine bone marrow derived-mesenchymal stem/stromal cells (pBM-MSCs) were isolated

from femora of 3–5 days old pigs after being sacrificed for unrelated experiments (animal

experimentation approval Nr. I-17/13, University of Heidelberg). For the hind limbs dissec-

tion, sterile instruments were used applying surgical technique. Briefly, skin, muscles, fat and

connective tissue were removed. Then, the femora were immersed in 70% ethanol for 3 min-

utes. A transverse cut was made intercondylar with a scalpel and the bone marrow was scraped

out with a surgical sharp spoon and harvested in 1X PBS with 1% penicillin/streptomycin. The

suspension was centrifuged at 1000 rpm for 5 minutes and RBC lysis buffer was added for 5

minutes under constant stirring. The buffer lysis was removed by centrifugation at 1000 rpm

for 5 minutes and 3 washes with 1X PBS were applied. The cells were then cultivated and

expanded using supplemented-DMEM (10% FBS, 2 mM glutamine, 1% penicillin, and 1%

streptomycin) at 37˚C and 5% CO2, and 0.25% trypsin/EDTA was used for passaging. 500 cells

Fig 1. The Bioreactor. A) An authentic picture of the compression bioreactor is shown. A stepper motor drives the piston downwards and a spring (not

visible) covered by a white bellows moves it upward. Parallel to the stepper motor, a digital gauge measures independently the vertical displacements of the

piston. The cartridge is the housing for cell cultivation and mechanical application of the strain in the scaffold. It can be disassembled or assembled and hold to

the bioreactor chassis by fixation screws. The cartridge cap comprises the embedded piston and the vents for gas exchange covered by 0.22 μm filters to protect

from the external environment. B) The technical sketch depicts the inner structures of the bioreactor. The piston compresses simultaneously the elastic ring

and the scaffold (not shown) located over the cell reservoir. A non-permeable membrane forms the bottom of the cartridge, isolating the cell cultivation system

to protect it from contamination. A force sensor is located underneath the membrane, which is mandatory for reliable measurements of the induced forces.

Dimensions of the bioreactor: 120 x 150 x 400 mm (width, depth, height), approximately.

https://doi.org/10.1371/journal.pone.0227553.g001
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per cm2 were plated in 75 cm2 cultivation flasks until the cells grew to ~80% confluence.

pBM-MSCs were characterized at passage 1 by their fibroblast-like cell morphology and the

surface markers CD44+ (eBioscience, Inc., San Diego, CA, US), CD90+ (Becton Dickinson,

New Jersey, US), CD29+ (BioLegend, San Diego, CA, US), CD45- (Becton Dickinson, New Jer-

sey, US), SLA-1+ and SLA-DR- (BioRad, Hercules, CA, US) by flow cytometry analysis (FACS

Canto II, BD Biosciences). Passages 2 and 3 were used for the experiments.

Scaffolds manufacturing

The target scaffolds of 10 mm in diameter and 2 mm in height (Fig 2C) were produced in a

custom-made mold mixing 1.5% alginate (Keltone LVCR, ISP, US) diluted in 0.9% NaCl, with

or without 15 μM LN521 (Biolamina; Stockholm, Sweden). Ionic polymerization of the algi-

nate was induced by 0.1 M CaCl2 for 7 minutes.

Silicone ring manufacturing

The elastic rings (Fig 2D) were made following the instructions of the manufacturer (Silicone

Rubber high elasticity, Glorex AG, Füllinsdorf, Switzerland). Then, the silicone was cast in a

Fig 2. Assembling of the cartridge components. A) The sketch shows parts of a disassembled cartridge. The scaffold

holder (2) contains the reservoir in the middle where the cells are placed. A scaffold (4) is placed over them, which is

held in place by the elastic ring (3) and a mesh above it (5). The mesh is kept in place by a ring anchored to the

construction using screws (6). The scaffold holder is placed as an independent movable unit within the cylindrical

container (1) and it is covered up by a cap (7) containing the piston and spring. The cartridge is made of sterilizable

materials. B) The schematic drawing shows the cross-section of the parts of an assembled scaffold holder without the

upper anchored ring. The mesh aims to prevent the scaffold from moving up during the lift maneuvers. An alginate

scaffold C) and the elastic ring D) are shown from above and a skew side view in detail.

https://doi.org/10.1371/journal.pone.0227553.g002
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custom-made plastic mold with the dimensions of 30 mm diameter, 2 mm height and a pin of

10 mm diameter in the middle. It was placed overnight for hardening at room temperature.

Biomechanical stimulation

For the biomechanical examinations, 1.0x105 pBM-MSCs were seeded in the cell reservoir in a

mixture of supplemented-DMEM and 0.5% alginate, and covered by the scaffold, which was

held in place by the elastic ring and a permeable mesh on top with a pore size of 160 μm

(Nylon mesh 03-160/37, Plastok Associates Ltd, Birkenhead, UK). The reservoir had a volume

of 42 mm3, approximately. Then, 2 mL of supplemented-DMEM were added over the scaffold.

Unloaded scaffolds were used as controls prepared in parallel under the same conditions in

another structurally identical cartridge.

Mechanical stimuli were applied as periodic dynamic compression exerted for 24 hours

with an amplitude of 200 μm as 10% strain relating to the 2 mm height of the scaffold, and 0.3

Hz frequency. To allow nutrient and gas exchange, and waste disposal, the piston released the

surface level of the scaffold and the elastic ring for 10 seconds each 180 cycles (i. e. after 10

minutes of loading) named as “lift” maneuver. To avoid hydrostatic disturbance between the

gas atmosphere and the liquid during the unloaded interval, the released piston kept immersed

in culture medium. The generated force by the applied periodical compression was continu-

ously recorded for the whole duration of the test.

Fig 3. The system of the bioreactor is designed as standalone unit. The bioreactor (1) connected to a power supply (3)

is placed inside a CO2 incubator to allow conditions for cell cultivation. The connection wires from the bioreactor are

plugged over an electronic box (4) that contains a motion controller, an amplifier of the force sensor and the

interpolator for the digital gauge. The motion controller receives the information from the stepper motor, and the

signals of the force sensor generated by the loading are processed by the amplifier. The electronic box (4) is plugged to

the connector block (5), which communicates with the PC card in the computer (6). The PC card synchronizes the

beginning of the experiment with the motion controller software “EasyMotion” (7), where the settings are established

for the experiments. Data as force, displacement of the piston and time are visualized and registered at a rate of 50 Hz by

the custom-made software “Bioreactor”, programmed in LabView 2011. Finally, the data can be exported (9) and

analyzed by statistical software such as Origin 9.0G, which was used in this study.

https://doi.org/10.1371/journal.pone.0227553.g003
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For executing the experiments, the starting position point of the piston was set manually by

approximation until the piston touched the surface of the scaffold and the elastic ring, which

was detected by checking the rise of the force value.

Confocal microscopy

After 24 hours of dynamic load (or unload for controls), the scaffolds were stained with 7 μM

calcein-AM and 5 μM ethidium-homodimer-1 for viability evaluation in 3D (Live/Dead kit,

Invitrogen, Carlsbad, California, United States). Cells that mobilized into the scaffolds after

stimulation were detected by confocal microscopy and counted by LAS X (Leica Application

Suite X, Leica Microsystems) software. Viable and non-viable cells were identified by calcein-

AM and ethidium homodimer-1 staining, respectively.

For the confocal microscopy, the scaffolds were placed in a custom-made holder. Then,

DMEM-without phenol red was used as immersion media. 10 X magnification immersion

objective, green and red channels (Alexa 488 for viable and Texas Red for non-viable cells,

respectively) were used to visualize the cells. The whole scaffold was initially scanned manually

to detect the cells located inside. 3D-images were taken with dimensions of 1.1 x 1.1 x 0.2 mm

(length, width, depth) approximately. A resolution of 2048 x 2048 pixels (x and y axis, respec-

tively) and 0.290 μm3 voxel size for 3D images were used in all cases at 600 Hz and bidirec-

tional scanning (TCS SP8, Leica Microsystems, Wetzlar, Germany).

Quantification of cells in 3D

The image analysis for the cells in the scaffold was done to detect and quantify the number of

viable or non-viable cells present in each sample. The image analysis was done using Leica

Application Suite X (LAS X) from Leica Microsystems. The ‘Analysis’ tab in the software GUI

allows to create a custom image analysis pipeline using algorithms. Briefly, the applied pipeline

consisted of 3D median filtering, manual thresholding, binary holes filling, 3D-image opening,

binary image editing, and features calculation, as previously described [22]. Independent

experiments for every condition were made in triplicates from the same donor.

Viability tests of cells located in the reservoir

Viability of the cells located in the cell reservoir after the application of continuous or intermit-

tent dynamic mechanical loading was measured by Trypan blue exclusion assay after 24 hours.

Independent experiments were made in triplicates from the same donor.

Statistical analyses

Statistical analysis was performed using Origin version 9.0G for Windows (OriginLab Corpo-

ration, Northampton, USA) to obtain descriptive statistics parameters as mean, standard devi-

ation, median, maximum, and minimum.

The raw mechanical data obtained by Bioreactor GUI (National Instruments Corporation,

Austin, Texas, USA) were exported, analyzed, and graphical charts of Fig 4 were prepared

using Origin 9.0G. For the calculation of descriptive statistics of force-amplitude and displace-

ment, the lifts maneuvers values were taken out.

The cell viability values in the reservoir obtained by Trypan Blue assay, were processed in

Origin 9.0G for descriptive statistics, and Fig 5 was prepared in R Core Team 2019 (Founda-

tion for Statistical Computing, Vienna, Austria). Discrimination of replicates from the same

donor was indicated by different symbols.
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The count of viable and non-viable cells (presence or absence of loading or LN521) was

obtained during the last step of the pipeline for quantifying cells in 3D in LAS X (Leica Appli-

cation Suite X, Leica Microsystems) as an excel worksheet report. This information was used

to calculate the counted cells per volume. Then, descriptive statistical analyses were carried out

Fig 4. Recorded mechanical data after the test. A) Plot of the overview of a complete run. The force exerted over the system and detected by the force sensor is

seen in red. The displacements of the piston detected by the gauge are seen in black. B) Lift maneuver. An unloaded phase of the intermittent dynamic

mechanical loading is shown in detail. When the unloaded phase is reached, the piston moves upward (downwards in the depicted record as a black line).

During the lift maneuver, the compression on the scaffold is lost and the basal force value corresponds to the offset. Note the elevated force peak when the piston

compresses the scaffold again after the lift maneuver. In this case, an offset of about 1.2 N was seen during the lift maneuver.

https://doi.org/10.1371/journal.pone.0227553.g004

Fig 5. Viability of the cells residing in the reservoir. After 24 hours of mechanical stimulation, the viability of the

cells which were not mobilized toward the scaffold was assessed by Trypan blue exclusion assay. The applied

intermittent regime comprised 0.3 Hz frequency over 24 hours and interruptions with unloaded phases of 10 seconds

after each 180 cycles. For the continuous regime, 0.3 Hz frequency for 24 hours without lift maneuvers loading was

applied. The control scaffolds were prepared simultaneously in a separated and identically constructed cartridge, but

no mechanical loading was applied. Continuous loading seemed to harm the cells, whereas interruption of the

compression increased the cell viability comparable with unloaded cells. The results are shown as triplicates from the

same donor; Δ, O, □ = replicates.

https://doi.org/10.1371/journal.pone.0227553.g005
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using Origin 9.0G, and Fig 6B was prepared in R Core Team 2019. Discrimination of replicates

from the same donor was indicated by different symbols.

Results

Bioreactor

The redesigned bioreactor was able to induce mechanical loading on a biological arrangement

composed by a scaffold and a reservoir of MSCs beneath it. It allowed us to evaluate the pres-

ence of cells in the scaffolds after mechanical loading stimulation. The cell cultivation system

was provided as a cartridge (Fig 2) in a sealed design providing an aseptic environment for cell

cultivation and the vents allowed gas exchange. Moreover, the cartridge was constructed as sep-

arate entity and could be easily handled, assembled and disassembled in a laminar flow bench.

The load transmission elements comprised the stepper motor driving the piston vertically

downwards in a range from 0 mm (top) to 210 mm (bottom) and a spring moving it upward.

When the spindle of the stepper motor was at the most upper position (0 mm), the cartridge

could be easily mounted or taken out from the bioreactor chassis.

The scaffold holder (Fig 2A and 2B) contained a mesh on top overlapping the elastic ring,

which kept the scaffold in place while the lift maneuvers were conducted. The elasticity of the

ring apparently restored the shape of the scaffold after compression. In addition, the silicone

material of the ring seemed to have sealed the reservoir and the upper chamber against liquid

exchange under load.

The results showed that the bioreactor was able to stimulate the scaffolds over approxi-

mately 24 hours using a periodic regime with 0.3 Hz and resting time of 10 seconds each 180

Fig 6. MSCs found in the scaffolds. A) Representative confocal microscopy images of alginate and alginate-LN521 scaffolds, with or without mechanical

stimulation. Calcein-AM is seen in green and represents viable cells, ethidium homodimer-1 is seen in red and represents non-viable cells. There was only a

low number of dead cells in the scaffolds. Bar scale = 100 μm. B) Quantification of viable and non-viable cells found in the scaffold after biomechanical

stimulation or control. LN521 seems to have improved the alginate scaffold in terms of cell intake. The combination of LN521 in the scaffolds and the

intermittent mechanical loading enhanced the number of cells found in the scaffolds. The results for every condition are shown as 3 independent replicates

with cells from the same donor. Gray color indicates scaffolds without LN521 and black indicates the use of LN521; Δ, O, □ = replicates.

https://doi.org/10.1371/journal.pone.0227553.g006
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cycles (Fig 4). The mean duration time for the 6 assessed independent examinations was 24.4

(±1.7) hours. No contamination of the cell culture was observed at the end of the experiments.

The values between the lift maneuvers starting after the first relief were taken into account

for the calculation of descriptive statistics of the mechanical data as force-amplitude and dis-

placement. The measured displacements were 185.8 (±17.8) μm in the mean for all 6 speci-

mens. One specimen showed an irregularity as the curve of the recorded displacements

revealed 2 steps over the running time, but the deviations acting on the scaffold were in the

range from 155 μm to 175 μm (data not shown).

The calculated mean of the force-amplitude was 1.87 ± 1.37 N (min 0.31 N, max 4.42 N).

The lifts of the piston for 10 seconds per cycle were carried out in the applied intermittent

dynamic loading protocol and can also be seen in detail in Fig 4 with an estimated force offset

of 1.2 N.

Furthermore, a single force-peak with a force interval of 3.03 ± 1.77 N (min 0.31 N, max

6.50 N) was observed in each cycle when the piston struck the surface of the scaffold once it

had released (Fig 4B).

The scaffolds revealed no indications of heavy damage after the mechanical stress produced

by the dynamic compression. A trace of stress was visible at the scaffolds after loading (S1 Fig)

but not at the unloaded scaffolds used as control.

Viability of the cells in the reservoir

We found that about 35% (median of 34.4%, ranging from 32.5 to 36.5%) of cells were viable

after applying dynamic loading continuously without interruption (Fig 5). Under the intermit-

tent dynamic load regime, we found a cell viability of about 70% (median of 69.3%, ranging

from 60.0 to 71.1%). Moreover, the unloaded and intermittently loaded scaffolds acquired a

reddish color, indicating that penetration and even distribution of cell culture medium in the

scaffolds was allowed by the lift maneuver of the piston and it was independent of the exerted

compression.

Cells detected in the scaffolds

We found 13 ± 2 cells/mm3 (median of 13 cells/mm3, ranging from 11 to 15 cells/mm3, and

66.7% cell viability) in the scaffolds after 24 hours of mechanical stimulation, and 24 ± 11 cells/

mm3 (median of 30 cells/mm3, ranging from 11 to 31 cells/mm3, and 73.7% cell viability) were

present in the unloaded alginate scaffolds. However, when the scaffolds were supplemented

with LN521, 48 ± 21 cells/mm3 were found in the unloaded scaffolds (median of 56 cells/mm3,

ranging from 24 to 63 cells/mm3, and viability of 83.8%), and 194 ± 39 cells/mm3 (median of

202 cells/mm3 ranging from 152 to 230 cells/mm3, 89.7% cell viability) were present after load-

ing (Fig 6).

In all cases, the cells in the scaffold were found in regions close to the adjacent cell

reservoir.

Discussion

Microfracture, ACI and mosaicplasty are the preferred treatments for AC defects, but those

still fail to obtain a complete long lasting regeneration of AC [15]. One of the possible draw-

backs to obtain a complete in situ regeneration of AC after microfracturing can be the lack of

migration of enough number of progenitor cells resulting in fibrocartilage [23]. Therefore, we

provide a tool where controlled variables can be evaluated in vitro, and a regime that suggests

enrichment of cells in an acellular scaffold. The study provided herein suggests that intermit-

tent biomechanical loading may induce the shift of location of cells from one compartment
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into a functionalized alginate scaffold against gravity, supporting our hypothesis that endoge-

nous cells could be mobilized and recruited by biomechanical loading when the subchondral

bone is opened. Our aim was to imitate in vitro a situation comparable when there is a defect

in the cartilage layer of the tibia plateau of a knee joint by a modified bioreactor [21].

The relevant acting forces and amplitudes acting on the knee joint are hard to identify in

terms of imitating the situation in bioreactors correctly, as they depend on the physical activity

and conditions of the individuals. Thus, the compression generated on the AC by mechanical

loading is more suitably referred as strain, which is defined as the change of the thickness

regarding the original value of the height [24]. Daily normal activities have 0–10% strain, and

5–15% for post-activity; while 50–70% strain is reported to be injurious, and 70–90% to cause

cell death [25]. In the tibiofemoral contact area, peak strains can be 7–23% during walking

[25]. The strain evaluated in this study was comparable to diurnal cartilage strains at the

medial tibia [24]. Parameters as frequency and strain were applied as previously reported [26],

total time [27] and duration of unload phase [28] were between the ranges of previous studies.

The results indicate the necessity of functionalizing the scaffolds with LN521 to get more

MSCs in, since the cells were not notably found in the scaffold made of only alginate (Fig 6).

LN521 is a basement membrane protein present in stem cells niches, involved in cell adhesion,

migration, and differentiation [29]. Therefore, structural proteins like LN521 may serve as

adhesion factors for pBM-MSCs in the scaffolds. The functionalized scaffolds allow holding a

higher number of MSCs after intermittent loading, supporting our hypothesis regarding

mechanical stimulation.

Alginate is dense a material from which scaffolds can be made having a few μm of pore size

[30]. A slight mark on the surface of the lower side of the loaded scaffolds was observed (S1

Fig), which corresponded to the circumference of the cell reservoir without apparent signifi-

cant damage of the gel at microscopic level (S2 Fig). This side of the gel probably stretched

toward the cell reservoir during loading. We can speculate that a modest change in shape of

the loaded gels might cause an increase of the superficial area, promoting the adsorption/adhe-

sion of cells on the scaffolds. However, it was the combination of LN521 and loading that

resulted in more cells in the scaffolds.

Laminin cannot form hydrogels by its own due to the absence of electrostatic interactions

or hydrogen bonding. However, it can be used within other hydrogels where functional groups

may conjugate [31]. One of the limitations of our experimental setup is that we cannot be sure

about the complete integration of LN521 into the alginate structure at molecular level, but we

speculate that some of the LN521 molecules were trapped in the internal network of the scaf-

fold. The use of oxidizing agents as IO4- when preparing the scaffolds can be addressed for

future approaches, allowing interaction between aldehyde groups of the oxidized alginate and

amine residues of the laminin, as previously reported [32].

When the subchondral bone is perforated in a microfracture surgery, blood clots are

formed and a suitable environment for tissue healing is created, promoting migration of MSCs

and releasing growth factors and cytokines [33, 34]. The cultivation conditions in the cell res-

ervoir given by a mix of culture medium and alginate solution increased the viscosity, which

might have avoided cell sedimentation during the tests in vitro and helped with the shift of

location of cells from one compartment to the other under loading stimulation.

For AC regeneration, studies applying either continuous [35, 36] or intermittent loading

regime have been addressed by several authors in the past [37–39]. Cyclic is the more frequent

loading pattern in the lower limbs joints during locomotion, where intermittent loading is part

of the normal motion scheme since unloaded periods occur between load cycles [28]. From

the mechanical point of view, the load pattern applied in this study showed a single higher

peak of the force amplitude (Fig 4B) induced after the lift maneuver due to the piston moved
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downwards with a higher velocity after the released period. Thus, we found a complex loading

pattern with interruptions and different forces acting on the scaffolds.

After the examinations with continuous dynamic loading, we found cell death at the cell

reservoir, probably due to the lack of nutrients and gases exchange (Fig 5). The apparent

increase of cell viability observed once the load was applied intermittently, suggests that nutri-

ents and gas exchange may have occurred during the lifts of the piston. Therefore, the culture

medium passed through the scaffold and reached the cells located at the cell reservoir, and the

elastic ring prevented bypasses by a sealing effect under pressure. The applied intermittent

dynamic mechanical stimulation seemed not to harm the cells when using functionalized scaf-

folds; in contrast, we observed a higher number of viable cells even after finding one value of

the replicates close to the non-stimulated control (Fig 5). We would like to highlight that the

cell reservoir had a limited size and thus, medium supply could affect viability within 24 hours.

The viability of the cells in the control was 55% whereas corresponding viabilities in cell cul-

ture flasks were only slightly higher with 70% (data not shown). Hence, we speculate that the

conditions in the cell reservoir were not optimal for 1x105 cells as a volume of 80 μL of

medium and alginate solution was limited, and the lack of nutrients and waste disposal may

have harmed some cells for the observation time. However, the culture medium placed on top,

and that reached the cell reservoir under intermittent loading, could have contributed to better

cultivation conditions, resulting in 68% cell viability (Fig 5), which was close to the viability in

cell culture flasks (data not shown).

To our knowledge, this is the first study suggesting mobilization of MSCs from a low com-

partment to another at the top against gravity, induced by biomechanical stimulation in vitro.

Migration of chondrocytes under mechanical stimulation has been previously stated [40–42],

and migration of MSCs under mechanical stimulation was addressed in the past by Ode and

collaborators, demonstrating that loading hampered the mobilization of MSCs in bone healing

context [43] using a bioreactor system previously described [44]. Both bioreactors were able to

apply load on a scaffold. The main difference between them is that Ode at al., used a pneumatic

force application system [44], whereas our force transmission was performed mechanically

from a step motor over the stiff piston to the surfaces of the scaffold and silicone ring. The

loading protocols also differ since Ode and collaborators applied 20% strain at 1 Hz for 72

hours, while our parameters were 10% strain at 0.3 Hz frequency as previously reported in

[26], intermittently for 24 hours. The comparison of both approaches supports our assumption

that mobilization of MSCs was not induced when applying mechanical loading alone (Fig 6).

Our findings indicate that the cells were found in the hydrogel only when mechanical loading

was applied intermittently and adjoined by the used of LN521-functionalized scaffolds.

Furthermore, higher levels of cell viability were found in the experiments performed using

functionalized scaffolds, which indicates that LN521 may contribute to the wellness of cells

during the test. We speculate that this explains why lower cell viability was found under load-

ing in non-functionalized alginate scaffolds (Fig 6).

The experimental approach that we presented in our bioreactor has unique hardware and

software architecture, composed of separated devices for cell cultivation, mechanical applica-

tion, and software (Figs 1, 2 and 3). In addition, our focus was to analyze cartilage repair using

functionalized-hydrogel scaffolds, where the cells were quantified by a custom made 3D-

imaged based protocol [22].

This proof-of-concept study has some limitations. We presented 6 examinations, but it has

to be taken into consideration that the cells were harvested from one animal. To be able to

focus on the understanding of the mechanical behavior of the innovative device presented

here, we controlled the amount of biological variation by not including MSCs from different

donors. Thus, we refrained from further analytical statistical evaluation, and the biological
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variability will be addressed in a future study. Nevertheless, the effect on the number of cells

found in the scaffolds was 4-5-fold higher after we applied intermittent mechanical stimula-

tion, functionalized the alginate scaffold with the structural protein LN521, and dispersed the

MSCs in the lower reservoir preventing cell sedimentation.

We detected the cells in the scaffold near to the surface of the scaffold that was close to the

reservoir. At this time, we can only speculate how the cells shifted upward from the reservoir

to the scaffold. At the current stage, we assume that this more likely happened because of exter-

nal mechanical reasons rather than any biological active process from the cells as migration, as

the shapes of the cells were quite spherical and specific tests for cell migration were not

addressed in this study.

To explain the mechanisms of how the cells are transferred into the scaffolds is still chal-

lenging and opens new perspectives to be explored in detail in forthcoming research. To

explore whether loading induces fluid movement from the lower compartment toward the

scaffold, dark ink was placed at the cell reservoir in an early stage feasibility examination of the

bioreactor. The ink diffused in the unloaded scaffolds showing a visible gradient, while fully

stained the loaded scaffolds (S3 Fig). This result suggests that mechanical loading induces fluid

to move through the scaffold. It is a matter of future studies to explain whether the cells were

sucked-up or activated by other mechanisms to displace themselves. LN521 functionalization

was important either to attract cells or to allow adherence of dispersed cells within the scaffold

or both.

Future studies are necessary to find out whether the phenomenon suggested with these pre-

liminary results will also be observed with cells from more than one donor, to assess human

adult MSCs, to test different incubation times and to evaluate mechanical parameters that can

increase the number of functional cells in the scaffolds.

With this bioreactor being a prototype to test our hypothesis of load inducing the mobiliza-

tion of MSCs, the design is subject to improvements, e.g., self-replenishment of culture

medium, scaffold composition, addition of supplementary factors in the culture medium for

growth or differentiation.

Bone marrow is currently the most common MSCs source for cartilage regeneration

research either alone or with biological scaffolds as so called matrix-augmented bone marrow

stimulation [45]. Our experimental approach might be comparable to the in vivo situation

when the subchondral lamella has been opened i.e., after microfracturing. As previously men-

tioned, current strategies for AC repair fail to produce hyaline cartilage. The presented biore-

actor regime could provide new insights suggesting that endogenous progenitor cell

mobilization to the defect site could be targeted by intermittent mechanical loading and func-

tionalized-scaffolds. Moreover, mechanical loading is important in AC for distribution of

nutrients, reinforce ECM content, fiber organization, and waste disposal [4, 5, 7]. The pre-

sented bioreactor system and preliminary examinations provide a first insight of loading prob-

ably involved in MSCs recruitment. An approach that achieves MSCs endogenous recruitment

of MSCs, a proper combination of factors for chondrogenic differentiation, and phenotype

maintenance would be beneficial for a fully functional regenerated AC.

Thus, the relevance of these findings for the orthopedic experimental research field is to

establish a biomechanical system in vitro that gives us the chance to evaluate mechanical stim-

ulation for cells moving from a compartment beneath, simulating MSCs moving from bone

marrow in vivo. It may help afterwards to study molecular cues of mobilized versus non-mobi-

lized cells and identify additional mechanical and chemical factors for inducing cells to be

recruited by a given condition. Further steps will assess whether mechanical loading can

induce MCSs for bone or cartilage differentiation. Nonetheless, the first results of the pre-

sented study suggest that mechanical stimulation may have an important impact on the
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mobilization of stem/stromal cells. Thus, a combination of the current strategies applied for

AC-regeneration as microfracture, biomechanical protocols and functionalized scaffolds

might enhance the outcomes of the current treatments applied in osteoarthritis or AC-trauma.

Conclusions

We present a bioreactor system for mechanical load application on an in vitro biological

arrangement as scaffolds. The preliminary results suggest that the stimulation exerted by the

applied intermittent dynamic loading protocol, combined with LN521 functionalization of the

target scaffold can promote the mobilization of pBM-MSCs from a lower compartment toward

the scaffold in the compartment above, against gravity.

Supporting information

S1 Fig. Stress on the scaffold after the mechanical stimulation. Once the scaffold was loaded

for 24 hours, a trace of mechanical stress was visible as an inner circumference, which corre-

sponds with the cell reservoir edges.

(TIF)

S2 Fig. Z-stack of LN521-funtionalized scaffolds. 3D images of the region of interest, corre-

sponding to the scaffold side adjacent to the cell reservoir are shown. The cells present in the

loaded scaffold suggest that the scaffold surface did not suffer substantial damage after

mechanical stimulation.

(TIF)

S3 Fig. Mechanical loading enhances the fluid uptake. Dark ink was placed in the cell reser-

voir compartment to explore whether loading modified the influx of the fluid. The control

shows that the ink diffused into the scaffold showing an evident gradient, whereas loaded scaf-

fold was totally stained. This suggests that mechanical loading induces fluid to move toward

the scaffold.

(TIF)

S1 Table. Raw data excel file. Sheet1) Mechanical stimulation data of every replicate with

loading or no loading for controls, and a summary of the statistics are shown in the worksheet

named “Biomechanical_data”. Sheet2) The viability of cells after the mechanical stimulation

located at the cell reservoir and in the scaffold is shown in the worksheet named “Cell_viabil-

ity”. Sheets3-14) The data obtained after counting the cells in 3D using LAS X software are

shown in the worksheets 3 to 14, named by experimental condition. The counts of viable and

non-viable cells can be seen in channels 1 and 2, respectively.

(XLSX)

Acknowledgments

The authors gratefully acknowledge Mr. Dieter Schleich (Experimental Orthopaedics and

Trauma Surgery, OUZ, Medicine Faculty Mannheim of the University of Heidelberg) for

building the parts of the bioreactor; Prof. Dr. Martin Schmelz and Mr. Elmar Forsch (Experi-

mental Pain Research Group, Medical Faculty Mannheim, University of Heidelberg) for

providing the porcine material; Stefanie Uhlig (Institute of Transfusion Medicine and Immu-

nology, Flow Cytometry Core Facility, Medical Faculty Mannheim of the University of Heidel-

berg) for her excellent technical support with the FACS assays, and the data storage service

SDS@hd for the confocal microscopy imaging data storage on the cloud.

Bioreactor for mobilization of MSCs under mechanical stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0227553 January 10, 2020 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227553.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227553.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227553.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0227553.s004
https://doi.org/10.1371/journal.pone.0227553


Author Contributions

Conceptualization: Carolina Gamez, Barbara Schneider-Wald, Marcus Stoffel, Karen Bieback,

Markus L. Schwarz.

Data curation: Carolina Gamez, Andy Schuette.

Formal analysis: Carolina Gamez, Barbara Schneider-Wald, Karen Bieback, Markus L.

Schwarz.

Funding acquisition: Norbert Gretz.

Investigation: Carolina Gamez, Norbert Gretz, Karen Bieback, Markus L. Schwarz.

Methodology: Carolina Gamez, Barbara Schneider-Wald, Andy Schuette, Michael Mack.

Project administration: Markus L. Schwarz.

Software: Carolina Gamez, Andy Schuette, Michael Mack, Luisa Hauk, Arif ul Maula Khan.

Supervision: Barbara Schneider-Wald, Karen Bieback, Markus L. Schwarz.

Validation: Carolina Gamez.

Visualization: Carolina Gamez.

Writing – original draft: Carolina Gamez.

Writing – review & editing: Carolina Gamez, Barbara Schneider-Wald, Andy Schuette,

Michael Mack, Luisa Hauk, Arif ul Maula Khan, Norbert Gretz, Marcus Stoffel, Karen Bie-

back, Markus L. Schwarz.

References
1. Akkiraju H, Nohe A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and

Cartilage Regeneration. J Dev Biol. 2015; 3(4):177–92. https://doi.org/10.3390/jdb3040177 PMID:

27347486

2. Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering:

Learning from biology. Acta Biomater. 2018; 65:1–20. https://doi.org/10.1016/j.actbio.2017.11.021

PMID: 29128537

3. Pouran B, Arbabi V, Bajpayee AG, van Tiel J, Toyras J, Jurvelin JS, et al. Multi-scale imaging tech-

niques to investigate solute transport across articular cartilage. J Biomech. 2018; 78:10–20. https://doi.

org/10.1016/j.jbiomech.2018.06.012 PMID: 30093067

4. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the

expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem

Cells. 2007; 25(3):655–63. https://doi.org/10.1634/stemcells.2006-0435 PMID: 17124008

5. Salinas EY, Hu JC, Athanasiou K. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engi-

neered Articular Cartilage Properties. Tissue Eng Part B Rev. 2018; 24(5):345–58. https://doi.org/10.

1089/ten.TEB.2018.0006 PMID: 29562835

6. Jeon JE, Schrobback K, Hutmacher DW, Klein TJ. Dynamic compression improves biosynthesis of

human zonal chondrocytes from osteoarthritis patients. Osteoarthritis Cartilage. 2012; 20(8):906–15.

https://doi.org/10.1016/j.joca.2012.04.019 PMID: 22548797

7. Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in Application of Mechanical Stimuli in Bioreactors for

Cartilage Tissue Engineering. Tissue Eng Part B Rev. 2017; 23(4):399–411. https://doi.org/10.1089/

ten.TEB.2016.0427 PMID: 28463576

8. Shahin K, Doran PM. Shear and Compression Bioreactor for Cartilage Synthesis. Methods in molecular

biology (Clifton, NJ). 2015; 1340:221–33.

9. Weber JF, Perez R, Waldman SD. Mechanobioreactors for Cartilage Tissue Engineering. Methods in

molecular biology (Clifton, NJ). 2015; 1340:203–19.

10. Lee JK, Huwe LW, Paschos N, Aryaei A, Gegg CA, Hu JC, et al. Tension stimulation drives tissue for-

mation in scaffold-free systems. Nat Mater. 2017; 16(8):864–73. https://doi.org/10.1038/nmat4917

PMID: 28604717

Bioreactor for mobilization of MSCs under mechanical stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0227553 January 10, 2020 15 / 17

https://doi.org/10.3390/jdb3040177
http://www.ncbi.nlm.nih.gov/pubmed/27347486
https://doi.org/10.1016/j.actbio.2017.11.021
http://www.ncbi.nlm.nih.gov/pubmed/29128537
https://doi.org/10.1016/j.jbiomech.2018.06.012
https://doi.org/10.1016/j.jbiomech.2018.06.012
http://www.ncbi.nlm.nih.gov/pubmed/30093067
https://doi.org/10.1634/stemcells.2006-0435
http://www.ncbi.nlm.nih.gov/pubmed/17124008
https://doi.org/10.1089/ten.TEB.2018.0006
https://doi.org/10.1089/ten.TEB.2018.0006
http://www.ncbi.nlm.nih.gov/pubmed/29562835
https://doi.org/10.1016/j.joca.2012.04.019
http://www.ncbi.nlm.nih.gov/pubmed/22548797
https://doi.org/10.1089/ten.TEB.2016.0427
https://doi.org/10.1089/ten.TEB.2016.0427
http://www.ncbi.nlm.nih.gov/pubmed/28463576
https://doi.org/10.1038/nmat4917
http://www.ncbi.nlm.nih.gov/pubmed/28604717
https://doi.org/10.1371/journal.pone.0227553


11. Elder BD, Athanasiou K.A. Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chon-

drocytes to Tissue Regeneration. Tissue Eng Part B. 2009; 15(1).

12. Anderson DE, Johnstone B. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineer-

ing: A Critical Review. Front Bioeng Biotechnol. 2017; 5:76. https://doi.org/10.3389/fbioe.2017.00076

PMID: 29322043

13. Darling E.M., Athanasiou KA. Articular Cartilage Bioreactors and Bioprocesses. Tissue Eng 2003; 9(1).

14. Jacobi M, Villa V, Magnussen RA, Neyret P. MACI—a new era? Sports Med Arthrosc Rehabil Ther

Technol. 2011; 3(1):10. https://doi.org/10.1186/1758-2555-3-10 PMID: 21599919

15. Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for carti-

lage tissue engineering. J Cell Physiol. 2018; 233(3):1913–28. https://doi.org/10.1002/jcp.26018 PMID:

28542924

16. Rennert RC, Sorkin M, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenera-

tive medicine. Regenerative Medicine. 2012; 7(6):833–50. https://doi.org/10.2217/rme.12.82 PMID:

23164083

17. Karagianni MS T.J.; Bieback K. Towards Clinical Application of Mesenchymal Stromal Cells: Perspec-

tives and Requirements for Orthopaedic Applications. In: Davies J, editor. Tissue Regeneration From

Basic Biology to Clinical Application. London, UK IntechOpen; 2012.

18. Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med. 2009; 266(4):390–

405. https://doi.org/10.1111/j.1365-2796.2009.02153.x PMID: 19765182

19. Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchy-

mal stem cells: tips and tricks. Methods in molecular biology (Clifton, NJ). 2011; 698:253–78.

20. Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, Bone Marrow and Synovial Joint-

Derived Mesenchymal Stem Cells for Cartilage Repair. Front Genet. 2016; 7:213. https://doi.org/10.

3389/fgene.2016.00213 PMID: 28066501

21. Stoffel M, Willenberg W, Azarnoosh M, Fuhrmann-Nelles N, Zhou B, Markert B. Towards bioreactor

development with physiological motion control and its applications. Med Eng Phys. 2017; 39:106–12.

https://doi.org/10.1016/j.medengphy.2016.10.010 PMID: 27836574

22. Gamez C, Khan A.M., Torelli A., Schneider-Wald, B., Gretz N., Wolf I., Bieback K., Schwarz ML. Image

processing workflow to visualize and quantify MSCs in 3D. German Congress of Orthopedic and

Trauma Surgery (DKOU 2018); November 6, 2018; Berlin: German Medical Science; 2018.

23. Im GI. Endogenous Cartilage Repair by Recruitment of Stem Cells. Tissue Eng Part B Rev. 2016; 22

(2):160–71. https://doi.org/10.1089/ten.TEB.2015.0438 PMID: 26559963

24. Coleman JL, Widmyer MR, Leddy HA, Utturkar GM, Spritzer CE, Moorman CT 3rd, et al. Diurnal varia-

tions in articular cartilage thickness and strain in the human knee. J Biomech. 2013; 46(3):541–7.

https://doi.org/10.1016/j.jbiomech.2012.09.013 PMID: 23102493

25. Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular car-

tilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014; 16(10):451. https://doi.org/10.

1007/s11926-014-0451-6 PMID: 25182679

26. Nebelung S, Gavenis K, Luring C, Zhou B, Mueller-Rath R, Stoffel M, et al. Simultaneous anabolic and

catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous

dynamic compression. Ann Anat. 2012; 194(4):351–8. https://doi.org/10.1016/j.aanat.2011.12.008

PMID: 22429869

27. Steinmeyer J, Knue S. The Proteoglycan Metabolism of Mature Bovine Articular Cartilage Explants

Superimposed to Continuously Applied Cyclic Mechanical Loading. Biochem Biophys Res Commun.

1997; 240:216–21. https://doi.org/10.1006/bbrc.1997.7641 PMID: 9367913

28. Sauerland K, Raiss RX, Steinmeyer J. Proteoglycan metabolism and viability of articular cartilage

explants as modulated by the frequency of intermittent loading. Osteoarthritis and Cartilage. 2003; 11

(5):343–50. https://doi.org/10.1016/s1063-4584(03)00007-4 PMID: 12744940

29. Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, et al. Clonal culturing of

human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment.

Nat Commun. 2014; 5:3195. https://doi.org/10.1038/ncomms4195 PMID: 24463987

30. Wang N, Adams G, Buttery L, Falcone FH, Stolnik S. Alginate encapsulation technology supports

embryonic stem cells differentiation into insulin-producing cells. J Biotechnol. 2009; 144(4):304–12.

https://doi.org/10.1016/j.jbiotec.2009.08.008 PMID: 19686786

31. Markert CD, Guo X, Skardal A, Wang Z, Bharadwaj S, Zhang Y, et al. Characterizing the micro-scale

elastic modulus of hydrogels for use in regenerative medicine. J Mech Behav Biomed Mater. 2013;

27:115–27. https://doi.org/10.1016/j.jmbbm.2013.07.008 PMID: 23916408

Bioreactor for mobilization of MSCs under mechanical stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0227553 January 10, 2020 16 / 17

https://doi.org/10.3389/fbioe.2017.00076
http://www.ncbi.nlm.nih.gov/pubmed/29322043
https://doi.org/10.1186/1758-2555-3-10
http://www.ncbi.nlm.nih.gov/pubmed/21599919
https://doi.org/10.1002/jcp.26018
http://www.ncbi.nlm.nih.gov/pubmed/28542924
https://doi.org/10.2217/rme.12.82
http://www.ncbi.nlm.nih.gov/pubmed/23164083
https://doi.org/10.1111/j.1365-2796.2009.02153.x
http://www.ncbi.nlm.nih.gov/pubmed/19765182
https://doi.org/10.3389/fgene.2016.00213
https://doi.org/10.3389/fgene.2016.00213
http://www.ncbi.nlm.nih.gov/pubmed/28066501
https://doi.org/10.1016/j.medengphy.2016.10.010
http://www.ncbi.nlm.nih.gov/pubmed/27836574
https://doi.org/10.1089/ten.TEB.2015.0438
http://www.ncbi.nlm.nih.gov/pubmed/26559963
https://doi.org/10.1016/j.jbiomech.2012.09.013
http://www.ncbi.nlm.nih.gov/pubmed/23102493
https://doi.org/10.1007/s11926-014-0451-6
https://doi.org/10.1007/s11926-014-0451-6
http://www.ncbi.nlm.nih.gov/pubmed/25182679
https://doi.org/10.1016/j.aanat.2011.12.008
http://www.ncbi.nlm.nih.gov/pubmed/22429869
https://doi.org/10.1006/bbrc.1997.7641
http://www.ncbi.nlm.nih.gov/pubmed/9367913
https://doi.org/10.1016/s1063-4584(03)00007-4
http://www.ncbi.nlm.nih.gov/pubmed/12744940
https://doi.org/10.1038/ncomms4195
http://www.ncbi.nlm.nih.gov/pubmed/24463987
https://doi.org/10.1016/j.jbiotec.2009.08.008
http://www.ncbi.nlm.nih.gov/pubmed/19686786
https://doi.org/10.1016/j.jmbbm.2013.07.008
http://www.ncbi.nlm.nih.gov/pubmed/23916408
https://doi.org/10.1371/journal.pone.0227553


32. Chen YS, Chen YY, Hsueh YS, Tai HC, Lin FH. Modifying alginate with early embryonic extracellular

matrix, laminin, and hyaluronic acid for adipose tissue engineering. J Biomed Mater Res A. 2016; 104

(3):669–77. https://doi.org/10.1002/jbm.a.35606 PMID: 26514819

33. Walther M, Altenberger S, Kriegelstein S, Volkering C, Roser A. Reconstruction of focal cartilage

defects in the talus with miniarthrotomy and collagen matrix. Oper Orthop Traumatol. 2014; 26(6):603–

10. https://doi.org/10.1007/s00064-012-0229-9 PMID: 24898391

34. Steadman JR, Rodkey WG, Briggs KK. Microfracture: Its History and Experience of the Developing Sur-

geon. Cartilage. 2010; 1(2):78–86. https://doi.org/10.1177/1947603510365533 PMID: 26069538

35. Torzilli P.A.; Grigiene R. Continuous cyclic load reduces proteoglycan release from articular cartilage.

Osteoarthritis and Cartilage 1998; 6:260–8. https://doi.org/10.1053/joca.1998.0119 PMID: 9876395

36. Lucchinetti E, Adams CS, Horton WE Jr., Torzilli PA. Cartilage viability after repetitive loading: a prelimi-

nary report. Osteoarthritis Cartilage. 2002; 10(1):71–81. https://doi.org/10.1053/joca.2001.0483 PMID:

11795985

37. Steinmeyer J, Knue S., Raiss R.H., Pelzer I. Effects of intermittently applied cyclic loading on proteogly-

can metabolism and swelling behaviour of articular cartilage explants. Ostheoarthritis and Cartilage.

1999; 7:155–64.

38. Sauerland K, Steinmeyer J. Intermittent mechanical loading of articular cartilage explants modulates

chondroitin sulfate fine structure. Osteoarthritis Cartilage. 2007; 15(12):1403–9. https://doi.org/10.

1016/j.joca.2007.05.004 PMID: 17574451

39. Bonzani IC, Campbell JJ, Knight MM, Williams A, Lee DA, Bader DL, et al. Dynamic compressive strain

influences chondrogenic gene expression in human periosteal cells: a case study. J Mech Behav

Biomed Mater. 2012; 11:72–81. https://doi.org/10.1016/j.jmbbm.2011.06.015 PMID: 22658156

40. Nachtsheim J, Dursun G, Markert B, Stoffel M. Chondrocyte migration in an acellular tissue-engineered

cartilage substitute. PAMM. 2018; 18(1).

41. Dursun G, Markert B, Stoffel M. Experimental Study on Cell-free Approach for Articular Cartilage Treat-

ment. Current Directions in Biomedical Engineering. 2019; 5(1):171–4.

42. Nachtsheim J, Dursun G, Markert B, Stoffel M. Chondrocyte colonisation of a tissue-engineered carti-

lage substitute under a mechanical stimulus. Med Eng Phys. 2019; 74:58–64. https://doi.org/10.1016/j.

medengphy.2019.09.022 PMID: 31611181

43. Ode A, Kopf J, Kurtz A, Schmidt-Bleek K, Schrade P, Kolar P, et al. CD73 and CD29 concurrently medi-

ate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. European

Cells and Materials. 2011; 22:26–42. https://doi.org/10.22203/ecm.v022a03 PMID: 21732280

44. Matziolis G, Tuischer J., Kasper G., Thompson M., Bartmeyer B., Krocker D., Perka C., Duda G. Simu-

lation of Cell Differentiation in Fracture Healing: Mechanically Loaded Composite Scaffolds in a Novel

Bioreactor System. Tissue Eng. 2006;12(1).

45. Niemeyer P, Becher C, Brucker PU, Buhs M, Fickert S, Gelse K, et al. [Significance of Matrix-aug-

mented Bone Marrow Stimulation for Treatment of Cartilage Defects of the Knee: A Consensus State-

ment of the DGOU Working Group on Tissue Regeneration]. Z Orthop Unfall. 2018; 156(5):513–32.

https://doi.org/10.1055/a-0591-6457 PMID: 29913540

Bioreactor for mobilization of MSCs under mechanical stimulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0227553 January 10, 2020 17 / 17

https://doi.org/10.1002/jbm.a.35606
http://www.ncbi.nlm.nih.gov/pubmed/26514819
https://doi.org/10.1007/s00064-012-0229-9
http://www.ncbi.nlm.nih.gov/pubmed/24898391
https://doi.org/10.1177/1947603510365533
http://www.ncbi.nlm.nih.gov/pubmed/26069538
https://doi.org/10.1053/joca.1998.0119
http://www.ncbi.nlm.nih.gov/pubmed/9876395
https://doi.org/10.1053/joca.2001.0483
http://www.ncbi.nlm.nih.gov/pubmed/11795985
https://doi.org/10.1016/j.joca.2007.05.004
https://doi.org/10.1016/j.joca.2007.05.004
http://www.ncbi.nlm.nih.gov/pubmed/17574451
https://doi.org/10.1016/j.jmbbm.2011.06.015
http://www.ncbi.nlm.nih.gov/pubmed/22658156
https://doi.org/10.1016/j.medengphy.2019.09.022
https://doi.org/10.1016/j.medengphy.2019.09.022
http://www.ncbi.nlm.nih.gov/pubmed/31611181
https://doi.org/10.22203/ecm.v022a03
http://www.ncbi.nlm.nih.gov/pubmed/21732280
https://doi.org/10.1055/a-0591-6457
http://www.ncbi.nlm.nih.gov/pubmed/29913540
https://doi.org/10.1371/journal.pone.0227553

