
RESEARCH ARTICLE

A network-centric approach for estimating

trust between open source software

developers

Hitesh SapkotaID
1, Pradeep K. MurukannaiahID

2, Yi Wang1

1 Software Engineering, Rochester Institute of Technology, Rochester, NY, United States of America,

2 Intelligent Systems-EWI, Delft University of Technology, Delft, The Netherlands

* P.K.Murukannaiah@tudelft.nl

Abstract

Trust between developers influences the success of open source software (OSS) projects.

Although existing research recognizes the importance of trust, there is a lack of an effective

and scalable computational method to measure trust in an OSS community. Consequently,

OSS project members must rely on subjective inferences based on fragile and incomplete

information for trust-related decision making. We propose an automated approach to assist

a developer in identifying the trustworthiness of another developer. Our two-fold approach,

first, computes direct trust between developer pairs who have interacted previously by ana-

lyzing their interactions via natural language processing. Second, we infer indirect trust

between developers who have not interacted previously by constructing a community-wide

developer network and propagating trust in the network. A large-scale evaluation of our

approach on a GitHub dataset consisting of 24,315 developers shows that contributions

from trusted developers are more likely to be accepted to a project compared to contribu-

tions from developers who are distrusted or lacking trust from project members. Further, we

develop a pull request classifier that exploits trust metrics to effectively predict the likelihood

of a pull request being accepted to a project, demonstrating the practical utility of our

approach.

1 Introduction

Trust is a critical factor for enabling effective online collaboration in open source software

(OSS) project teams [1]. OSS team members are more likely to collaborate, share knowledge,

and accept others’ contributions when they trust each other [2]. Trustworthiness also acceler-

ates new member recruitment [3, 4], and, consequently, brings innovative ideas and work pro-

cedures to a project [5].

The importance of trust in OSS development has been long known. Extant research on

trust in software engineering focuses on small-scale empirical inquiries aiming to explain the

antecedence and consequence of trust (or lack of it) in software engineering teams [6–9], and

mechanisms to help build and maintain trust [10, 11]. However, the research community lacks

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sapkota H, Murukannaiah PK, Wang Y

(2019) A network-centric approach for estimating

trust between open source software developers.

PLoS ONE 14(12): e0226281. https://doi.org/

10.1371/journal.pone.0226281

Editor: Tiago P. Peixoto, Central European

University, HUNGARY

Received: July 17, 2019

Accepted: November 22, 2019

Published: December 30, 2019

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0226281

Copyright: © 2019 Sapkota et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data supporting

the findings in this paper are openly available at

https://doi.org/10.5281/zenodo.3522461.

Funding: The author(s) received no specific

funding for this work.

http://orcid.org/0000-0002-5717-8753
http://orcid.org/0000-0002-1261-6908
https://doi.org/10.1371/journal.pone.0226281
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226281&domain=pdf&date_stamp=2019-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226281&domain=pdf&date_stamp=2019-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226281&domain=pdf&date_stamp=2019-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226281&domain=pdf&date_stamp=2019-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226281&domain=pdf&date_stamp=2019-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226281&domain=pdf&date_stamp=2019-12-30
https://doi.org/10.1371/journal.pone.0226281
https://doi.org/10.1371/journal.pone.0226281
https://doi.org/10.1371/journal.pone.0226281
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.3522461


an automated and scalable approach to assess trust among developers, particularly those who

have not directly interacted. Thus, to make decisions on whether an individual is trustworthy,

an OSS practitioner has to make several subjective inferences based on fragile and incomplete

information dispersed in multiple repositories [3, 12]. Also, such information is often not

readily available, and identifying it (from many noisy sources) requires substantial manual

labor [13].

We propose an automated approach for estimating trust between developers in an OSS

community. Our network-centric approach involves three key steps. It (1) constructs a com-

munity-wide developer network, utilizing various social coding traces from a community [3,

14, 15]; (2) analyzes interactions between pairs of developers directly connected in the network

to estimate trust between them; and (3) employs well-known trust propagation methods [16]

to estimate indirect trust between pairs of developers connected in the network by at least one

path. Thus, our approach can be used to estimate trust between two members of a project as

well as a member of a project and a newcomer (potential contributor).

We perform extensive experiments, driven by two research questions (RQ1 and RQ2), to

empirically evaluate and demonstrate the practical utility of our approach.

Since we propose a computational method for estimating trust, RQ1 seeks to evaluate the

accuracy of the estimates our approach yields. This is the foundation for applying our

approach in practical software engineering use cases.

RQ1. How effective is the proposed network-centric approach for estimating direct and indi-

rect trust between developers in an OSS community?

Prior literature shows that trust is a key factor in determining how a developer’s contribu-

tion to a project is evaluated. For instance, Sinha et al. [17] and Gousios et al. [18] identify that

trust between a new developer and the members of a project is a significant factor in determin-

ing whether the new developer’s contribution to a project is accepted or not, implying that

contributions from more trusted developers are more likely to be accepted. RQ2 seeks to

empirically evaluate this observation and demonstrate the practical utility of our trust compu-

tation model.

RQ2. How effective are the trust metrics computed from our approach in determining

whether a contribution is accepted to or rejected from a project?

We investigate these research questions via an innovative empirical study with historical

data from 179 Python projects on GitHub. All these projects adopt the pull request model [19],

representing a community of Python developers. We construct a network for this community

consisting of 24,315 unique developers.

We find that our methods to estimate both direct trust (based on developer interaction

analysis) and indirect trust (based on trust propagation) are effective on the GitHub Python

developers network. Further, we find that the higher the computed trust between a new devel-

oper and the members of a project, the higher the likelihood of the developer’s contribution

(pull request) being accepted to the project. Thus, the proposed approach is valid, and the trust

values it computes are useful for supporting various decision scenarios, including setting

proper expectations [2] and evaluating pull requests [14] in the OSS development process.

Contributions

• A novel network-centric approach to help OSS practitioners in automatically evaluating the

trustworthiness of other developers regardless of whether the developer have directly inter-

acted or not in the past.

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 2 / 30

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0226281


• An empirical evaluation demonstrating the validity and utility of our approach.

• Open source software and dataset of 179 Python projects (including annotated pull requests)

[20], which can be used to construct a developer network, and estimate and validate trust

between developers.

Organization

Section 2 describes the preliminaries required to understand our approach. Section 3 presents

our approach. Section 4 describes the evaluation design. Section 5 reports and discusses results.

Section 6 reviews the related work. Section 7 concludes the paper.

2 Preliminaries

We define trust and describe a computational model of trust.

2.1 Defining trust

Trust has been studied in many disciplines and may have a different meaning in each context.

We adopt Golbeck’s [21] definition: Alice trusts Bob if she commits to an action based on the
belief that Bob’s future actions will lead to a good outcome. This definition is widely used in

online social collaboration (our setting) and is easy to incorporate within a computational

framework (our objective).

We adapt Golbeck’s definition to our setting as follows:

1. Alice accepts Bob’s contribution to a project if she trusts him.

2. Alice trusts Bob if she believes that Bob’s future actions (e.g., maintaining the code he con-

tributed, assisting developers depending on his code, and so on) will lead to the success of

the project.

2.2 Modeling trust

We model trust based on Jøsang’s subjective logic [22], which in turn is derived from Demp-

ster-Shafer theory [23]. Jøsang represents trust in terms of belief (B), disbelief (D), and uncer-
tainty (U). To understand the intuitions behind trust parameters, consider an example

proposition from Alice to Bob that “Charlie is a great Python developer.” This proposition

reflects Alice’s opinion of Charlie. Hearing Alice’s opinion, Bob may “believe” that Charlie is

indeed a good Python developer, but Bob may be “uncertain” about it. Next, consider that Bob

hears from Dorothy that Charlie fixed a nontrivial bug in her Python project. This reduces

Bob’s uncertainty in his belief about Charlie being a great Python developer. In essence, as

Table 1 shows, a trustor’s belief in an opinion (about a trustee) represents the trustor’s ten-

dency to believe the opinion, disbelief represents the tendency to disbelieve the opinion, and

uncertainty represents the trustor’s confidence (or lack of it) in the belief and the disbelief.

Table 1. Trust as a function of belief, disbelief, and uncertainty.

Belief Disbelief Uncertainty Interpretation

High Low Low Trust

Low High Low Distrust

— — High Lack of trust

https://doi.org/10.1371/journal.pone.0226281.t001

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 3 / 30

https://doi.org/10.1371/journal.pone.0226281.t001
https://doi.org/10.1371/journal.pone.0226281


In the classic formulation of subjective logic, each trust parameter can take a value in the

range [0, 1]. However, the three trust parameters must always add up to one. Thus, the value

one trust parameter can take is constrained by the values of the other two trust parameters.

When uncertainty takes the zero value, the opinion is considered dogmatic. In contrast, when

uncertainty takes the unity value (which happens when there is no evidence to infer trust), the

opinion is considered vacuous.

2.3 Computing trust

Our computational model of trust operates in two scenarios.

Direct trust. If two developers have a history of interactions, we compute direct trust

between them by analyzing their interactions. Specifically, we compute positive and negative

evidence from their interactions and systematically map the evidence to the three trust parame-

ters (belief, disbelief, and uncertainty).

Indirect trust.If two developers have not interacted so far but are connected in the devel-

oper network via a chain of other developers, we propagate trust. The subjective logic defines

two operators for propagation: transitivity and cumulative fusion [16].

• Given two developers connected via a chain, the transitivity operator computes trust

between the two developers by discounting belief increasing the uncertainty as the length of

a chain increases.

• Given multiple chains between two developers, the fusion operator combines trust from

each chain so as to amplify belief or disbelief, and reduce uncertainty.

3 Approach

Fig 1 shows the three key steps in our approach. First, we gather information related to devel-

opers and projects, and construct a community-wide developer network (CDN). Second, we

Fig 1. Three key steps in the proposed approach for estimating trust.

https://doi.org/10.1371/journal.pone.0226281.g001

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 4 / 30

https://doi.org/10.1371/journal.pone.0226281.g001
https://doi.org/10.1371/journal.pone.0226281


compute trust between pairs of directly connected developers in the CDN. Finally, we compute

trust between pairs of developers indirectly connected in the CDN.

3.1 Community-wide developer network

We are interested in estimating the trustworthiness of a potential contributor to an OSS proj-

ect. Accordingly, we construct a CDN, which provides valuable information about collabora-

tion between developers in an OSS community [24]. The CDN represents a community of

developers from multiple OSS projects sharing some common characteristics (which, in our

case, is using same programming language).

We define a CDN as a weighted, directed graph constructed from developers’ activity traces

such that each (1) node in the graph represents a unique developer, (2) directed edge from one

developer (source) to another (target) represents the source developer’s direct trust toward the

target developer, and (3) edge includes three weights, representing the three trust parameters—

belief, disbelief, and uncertainty.

We consider interactions between developers in OSS projects for constructing the CDN.

However, our approach for computing direct and indirect trust is generic in that additional

factors can be easily incorporated into it.

The process of constructing the CDN consists of the following steps.

1. We identify a set of OSS repositories that share a common contribution acceptance mecha-

nism. Specifically, we take a sample of OSS Python projects that adopt the pull request

model, forming a community of Python developers.

2. For each repository in the set, we collect: (a) the developers in the repository, (b) the pull

requests made to that repository (by developers), and (c) the comments associated with

each pull request.

3. We add each unique developer in the community as a node to the CDN. We add a directed

edge from developer A to developer B if A has commented on at least one pull request gen-

erated by B.

Our objective is to assist an OSS developer, say Alice (a project owner), in evaluating the

trustworthiness of another OSS developer, say Charlie (a potential contributor to Alice’s proj-

ect). Our approach computes Alice’s trust toward Charlie in one or two steps depending on

the scenario.

• If there is a directed edge from Alice to Charlie in the CDN, we compute direct trust between

them in one step (Section 3.2).

• If Alice and Charlie are not directly connected but there exists a directed path between them

in the CDN, we compute trust in two steps (Sections 3.2 and 3.3).

• If there is no path between Alice and Charlie in the CDN (which can happen when the CDN

is disconnected), we do not offer any insight on trust between them.

3.2 Direct trust computation

Recall that a directed edge from a developer A to a developer B in the CDN indicates that A
has commented on at least one contribution submitted by B. We compute the direct trust of A
toward B based on A’s opinions on the contributions submitted by B.

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 5 / 30

https://doi.org/10.1371/journal.pone.0226281


In essence, if A finds a contribution from B as valuable to the project, A’s trust toward B
increases (i.e., belief increases). In contrast, if A finds B’s contribution as buggy or unnecessary,

A’s trust toward B reduces (i.e., disbelief increases). Further, trust builds progressively as A
comments on more contributions from B (i.e., belief and disbelief are updated after A com-

ments on each of B’s contributions, and uncertainty reduces as the number of such comments

increases).

We employ a predictive (regression or classification) model to infer whether A’s trust

toward B is likely to increase, decrease, or not change based on A’s comments on B’s contribu-

tion. Fig 2 shows the steps we follow to train and validate the predictive model.

1. We manually annotate a set of contributions (Section 3.2.1). Specifically, we treat A’s com-

ments on a specific contribution by B as an opinion A expresses toward B with respect to

the contribution. We label each such opinion as (1) strongly positive, (2) weakly positive,

(3) neutral, (4) weakly negative, or (5) strongly negative, where positive, negative, and neu-

tral opinions indicate that A’s trust toward B is likely to increase, decrease, or be unaffected,

respectively, according to the specific comments.

2. We extract four types of features from each annotated comment (Section 3.2.2).

3. We train a predictive model on the annotated comments (Section 3.2.3). The model pre-

dicts A’s opinion on B based on the features extracted from A’s comments on a contribution

by B.

4. We aggregate A’s opinion on B across contributions and map the aggregate opinion to the

trust parameters—belief, disbelief, and uncertainty (Section 3.2.4).

3.2.1 Annotation. Table 2 shows a few examples for different types of opinions a devel-

oper may have toward a contribution based on the comments made by the developer. We treat

a commenter’s opinion toward a contribution as (1) positive if the commenter appreciates the

contribution, (2) negative if the commenter discourages the contribution, or (3) neutral if the

commenter neither appreciates nor discourages the contribution. Within the positive and neg-

ative opinions, the strong and weak designations are based on the extent to which a comment

is appreciative or discouraging.

We take all pull requests in our dataset and extract all comments from each pull request.

We randomly pick a subset of the pull requests for annotation. Suppose that a pull request

Fig 2. The steps we follow to train and validate a predictive model for categorizing an evaluator’s opinion toward a contributor’s pull request as

likely to increase, decrease, or not affect trust. We experiment with both regression and classification models.

https://doi.org/10.1371/journal.pone.0226281.g002

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 6 / 30

https://doi.org/10.1371/journal.pone.0226281.g002
https://doi.org/10.1371/journal.pone.0226281


generated by developer B is picked for annotation and that a developer A has commented on

this pull request. Considering all comments A made about the picked pull request, we label A’s

opinion on B on a five-point scale: 5 (strongly positive), 4 (weakly positive), 3 (neutral), 2

(weakly negative), 1 (strongly negative). If more than one developer commented on the picked

pull request, we annotate the opinion of each of those developers toward B, considering the

interactions between the developer and B.

The annotation was done in three phases involving two Software Engineering graduate stu-

dent researchers as annotators. During the first phase, both annotators rated 50 pull requests

(randomly picked), independently. After labeling, we computed the intraclass correlation coef-

ficient (ICC), a commonly-used interrater reliability (IRR) metric for ordinal data [25]. The

ICC for the first phase was 0.88, which is considered to be excellent [25]. To make sure that the

labelling process is reliable, in the second phase, both annotators labelled another set of 50 pull

requests (randomly picked), independently. The ICC for the second phase was 0.82. Since the

ICC was sufficiently high in the first two phases, in the third phase, one annotator labelled 200

pull requests, and another annotator labelled a different set of 100 pull requests.

As a result of the annotation process, a total of 400 pull requests were labelled, including

interactions between 616 developer pairs (a pair includes a pull request generator and an

evaluator) and of 702 comments. Note that a pull request can involve more than one interac-

tion since more than one evaluator may comment on the pull request. Further, an evaluator

may comment on a pull request more than once.

3.2.2 Feature extraction. We extract four types of features from the labelled data to train

regression models.

Word Embedding. We use Google Word2Vec [26] to vectorize each comment. Instead of

using a pre-trained model, we train our own Word2Vec model on software engineering data

because a domain-specific model may have better semantic representation compared to the

pre-trained generic model. To train the model, we employ all pull request comments corre-

sponding to the training dataset used for CDN construction (Section 4.1). We use the trained

model to get a 300-dimensional vector for each word in a sentence. Finally, we take the mean

of word vectors in a comment to get the vector representation of the comment.

Sentiment. Sentiment expressed in a developer’s comment is likely to be an indicator of the

commenter’s opinion toward the contribution. We employ SentiStrength-SE [27], a software

engineering lexicon, for extracting positive and negative sentiment scores.

Table 2. Examples of developer comments on pull requests and annotator’s opinion on those comments.

Annotator’s

opinion

Developer’s comment

Strongly positive • Wow, amazing work. Thanks!
• Great work @username, I like the example. All of my comments were nits/stylistic.

Weakly positive • Thanks! @username can you confirm whether the reports are already properly handling
location restrictions?

• Looks reasonable, can you add a whatsnew note for 0.23.4 (bug fixes)?

Neutral • @username can you provide us some directions about how to reproduce the initial issue?
• This is done in 1288e65. Thanks.

Weakly negative • I dislike this honestly. Just do the rework and then replace the existing shadowling with it,
don’t remove it, then start a rework which may or may not ever get done.

• I agree with @username that a test is needed for this new feature.

Strongly negative • Screaming out your only reason to remove a functionality does not make it more valid.

• Awful. We are never getting that replacement, you know.

https://doi.org/10.1371/journal.pone.0226281.t002

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 7 / 30

https://doi.org/10.1371/journal.pone.0226281.t002
https://doi.org/10.1371/journal.pone.0226281


Social. The strength of the social connection between two developers can influence the trust

between them. Accordingly, we include: (1) a binary variable indicating whether the pull

requester follows commenter, (2) a binary variable indicating whether commenter follows the

pull requester, (3) the number of projects shared between commenter and pull requester,

(4) the number of conversations between commenter and pull requester in pull requests, and

(5) Two integer values, in the range 0–6, indicating the roles of pull request generator and

commenter in a project. The role can be owner, member, collaborator, contributor, first-time

contributor, first-timer or none [28]. We assign an integer value for each role in descending

order with owner as 6 and none as 0.

Contributions. The contribution-related features we include are the: (1) total number of

comments in the contribution, (2) maximum, minimum, standard deviation, and mean length

of the comments, (3) minimum, maximum, standard deviation, and mean time between con-

secutive conversations, (4) number of files changed in the contribution, and (5) the number of

lines added and deleted.

3.2.3 Opinion prediction. Considering the large number of developer pairs and interac-

tions between them, it is not feasible to manually assign an opinion for each interaction. Thus,

in our approach, first, experts manually assign labels to a small subset of developer interac-

tions. Then, we train an automated technique on the expert-annotated interactions to predict

the opinion labels for the remaining interactions.

The opinion prediction problem can be addressed via regression, where the predicted opin-

ion is a continuous value in the range [1, 5], or via classification, where the predicted opinion

is one of the discrete values in the set {1, 2, 3, 4, 5}. We experiment with opinion prediction via

regression as well as classification. We employ each of the 616 interactions (Section 3.2.1, last

para) annotated with an opinion label as an observation in training and testing the opinion

prediction techniques.

We experiment with five techniques for opinion prediction: (1) XGBoost [29], (2) AdaBoost

[30], (3) Bagging [31], (4) Lasso [32], and (5) Support Vector Machines (SVM) [33], employing

the ScikitLearn implementation for each technique. Each of these techniques can be used for

regression as well as classification [29–33].

We compare these prediction techniques via Mean Absolute Error (MAE) and employ the

best performing technique for the automated labeling task (Section 5.1). Given an evaluator’s

comments on a contributor’s pull request, the automated (regression or classification) tech-

nique predicts the evaluator’s opinion of the contributor as a value in the range: 1 (strongly

negative) to 5 (strongly positive).

3.2.4 Opinion aggregation and trust mapping. The opinion prediction technique above

predicts a developer A’s opinion on a developer B, considering A’s comments on a specific

contribution by B. However, to compute A’s trust toward B, we must aggregate all opinions of

A toward B. To do so:

1. We gather all of B’s contributions on which A has commented.

2. We predict A’s opinion of B for each contribution gathered above.

3. We compute two scores r and s such that:

a. r is the sum of all positive opinion values, where each weakly positive opinion is counted

as 0.5 and each strongly positive opinion is counted as 1; and,

b. s is the sum of all negative opinion values, where each weakly negative opinion is

counted as 0.5 and each strongly negative opinion is counted as 1.

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 8 / 30

https://doi.org/10.1371/journal.pone.0226281


4. Finally, given r and s, we employ the heuristics suggested by Jøsang [16] to compute trust

dimensions as follows:

B ¼
r

r þ sþ 2
; D ¼

s
r þ sþ 2

; U ¼
2

r þ sþ 2
ð1Þ

Example 1 Suppose that Alice has commented on two of Charlie’s contributions to a project
and three of Charlie’s contributions to another project. Alice’s opinion on Charlie’s contributions
to the first project were weakly negative and weakly positive. Alice’s opinion on Charlie’s contri-
bution to the second project were weakly negative, strongly positive, and strongly positive. Com-
pute Alice’s trust toward Charlie.

Let Lneg ¼ fweakly negative; weakly negativeg, and Lpos ¼ fweakly positive; strongly
positive; strongly positiveg be the set of negative and positive opinions, respectively, aggre-

gated across the five contributions spanning two projects. Then,

r ¼ 0:5þ 1þ 1 ¼ 2:5; s ¼ 0:5þ 0:5 ¼ 1:

BAlice
Charlie ¼ 2:5=5:5 ¼ 0:45; DAlice

Charlie ¼ 1=5:5 ¼ 0:18; UAlice
Charlie ¼ 2=5:5 ¼ 0:36:

3.3 Indirect trust computation

If a developer A has never interacted with a developer C (i.e., in our case, A never commented

on any of C’s pull requests), we would not have any clue to estimate direct trust from A to C.

However, there might be some indirect evidence. For instance, A and C may have a common

collaborator B such that A has an opinion on B, and B has an opinion on C. In such a scenario,

we estimate A’s trust toward C via trust propagation.

Given that A is connected to C via at least one path in the CDN, we compute A’s indirect

trust toward C as follows.

1. We select a set of paths from A to C via a length cutoff (Section 3.3.1).

2. We compute direct trust between each pair of directly connected developers on each

selected path (Section 3.2).

3. We propagate trust along each selected path (Section 3.3.2).

4. We aggregate trust across all selected paths (Section 3.3.3).

Since the sum of the three trust parameters (belief, disbelief, and uncertainty) is one, if we

know two parameters, we can compute the third. Therefore, we only describe the computation

of two trust parameters (belief and uncertainty) in the rest of this section.

3.3.1 Path length cutoff. The accuracy of indirect trust estimation depends on the paths

we choose for propagation [34, 35]. In a CDN, without any length restrictions, there can be a

large number of paths for propagating trust from A to C. Golbeck [21] compares the accuracy

of indirect trust computation against the length cutoff chosen for selecting paths (the cutoff

defines the maximum length of paths included in propagating trust). Based on empirical evalu-

ations on different trust networks, Golbeck observes that: (1) a higher cutoff includes more

paths but decreases the accuracy of indirect trust estimation; and (2) a lower cutoff causes the

loss of trust chains for many pairs of nodes.

Our approach, too, employs a length cutoff to select paths. We empirically tune the cutoff

value for our CDN (Section 5.1). However, when there is no path of length less than or equal

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 9 / 30

https://doi.org/10.1371/journal.pone.0226281


to cutoff between a pair of nodes, we consider all possible shortest paths between those nodes

to maximize connectivity.

3.3.2 Trust propagation through a single path. There are several strategies to propagate

trust along a path [16, 36]. We describe and empirically evaluate (Section 5.1) two commonly

used strategies.

Suppose there are three developers A, B, and C and A! B! C is a trust path in the CDN.

Further, suppose that {BA
B , UA

B} and {BB
C, UB

C} are direct belief and uncertainty between A! B
and B! C, respectively. Then, we compute A’s indirect trust toward C in one of the following

ways.

• The TP-Minimum strategy propagates the trust along a path based on the trust correspond-

ing to the link with the weakest trust along the path. That is:

BA
C ¼ min ðBA

B ; BB
CÞ ¼ Bmin

UA
C ¼ max ðU i where Bi ¼ BminÞ

ð2Þ

• The TP-Discount strategy propagates trust by successively discounting trust values (reducing

belief and increasing uncertainty) along the path. That is:

BA
C ¼ BA

B � BB
C

UA
C ¼ 1 � BA

Bð1 � UB
CÞ

ð3Þ

3.3.3 Trust aggregation across multiple paths. There can be multiple trust paths between

two developers in the CDN. After propagating trust along each path, we compute indirect

trust between the developers by aggregating trust values computed across all paths. Similar to

trust propagation along a single path, there are multiple strategies for aggregating trust values

[36]. We describe and empirically evaluate (Section 5.1) three popular strategies.

Suppose that A, B, C, and D are four developers, and that there exist two trust paths from A
and D along A! B! D and A! C! D. Let {BA:B

D , UA:B
D } and {BA:C

D , UA:C
D } be propagated belief

and uncertainty values along A! B! D and A! C! D, respectively. We compute the

aggregate belief (BA
D) and uncertainty (UA

D) from A toward D via one of the following strategies.

• The AP-Mean strategy computes aggregate trust as the mean of trust values propagated on

each path. That is:

BA
D ¼

1

2
ðBA:B

D þ BA:C
D Þ

UA
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðUA:B
D Þ

2
þ ðUA:C

D

q

Þ
2

ð4Þ

• The AP-Maximum strategy computes the aggregate trust values by choosing the maximum

transitive trust propagated on each path. That is:

BA
D ¼ max ðBA:B

D ; BA:C
D Þ ¼ Bmax

UA
D ¼ min ðU i where Bi ¼ BmaxÞ

ð5Þ

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 10 / 30

https://doi.org/10.1371/journal.pone.0226281


• The AP-Consensus strategy computes the aggregate trust values by the fusion of transitive

trust propagated on each path. That is:

• Case 1: UA:B
D þ UA:C

D � UA:B
D � UA:C

D 6¼ 0

BA
D ¼ ðBA:B

D � UA:C
D þ BA:C

D � UA:B
D Þ=ðU

A:C
D þ UA:B

D � UA:B
D � UA:C

D Þ

UA
D ¼ ðUA:C

D � UA:B
D Þ=ðU

A:C
D þ UA:B

D � UA:B
D � UA:C

D Þ

ð6Þ

• Case 2: UA:B
D þ UA:C

D � UA:B
D � UA:C

D ¼ 0

BA
D ¼ ðgB=C � BB

D þ BC
DÞ=ðg

B=C þ 1Þ

UA
D ¼ 0

where; gB=C ¼ lim ðUC
D=U

B
DÞ

ð7Þ

Example 2 Suppose that A and F are two developers in a CDN, who have not interacted
directly. F submits a contribution to A’s project, and the A wants to estimate F’s trustworthiness.
Although A and F are not directly connected, there exist two paths of length� 3 (cutoff) between
A and F. Let the direct trust values along each path be as shown in Fig 3. Compute A’s indirect
trust toward F, considering different trust propagation and aggregation strategies.

• Considering TP-Minimum for propagation:

BA:B:C
F ¼ min ðBA

B ; BB
C; BC

F Þ ¼ 0:3

UA:B:C
F ¼ max ðUB

C; UC
F Þ ¼ 0:5

T A:B:C
F ¼ ðBA:B:C

F ; UA:B:C
F Þ ¼ ð0:3; 0:5Þ

BA:D:E
F ¼ min ðBA

D; BD
E ; BE

FÞ ¼ 0:3

UA:D:E
F ¼ UA

D ¼ 0:2

T A:D:E
F ¼ ðBA:D:E

F ; UA:D:E
F Þ ¼ ð0:3; 0:2Þ

Fig 3. Sample trust paths between nodes A and F in a CDN, where T Y
X represents the belief and uncertainty pair

(BY
X , UY

X) of Y toward X.

https://doi.org/10.1371/journal.pone.0226281.g003

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 11 / 30

https://doi.org/10.1371/journal.pone.0226281.g003
https://doi.org/10.1371/journal.pone.0226281


• Considering TP-Discount for propagation:

BA:B:C
F ¼ ðBA

B � BB
C � BC

F Þ ¼ 0:054

UA:B:C
F ¼ 1 � BA:B

C ð1 � UC
F Þ ¼ 0:856

T A:B:C
F ¼ ðBA:B:C

F ; UA:B:C
F Þ ¼ ð0:054; 0:856Þ

BA:D:E
F ¼ ðBA

D � BD
E � BE

FÞ ¼ 0:06

UA:D:E
F ¼ 1 � BA:D

E ð1 � UE
FÞ ¼ 0:91

T A:D:E
F ¼ ðBA:D:E

F ; UA:D:E
F Þ ¼ ð0:06; 0:91Þ

• Considering AP-Mean for aggregation, assuming TP-Discount was used for propagation:

BA
F ¼

1

2
ðBA:B:C

F þ BA:D:E
F Þ ¼ 0:057

UA
F ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðUA:B:C
F Þ

2
þ ðUA:D:E

F Þ
2

q

¼ 0:625

T A
F ¼ ðBA

F ; UA
F Þ ¼ ð0:057; 0:625Þ

• Considering AP-maximum for aggregation, assuming TP-Minimum was used for propaga-

tion:

BA
F ¼ max ðBA:B:C

F ; BA:D:E
F Þ ¼ 0:3

UA
F ¼ min ðUA:B:C

F ; UA:D:E
F Þ ¼ 0:2

T A
F ¼ ðBA

F ; UA
F Þ ¼ ð0:3; 0:2Þ

4 Evaluation design

We answer our research questions via an empirical study involving a large-scale CDN consist-

ing of 24,315 developers spanning 179 GitHub repositories.

• To answer RQ1, we investigate the accuracy of our direct and indirect trust computation

approaches with respect to pre-labeled trust values.

• To answer RQ2, we investigate whether a trustworthy contributor’s pull request to a project

is more likely to be accepted than a pull request from a less trustworthy contributor. We also

investigate the practical utility of our approach by validating a predictive model that can

assist an evaluator in making pull request decisions.

4.1 Data preparation

We select 179 Python-related GitHub projects for our analysis. These 179 projects were drawn

from the sample of 918 projects created by Vasilescu et al. [19]. Each of these 918 projects had

at least 200 pull requests (by 11 October 2014) in GHTorrent and used continuous integration.

We select all Python projects from this sample.

All 179 projects we select use the pull request (PR) model, which is useful for two reasons.

First, pull requests are a mechanism for developers to interact (via comments), which provides

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 12 / 30

https://doi.org/10.1371/journal.pone.0226281


evidence to estimate direct trust between developers. Second, each pull request has a clear out-

come (accepted or rejected), which provides us an opportunity to compare trust between

developers involved in accepted and rejected pull requests.

We use GitHub API, complying with GitHub’s API terms [37], to collect all closed pull

requests and associated comments for the selected projects. For each project, we collect all pull

requests (since project start date) until the date of crawling (24 November, 2017). We prepro-

cess the data as follows.

• We remove pull requests that do not contain any comments, contain comments only from

the pull request generator, or contain no comment referring to the pull request generator.

We treat a comment as referring to the pull request generator, if it contains “@username,”

where username is that of the pull request generator.

• We remove auto generated comments, specifically, those about code coverage. The body of

such comments start with “[![Coverage Status].” We remove a pull request if it only contains

auto generated comments.

• We remove URLs and code snippets from each comment.

• We replace frequent abbreviations with their full forms. We manually compiled a list of

abbreviations that occurred in our annotated dataset. The list includes the following five

abbreviations (which were expanded to their full forms as shown): (1) TBH (to be honest);

(2) LGTM (looks good to me); (3) R+ (reviewed); (4) WC (welcome); and (5) BTW (by the

way).

• We observed that many comments contain meaningful emojis, which are useful in deter-

mining a comment’s opinion type. We replace each emoji with the corresponding descrip-

tion provided by Emojipedia.

We partition the data as Dtrain and Dtest. Dtrain, the training set, contains all closed pull

requests until six months before data crawling (i.e., until 24 May, 2017); Dtest, the test set, con-

tains all closed pull requests in the last six months (i.e., 24 May, 2017 to 24 November, 2017).

Table 3 shows the distribution of the pull requests in these datasets.

4.2 Experiments for RQ1

First, we evaluate the opinion prediction techniques we developed for estimating direct trust

based on pull request interactions. Second, we evaluate our approaches for trust propagation

and aggregation based on a CDN constructed from Dtrain.

4.2.1 Direct trust. We employ our expert-annotated dataset (Section 3.2.1), consisting of

400 pull requests with 616 interactions between pull request evaluators and generators, to eval-

uate the opinion prediction models. We split the annotated data into training (70%) and test

(30%) sets. That is, we train the regression and classification models on 70% interactions and

test them on the remaining 30% interactions. We train these models using the default parame-

ter values specified in their ScikitLearn implementations (Section 3.2.3). We measure the

Table 3. The distribution of pull requests in the training and test datasets.

Dataset Total PR PR Status

Accepted Rejected

Dtrain 167, 780 128, 316 39, 464

Dtest 13, 765 10, 838 2, 927

https://doi.org/10.1371/journal.pone.0226281.t003

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 13 / 30

https://doi.org/10.1371/journal.pone.0226281.t003
https://doi.org/10.1371/journal.pone.0226281


model accuracy via mean absolute error (MAE), the mean of absolute differences in the pre-

dicted and expert-annotated opinion values in the test set.

We repeat each opinion prediction experiment 30 times, each time generating the training

and test sets, randomly, but making sure that the 7:3 split is preserved for each opinion label.

Table 4 shows the distribution of opinion labels in the training and test sets (where the num-

bers of interactions are the mean values from 30 repetitions).

In addition to the experiments based on the random split of the dataset as described above,

we also performs an experiment that splits the dataset based on time. Our objective with this

experiment is to evaluate whether opinions on earlier pull requests can predict the opinions

for later pull requests. To do so, first, we sort the pull requests chronologically (i.e., according

to the time at which the pull requests were created). Then, we select the interactions in the first

70% of the pull requests as the training set and the remaining interactions as the test set. Note

that we do not repeat this experiment because only one 7:3 split is possible based on time.

Finally, we compare our regression and classification models with two baselines.

• A Random Classifier randomly assigns one of the five opinion values to each interaction in

the test set.

• A Majority Classifier always assigns the majority (Table 4) opinion label, 4, to each interac-

tion in the test set.

We employ the Kruskal-Wallis test [38] (a nonparametric extension of ANOVA for more

than two samples) at the 5% significance level to compare the best performing regression and

classification models with the two baselines. If the Kruskal-Wallis test rejects (p< 0.05) the

null hypothesis that all samples compared come from the same distribution, we perform post

hoc analysis to compare pairs of samples. To deal with multiplicity, we employ Dunn’s multi-

ple comparison test [39] with the Holm-Bonferroni correction [40] (a variant of Bonferroni

adjustment, but universally stronger). Also, we measure the effect sizes (the amount of differ-

ence) via Cliff’s Delta [41].

4.2.2 Indirect trust. To evaluate our approach for indirect trust computation, we con-

struct a CDN employing data from Dtrain. We randomly select 1% of edges in the CDN as

ground-truth edges. Specifically, we treat the direct trust estimated for these edges as the

ground truth. We employ best performing opinion prediction techniques from the previous

set of experiments to compute the direct trust of the ground truth edges.

Next, we remove the ground-truth edges from the CDN, and compute indirect trust

between the nodes corresponding to these removed edges. We measure MAE as the mean of

absolute differences between estimated indirect trust values and ground truth (direct) trust val-

ues. We measure MAE for different combinations of path length cutoff, propagation strategy,

and aggregation strategy. We incorporate the best performing combination of direct and indi-

rect trust estimation approaches in the RQ2 experiments.

Table 4. The distribution of opinion labels in the expert-annotated PR interactions dataset used for opinion

prediction.

Opinion label Opinion value Number of interactions

Training Test

Strongly positive 5 16 7

Weakly positive 4 177 74

Neutral 3 134 60

Weakly negative 2 89 37

Strongly negative 1 15 7

https://doi.org/10.1371/journal.pone.0226281.t004

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 14 / 30

https://doi.org/10.1371/journal.pone.0226281.t004
https://doi.org/10.1371/journal.pone.0226281


4.3 Experiments for RQ2

We perform two experiments to answer RQ2. The first experiment investigates the relationship

between the computed trust values and pull request evaluation results. The second experiment

builds a predictive model and evaluates its accuracy.

4.3.1 Trust and pull request outcomes. In the first experiment, we construct a CDN

from Dtrain and estimate trust between all pairs of developers in it. Then, we compute a trust

value for each pull request in Dtest. We compute a pull request’s trust value as the mean of trust

values from each member of the project (to which the pull request was made) to the pull

request generator.

For a pull request in Dtest, its generator may not be in Dtrain because the pull request genera-

tor had not submitted any pull requests six months ago. We exclude such pull request because,

we cannot estimate trust for those. After this exclusion, we were left with 1805 (out of 2927)

rejected pull requests in Dtest. We selected an equal number of accepted pull request from Dtest,

making sure that the selected pull request generators are in the CDN constructed from Dtrain.

We measure the difference in trust value between the 1805 rejected and 1805 accepted pull

requests selected as described above via the Wilcoxon’s ranksum test [38] at the 5% signifi-

cance level. Also, we measure the effect sizes via Cliff’s Delta [41].

4.3.2 Predicting pull request acceptance. In the second experiment, we develop a

predictive model (a classifier) that recommends whether to accept or reject a pull request.

We develop three model variants that differ in the features they employ for classification.

• The PR-History model is based on the historical performance of the pull request generator. It

employs the number accepted and rejected pull requests by the pull request generator as two

features. This model serves as a simple baseline.

• The Trust-based model employs a pull request’s trust values (belief, disbelief, and uncer-

tainty), computed as described in the first experiment, as its three features.

• The Hybrid model employs features of both PR-History and Trust-based models.

In order to train the Trust-based model, we must be able to compute trust between develop-

ers associated with a pull request. Thus, first, we construct a CDN corresponding to Dtrain and

compute trust between all pairs of developers in that CDN. Next, we randomly select 70% of

pull requests in Dtest for training and 30% for testing the three model variants. For each pull

request in Dtest, we compute a trust value by propagating trust from members of the project (to

which the pull request was submitted) to the pull request generator and taking a mean of the

propagated values.

We repeat the experiment above 30 times, comparing the predictive performance of the

three models as well as the added value of trust-based features. We measure predictive perfor-

mances of the models via the standard classification evaluation metrics of precision, recall, and

F1 score. Since we repeat the experiment 30 times, we also compare the difference in perfor-

mance between pairs of model variants via Dunn’s multiple comparison test (for significance)

and Cliff’s delta (for effect size).

As Table 3 shows, our dataset, Dtest, is imbalanced (where the class of accepted pull requests

is considerably larger than the class of rejected pull requests). We balance the dataset by over-

sampling the minority class such that the final training and test sets each have an equal number

of accepted and rejected pull requests.

5 Results and discussion

We report and discuss the results for the two research questions.

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 15 / 30

https://doi.org/10.1371/journal.pone.0226281


5.1 RQ1: Accuracy of trust estimation

5.1.1 Direct trust. Fig 4 shows the MAE values of the five regression techniques we

employ for direct trust estimation. Recall that these techniques make predictions in the [1, 5]

range (Section 3.2). Each violin plot is based on the MAEs from 30 repetitions of the experi-

ment. Among these technique, XGBoost and AdaBoost regressors, which make predictions

based on an ensemble of trees, yield lower MAEs than the other techniques.

Fig 5 shows the MAE values of the five classification techniques we employ for direct trust

estimation. Recall that these techniques make predictions from the {1, 2, 3, 4, 5} set (Section

3.2). Each violin plot is based on the MAEs from 30 repetitions of the experiment. Among

these technique, the XGBoost classifier yields lowest MAE.

Table 5 shows the MAE values of the five regression and five classification techniques com-

puted via a time-based partition of the dataset. AdaBoost yields the lowest MAE Among the

regression techniques and XGBoost yields the lowest MAE among classifiers.

From the analysis above (Figs 4 and 5, and Table 5), we pick XGBoost regression, AdaBoost

regression, and XGBoost classification as the best performing techniques for opinion predic-

tion. Fig 6 compares the MAE values of our three best performing opinion prediction tech-

niques and two baselines (random and majority-class classifiers). Based on the p value from

the Kruskal-Wallis test, we reject the null hypothesis that the MAEs of these techniques come

from the same distribution.

We perform a pair-wise comparisons among the XGBoost regression and classification

techniques, and the two baseline techniques via Dunn’s multiple comparison test. Table 6

Fig 4. Violin plots comparing the MAEs of the five regression models we employ for opinion prediction.

https://doi.org/10.1371/journal.pone.0226281.g004

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 16 / 30

https://doi.org/10.1371/journal.pone.0226281.g004
https://doi.org/10.1371/journal.pone.0226281


shows the resulting p values adjust according to Holm-Bonferroni correction. Further, Table 7

shows Cliff’s delta effect sizes of the differences between MAEs of different pairs of techniques.

Overall, we observe that each of the three opinion prediction models we select outperforms

the baseline models with a large effect size. Among the three selected models, the XGBoost

classifier yields the lowest MAE. Yet, we experiment with all three techniques in the following

indirect trust estimation experiments.

5.1.2 Indirect trust. We experiment with three path length cutoffs, two propagation strat-

egies and three aggregation strategies for indirect trust estimation in conjunction with the

three opinion prediction techniques we selected above. Table 8 shows MAE values for each of

the 12 (2×2×3) combinations of the three indirect trust estimation factors (path length, propa-

gation, and aggregation). We make two key observations from Table 8.

Fig 5. Violin plots comparing the MAEs of the five classification models we employ for opinion prediction.

https://doi.org/10.1371/journal.pone.0226281.g005

Table 5. MAEs of the five regression and five classification techniques for opinion prediction computed via a

time-based analysis.

Technique MAE

Regression Classification

XGBoost 0.748 0.665

SVM 0.785 0.827

Lasso 0.752 0.752

Bagging 0.767 0.800

AdaBoost 0.719 0.870

https://doi.org/10.1371/journal.pone.0226281.t005

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 17 / 30

https://doi.org/10.1371/journal.pone.0226281.g005
https://doi.org/10.1371/journal.pone.0226281.t005
https://doi.org/10.1371/journal.pone.0226281


• First, XGBoost regression yields lower MAEs than the other two opinion prediction tech-

niques for most combinations of indirect trust estimation factors.

• Second, in conjunction with XGBoost regression for opinion prediction, the combination of

(1) length cutoff 3, TP-Discount propagation and AP-Maximum aggregation yields lowest

MAE for belief; and (2) length cutoff 2, TP-Discount propagation and AP-Consensus aggrega-

tion yields lowest MAE for uncertainty.

Overall, considering the MAEs of both belief and uncertainty, we employ the combination

of XGBoost regression, path length cutoff 3, TP-Discount propagation, and AP-Maximum
aggregation as the best performing combination for (direct and indirect) trust estimation in

our dataset. We employ this combination in the RQ2 experiments.

5.2 RQ2: Exploiting trust in pull request evaluation

Recall that we conduct two experiments to answer RQ2.

Fig 6. Violin plots comparing the MAEs of our best performing regression and classification techniques, and two baselines models.

https://doi.org/10.1371/journal.pone.0226281.g006

Table 6. Pair-wise comparisons, showing the Holm-Bonferroni p-values, between our best performing classification (C) and regression (R) techniques, and the base-

lines classification (C) models.

Technique Holm-Bonferroni p-value

AdaBoost (R) Majority (C) Random (C) XGBoost (C)

Majority (C) <0.0001

Random (C) <0.0001 0.0299

XGBoost (C) 0.0221 <0.0001 <0.0001

XGBoost (R) 0.9502 <0.0001 <0.0001 0.0277

https://doi.org/10.1371/journal.pone.0226281.t006

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 18 / 30

https://doi.org/10.1371/journal.pone.0226281.g006
https://doi.org/10.1371/journal.pone.0226281.t006
https://doi.org/10.1371/journal.pone.0226281


• In the first experiment (Section 5.2.1), we investigate the relationship between trust and pull

request outcomes (acceptance or rejection). We analyze this relationship, considering trust

dimensions individually as well as jointly.

• In the second experiment (Section 5.2.2), we investigate the predictive performance of the

classifiers we build for assisting in pull request evaluation. We compare the three classifier

variants (differing in features they employ).

5.2.1 Trust and pull request outcomes. Fig 7 shows a comparison of the trust values

between accepted and rejected pull requests. We find that there is a significant difference in

each trust dimension between accepted a rejected pull requests. Specifically, accepted pull

requests are associated with higher belief, lower disbelief, and lower uncertainty values, with

small, negligible, and small effect sizes, respectively, compared to rejected pull requests. This

finding establishes that the inferred trust and pull request outcomes are related.

Further, the effect sizes in Fig 7 provide additional insights.

Table 7. Pair-wise comparisons, showing the Cliff’s delta effect sizes, between our best performing classification (C) and regression (R) techniques, and the baselines

classification (C) models.

Technique Cliff’s Delta

AdaBoost (R) Majority (C) Random (C) XGBoost (C)

Majority (C) −1 (large)

Random (C) −1 (large) −1 (large)

XGBoost (C) 0.62 (large) 1 (large) 1 (large)

XGBoost (R) −0.01 (negligible) 1 (large) 1 (large) −0.66 (large)

https://doi.org/10.1371/journal.pone.0226281.t007

Table 8. MAEs of indirect trust estimation (computed on ground truth edges from Dtrain) for different combinations of path length cutoff, and propagation, aggre-

gation, and opinion prediction techniques.

Opinion Prediction Transitivity Aggregation MAE

Path Length = 2 Path Length = 3 Path Length = 4

B U B U B U

XGBoost Regression TP-Minimum AP-Mean 0.089 0.189 0.089 0.274 0.091 0.273

TP-Minimum AP-Maximum 0.092 0.135 0.093 0.137 0.094 0.137

TP-Minimum AP-Consensus 0.095 0.156 0.122 0.359 0.117 0.508

TP-Discount AP-Mean 0.090 0.167 0.094 0.245 0.096 0.250

TP-Discount AP-Maximum 0.090 0.125 0.080 0.127 0.084 0.128

TP-Discount AP-Consensus 0.090 0.120 0.101 0.143 0.119 0.174

AdaBoost Regression TP-Minimum AP-Mean 0.151 0.255 0.175 0.265 0.230 0.270

TP-Minimum AP-Maximum 0.199 0.231 0.222 0.245 0.250 0.250

TP-Minimum AP-Consensus 0.215 0.363 0.242 0.546 0.290 0.530

TP-Discount AP-Mean 0.185 0.243 0.230 0.255 0.300 0.260

TP-Discount AP-Maximum 0.130 0.168 0.133 0.170 0.170 0.200

TP-Discount AP-Consensus 0.185 0.229 0.299 0.425 0.430 0.490

XGBoost Classification TP-Minimum AP-Mean 0.180 0.260 0.210 0.270 0.230 0.270

TP-Minimum AP-Maximum 0.220 0.240 0.250 0.250 0.250 0.250

TP-Minimum AP-Consensus 0.260 0.370 0.300 0.510 0.290 0.530

TP-Discount AP-Mean 0.210 0.250 0.270 0.260 0.300 0.260

TP-Discount AP-Maximum 0.170 0.200 0.170 0.200 0.170 0.200

TP-Discount AP-Consensus 0.230 0.280 0.370 0.440 0.430 0.490

https://doi.org/10.1371/journal.pone.0226281.t008

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 19 / 30

https://doi.org/10.1371/journal.pone.0226281.t007
https://doi.org/10.1371/journal.pone.0226281.t008
https://doi.org/10.1371/journal.pone.0226281


• The small (but non-negligible) effect sizes for belief and uncertainty suggest that a pull

request from a trustworthy (high belief) contributor is more likely to be accepted than

rejected. The small effect size is not surprising since trust is likely to be one among several

factors that may influence pull request outcomes.

• The negligible effect for disbelief is interesting. It suggests that the higher likelihood of a pull

request from a distrustworthy (high disbelief) contributor being rejected instead of accepted

is negligible.

Joint Analysis of Trust Dimensions. Fig 7 suggests that the dimensions of the inferred trust

and pull request outcomes are related. However, interpreting a trust relationship as trustwor-

thy, distrustworthy, or lacking trust requires a joint interpretation of belief, disbelief, and

uncertainty (Table 1). For instance, a trustworthy relationship has high belief, low disbelief,

and low uncertainty. Fig 8 shows a joint comparison of trust dimensions between accepted

and rejected pull requests.

The blue data points in Fig 8 are in the trustworthy regions. It is evident that there are more

data points in the trusted region for accepted pull request than for rejected pull requests.

Table 9 quantifies this difference by showing the exact number of data points in each region of

trust, defined as follows, for a given uncertainty threshold (u).

Fig 7. Violin plots comparing individual trust dimensions (belief, disbelief, and uncertainty) between accepted

and rejected pull requests.

https://doi.org/10.1371/journal.pone.0226281.g007

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 20 / 30

https://doi.org/10.1371/journal.pone.0226281.g007
https://doi.org/10.1371/journal.pone.0226281


• In the region of trust: B � D and U < u.

• In the region of distrust: D > B and U < u.

• In the lack of trust region: U � u.

As Table 9 shows, based on the χ2 test of homogeneity, we find that the frequency counts of

accepted and rejected pull requests are significantly different between the three regions of

trust. Specifically, we observe that:

Fig 8. 3D plots showing a joint comparison of trust dimensions (belief, disbelief, and uncertainty) between

accepted and rejected pull requests. The pull requests in the regions of trust, distrust, and lack of trust are shown as

data points in blue, red, and brown, respectively.

https://doi.org/10.1371/journal.pone.0226281.g008

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 21 / 30

https://doi.org/10.1371/journal.pone.0226281.g008
https://doi.org/10.1371/journal.pone.0226281


• There are considerably more accepted pull requests than rejected pull requests in the trusted

region. This confirms our earlier observation (based on Fig 7) that pull requests from trusted

contributors are more likely to be accepted than rejected.

• Surprisingly, there are more accepted than rejected pull requests in the region of distrust,

too. However, the difference is not as significant as it is for the region of trust. Further, the

difference gets narrower as we reduce the uncertainty threshold (i.e., as we get more certain

about our belief or disbelief).

• Finally, there are more rejected than accepted pull requests in the region lacking trust. Fur-

ther, similar to distrust, the difference is not considerably large and it narrows as we reduce

the uncertainty threshold used for defining the regions.

In essence, a pull request from a trusted developer is more likely to be accepted to a project

than rejected. However, a pull request from a developer who is distrusted or lacks trust does

not have a higher likelihood of getting rejected than accepted.

5.2.2 Predicting pull request acceptance. Our analysis above (Section 5.2.1) establishes

that pull request outcomes and trust between the associated developers are related. Next, we

seek to exploit this relationship in a model that can predict whether a pull request is likely to

be accepted or rejected.

We train a decision tree [42], a well-known classification technique, for each model variant.

Fig 9 compares the predictive performance of the three model variants and Table 10 shows the

confusion matrix for each model variant. Each confusion matrix (2×2) shows the number of

true positives (top left cell), false positives (bottom right cell), true negatives (bottom right

cell), and false negatives (top right cell). Note that we report these numbers as the mean of 30

repetitions.

We also perform a Dunn’s multiple comparisons test among the three model variants.

Table 11 shows the Holm-Bonferroni adjusted p values resulting from the pair-wise compari-

sons. Similarly, Table 12 shows the Cliff’s Delta effect sizes from the pair-wise comparisons.

From this analysis, we find that (1) Trust-based model yields a high F1 score and performs sig-

nificantly better than the PR History based model. (2) The Hybrid model, which employs both

PR History and Trust based features, improves the performance further, albeit, by a small

margin.

Our findings suggest that the Trust-based and Hybrid predictive models can recommend

whether to accept or reject a pull request with a high accuracy. Although we do not expect pull

request evaluations to be fully automated, recommendations from our model can assist pull

request evaluators. For example:

• Consider that a project has a large number of open pull requests, but only a few developers

available to evaluate those pull requests. Then, project evaluators can employ our predictive

Table 9. The number of accepted and rejected pull requests in each of the three trust regions (trust, distrust, and lack of trust).

Uncertainty threshold PR status Number of points (χ2 test)

Trust Distrust Lack of trust p-value

u = 0.25 Accepted 72 7 1726 1.3e−30

Rejected 20 5 1780

u = 0.50 Accepted 193 142 1470 4.4e−46

Rejected 78 95 1632

u = 0.75 Accepted 506 261 1038 1.5e−105

Rejected 232 162 1411

https://doi.org/10.1371/journal.pone.0226281.t009

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 22 / 30

https://doi.org/10.1371/journal.pone.0226281.t009
https://doi.org/10.1371/journal.pone.0226281


model to prioritize which pull requests to evaluate first (e.g., they may evaluate pull requests

recommended as accept by our model, first).

• Conider that an evaluator wants to accept a pull request but our model recommends rejec-

tion or vice versa. In such a case, our recommendation can serve as a warning, suggesting

the evaluator to double check the contribution.

Fig 9. Violin plots comparing the precision, recall, and F1 scores of the three model variants for predicting pull

request acceptance.

https://doi.org/10.1371/journal.pone.0226281.g009

Table 10. The confusion matrices for the three model variants. Each confusion matrix is a 2×2 matrix with the same background color.

PR History Trust Hybrid

Actual

Predicted Accept Reject Accept Reject Accept Reject

Accepted 1959.43 1243.83 2401.20 798.13 2461.20 752.77

Rejected 686.87 2520.87 317.63 2894.03 293.13 2903.90

https://doi.org/10.1371/journal.pone.0226281.t010

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 23 / 30

https://doi.org/10.1371/journal.pone.0226281.g009
https://doi.org/10.1371/journal.pone.0226281.t010
https://doi.org/10.1371/journal.pone.0226281


5.3 Threats to validity

We identify four threats to the validity of our findings.

Lack of Trust. As Fig 8 and Table 9 suggest, lack of trust is the largest of the three trust

regions in our dataset since the uncertainty values we compute are typically on the higher end

of the spectrum. We attribute the high uncertainty to the limited evidence available for trust

computation. First, we compute direct trust via a regression model trained and tested on a

small dataset (702 comments spanning 400 pull requests). Thus, for most developer pairs, we

estimate direct trust based on evidence from a few interactions (one interaction in many

cases), which yields high uncertainty. The uncertainty increases further as we propagate trust

during indirect trust computation.

The pull request distributions across the trust regions are likely to change as more evidence

is incorporated into trust computation (e.g., by increasing annotated examples). In that case,

we conjecture that the number of(1) accepted pull requests will increase in the trusted region,

(2) rejected pull requests will increase in the distrusted region, and (3) accepted and rejected

pull requests will be similar in the region lacking trust.

Word Embedding. During feature extraction for opinion prediction, we take the mean of

the word vectors of a comment to get the vector representation of the comment. Although a

simple word averaging technique for sentence representation has been successful in some

existing applications, e.g., [43, 44], this technique can be suboptimal.

Predictive Models. We train and test the predictive models for pull request evaluation on

Dtest, which is a small dataset (capturing pull requests from only six months). Further, we train

these models on decision trees, a simple classification technique. Thus, the classification accu-

racy metrics we report in Fig 9 are not indicative of the highest performance a predictive

model can achieve in evaluating pull requests. We conjecture that more sophisticated classifi-

cation techniques (e.g., deep learning techniques) trained on larger datasets can perform better

than the decision tree models we employ. That said, our objective was not to find the best clas-

sification technique but to demonstrate the practical utility of a trust-based predictive model,

which we do via a simple classification technique.

Generalizability. First, we analyze opinion prediction techniques via MAEs averaged across

repositories. However, the standards of opinions can vary across repositories. For example, dif-

ferent repositories may have different opinions on what is an acceptable contribution. Our

Table 11. Pair-wise comparisons of the predictive performance, showing the Holm-Bonferroni p-values, of the three model variants we develop for predicting pull

request acceptance.

Variant Holm-Bonferroni p-value

Precision Recall F1 score

Hybrid PR History Hybrid PR History Hybrid PR History
PR History <0.0001 <0.0001 <0.0001

Trust 0.0013 <0.0001 0.0003 <0.0001 <0.0001 <0.0001

https://doi.org/10.1371/journal.pone.0226281.t011

Table 12. Pair-wise comparisons of the predictive performance, showing the Cliff’s delta effect sizes, of the three model variants we develop for predicting pull

request acceptance.

Variant Cliff’s Delta

Precision Recall F1 score

Hybrid PR History Hybrid PR History Hybrid PR History
PR History 1 (large) 1 (large) 1 (large)

Trust 1 (large) −1 (large) 0.72 (large) −1 (large) 0.80 (large) −1 (large)

https://doi.org/10.1371/journal.pone.0226281.t012

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 24 / 30

https://doi.org/10.1371/journal.pone.0226281.t011
https://doi.org/10.1371/journal.pone.0226281.t012
https://doi.org/10.1371/journal.pone.0226281


analyses do not provide sufficient evidence on whether or not our opinion prediction tech-

niques generalize across repositories with different standards of opinions. Performing such an

analysis requires a dataset with several annotated interactions from each repository (which is

not the case with our current dataset).

Second, we construct a CDN, including Python projects on GitHub, employing pull request

comments as developer interactions. The generalizability of our findings beyond this setting

(e.g., for a community of Java developers communicating via a mailing list) remains to be veri-

fied. We defer such efforts to future work.

6 Related works

We briefly describe related works on trust in online collaboration and computational

approaches for estimating trust.

6.1 Trust in OSS projects

Trust is essential to successful teamwork in OSS projects [3, 45, 46]. Trust plays a vital role in

maintaining high cohesion between team members, and thus, promoting cooperation [47]. A

trusted team can attract new developers [48]. Thus, an OSS project’s sustainability depends on

the trustworthiness of the project’s developers [49].

OSS teams are distributed and virtual, exhibiting characteristics such as lack of face-to-face

interactions and low awareness of others’ activity. Such characteristics make trust building a

big challenge. Researchers have studied trust in OSS projects from multiple perspectives. Jar-

venpaa et al. [7, 10] propose contextualized theories on how trust is developed in virtual teams.

Wang et al. [9, 50, 51], describe the emergence, diffusion, and other dynamics of trust in net-

worked OSS teams, while Trainer and Redmiles [11] discuss how such dynamics could be sup-

ported with computing tools.

Zolin et al. [52] study how trust impacts team process in distributed software development.

Steward and Gosain [53] claim that OSS projects involving more trusted developers are more

likely to succeed compared to those involving less trusted developers. At the individual level,

researches have found the importance of trust in the many decision-making scenarios in OSS

[54–56]. For instance, Gousios et al. [18] show that trust between project member and contrib-

utor is an influential factor granting the contribution to the OSS project. On a similar line,

Sinha et al. [17] state that trustworthiness is a key factor in letting an unknown developer con-

tribute to a project. Calefato and Lanubile [57] find that a developer with a high propensity to

trust is more likely to accept the contributions from external contributors.

Although there is an increasing emphasis on the essential role of trust in OSS development

[45, 48], judging the trustworthiness of unfamiliar developers is still a significant challenge. A

few tools, e.g., Theseus [11], have been developed to compute collaborators’ trust. However,

Theseus relies on individual interaction traces in a single project, ignoring the network charac-

teristics. Our computational approach leverages individual interactions as well as the commu-

nity-wide developer network to estimate trust, significantly broadening the scope of trust

computation in an OSS community.

6.2 Trust inference and propagation

Trust is a widely studied topic in reputation systems [58], multiagent systems [59], social net-

works [60], and internet applications [61], in general. Since our contribution involves inferring

trust in social networks, we describe works closely related to that.

Our approach is based on Jøsang’s subjective logic [22] which defines trust in opinion and

evidence spaces. We map trust values from evidence to opinion space using the mapping

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 25 / 30

https://doi.org/10.1371/journal.pone.0226281


function provided by Jøsang [58]. For indirect trust referral, subjective logic defines two opera-

tors: trust transitivity and cumulative fusion. The basic notion of trust transitivity is that belief

is discounted by all the belief values that lie in a trust chain. That is, the transitivity operator

discounts belief and increases uncertainty as the length of a chain increases. The cumulative

fusion operator combines trust values from multiple chains, amplifying belief and disbelief,

and reducing uncertainty [16].

A variety of techniques have been proposed in the literature for trust inference. For

instance, Golbeck [21] infers trust based on ratings and referrals only from trusted nodes.

Hamdi et al. [62] compute trust in an online social network based on interactions, relationship

types, and interest similarity between users. Guha et al. [63] and Zhao et al. [64] use machine

learning to compute indirect trust. Kafali and Yolum [65] propose reinforcement learning-

based approach to measuring trust between agents. in a multiagent setting. Richters and Peix-

oto [66] investigate different trust transitivity techniques and analytically obtain the average

best trust transitivity technique. Liu et al. [67] propose a trust transitivity model, MQCTT, that

considers social relationships, recommendation roles, and preference similarity in determin-

ing transitive trust value.

Ruan et al. [36] evaluate different trust transitivity and aggregation operators. Multiplica-

tion is the first transitivity operator they define based on exiting works [21, 68]. The multipli-

cation operator discounts trust by the values that lie on a transitive path. Their second

transitivity operator, based on Sun et al. [69], captures the notion that enemy of an enemy is a

friend. Their third transitivity operator is based on minimum t-norm [70], which takes a mini-

mum of trust values associated with all edges in the chain. Similar to transitivity, Ruan et al.

[36] also define different aggregation operators. Their first aggregation operator takes the

mean of trust values obtained from multiple trust paths [71]. Their second operator takes a

weighted, instead of simple, mean of trust values based on other works [21, 68]. Their third

operator is based on the law of probability [69]. Their fourth operator is based on the notion

that an evaluator chooses the path among parallel path that has the highest trust [72]. We select

trust propagation operators based on their performance on our dataset.

Although there is an extensive body of research on trust, our work is unique for two rea-

sons. First, our work is the first to apply trust computation and propagation to an OSS devel-

oper network. Second, given the variety of methods and operators available to compute trust,

selecting the appropriate ones is context dependent [36]. We explore several techniques in

choosing promising methods for estimating trust in OSS developer networks and empirically

demonstrate the utility of those methods.

7 Conclusions

We propose a network-centric approach for estimating trust between developers in an OSS

community. Our approach consists of three key steps: (1) constructing a community-wide net-

work according to historical collaboration traces, (2) calculating the trust between directly

connected developers, and (3) inferring the trust between indirectly connected developers in

the network. To the best of our knowledge, our work is one of the first attempts at computa-

tionally estimating trust between OSS developers.

We build a dataset based on 179 Python-related GitHub projects and perform extensive

analyses to answer two research questions. Our analyses demonstrate the high accuracy of the

proposed approaches for direct and indirect trust estimation as well as the practical utility of

the computed trust metrics. Specifically, we find that trusted developers are likely to be

rewarded (i.e., their contributions to a project have a higher likelihood of being accepted than

rejected by the project members). Exploiting this finding, we develop a predictive model that

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 26 / 30

https://doi.org/10.1371/journal.pone.0226281


can recommend whether to accept or reject a pull request based on the trustworthiness of the

contributor. We find that the predictive model, though based on a simple classification tech-

nique, yields high accuracy. Such a predictive model can be employed in tasks such as recom-

mending contributors to projects and projects to OSS developers, warning developers about

untrustworthy contributions, and prioritizing pull requests for evaluation.

Author Contributions

Conceptualization: Hitesh Sapkota, Pradeep K. Murukannaiah, Yi Wang.

Data curation: Hitesh Sapkota.

Investigation: Hitesh Sapkota, Pradeep K. Murukannaiah, Yi Wang.

Methodology: Pradeep K. Murukannaiah, Yi Wang.

Project administration: Pradeep K. Murukannaiah.

Software: Hitesh Sapkota.

Supervision: Pradeep K. Murukannaiah, Yi Wang.

Validation: Hitesh Sapkota, Pradeep K. Murukannaiah, Yi Wang.

Visualization: Hitesh Sapkota, Pradeep K. Murukannaiah, Yi Wang.

Writing – original draft: Hitesh Sapkota, Pradeep K. Murukannaiah, Yi Wang.

Writing – review & editing: Hitesh Sapkota, Pradeep K. Murukannaiah, Yi Wang.

References

1. Korsgaard MA, Schweiger DM, Sapienza HJ. Building commitment, attachment, and trust in strategic

decision-making teams: The role of procedural justice. Academy of Management journal. 1995; 38

(1):60–84. https://doi.org/10.5465/256728

2. Al-Ani B, Bietz MJ, Wang Y, Trainer E, Koehne B, Marczak S, et al. Globally Distributed System Devel-

opers: Their Trust Expectations and Processes. In: Proceedings of the 2013 Conference on Computer

Supported Cooperative Work. CSCW’13. San Antonio, TX: ACM; 2013. p. 563–574.

3. Dabbish L, Stuart C, Tsay J, Herbsleb J. Social Coding in GitHub: Transparency and Collaboration in an

Open Software Repository. In: Proceedings of the ACM 2012 Conference on Computer Supported

Cooperative Work. CSCW’12. Seattle; 2012. p. 1277–1286.

4. Steinmacher I, Chaves AP, Conte TU, Gerosa MA. Preliminary Empirical Identification of Barriers

Faced by Newcomers to Open Source Software Projects. In: 2014 Brazilian Symposium on Software

Engineering; 2014. p. 51–60.

5. Fang Y, Neufeld D. Understanding sustained participation in open source software projects. Journal of

Management Information Systems. 2009; 25(4):9–50. https://doi.org/10.2753/MIS0742-1222250401

6. Crowston K, Wei K, Howison J, Wiggins A. Free/Libre Open-source Software Development: What We

Know and What We Do Not Know. ACM Computing Surveys. 2008; 44(2):7:1–7:35.

7. Jarvenpaa SL, Knoll K, Leidner DE. Is anybody out there? Antecedents of trust in global virtual teams.

Journal of Management Information Systems. 1998; 14(4):29–64. https://doi.org/10.1080/07421222.

1998.11518185

8. Stewart K, Gosain S. An Exploratory Study of Ideology and Trust in Open Source Development Groups.

In: Proceedings of the International Conference on Information Systems; 2001. p. 507–512.

9. Wang Y, Wang Z, Redmiles D. The Co-Evolution of Trust and Coordination in Global Software Develop-

ment Teams: An Extensible Evolutionary Game Theory Model. In: Proceedings of the 52nd Hawaii Con-

ference on System Science. HICSS’19; 2019. p. 5767–5776.

10. Jarvenpaa SL, Shaw TR, Staples DS. Toward contextualized theories of trust: The role of trust in global

virtual teams. Journal of Information Systems Research. 2004; 15(3):250–267. https://doi.org/10.1287/

isre.1040.0028

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 27 / 30

https://doi.org/10.5465/256728
https://doi.org/10.2753/MIS0742-1222250401
https://doi.org/10.1080/07421222.1998.11518185
https://doi.org/10.1080/07421222.1998.11518185
https://doi.org/10.1287/isre.1040.0028
https://doi.org/10.1287/isre.1040.0028
https://doi.org/10.1371/journal.pone.0226281


11. Trainer EH, Redmiles DF. Bridging the gap between awareness and trust in globally distributed soft-

ware teams. Journal of Systems and Software. 2018; 144:328–341. https://doi.org/10.1016/j.jss.2018.

06.028

12. Steinmacher I, Chaves AP, Gerosa MA. Awareness support in distributed software development: A sys-

tematic review and mapping of the literature. Computer Supported Cooperative Work (CSCW). 2013;

22(2-3):113–158. https://doi.org/10.1007/s10606-012-9164-4

13. Calefato F, Lanubile F. SocialCDE: A Social Awareness Tool for Global Software Teams. In: Proceed-

ings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2013. Saint

Petersburg; 2013. p. 587–590.

14. Tsay J, Dabbish L, Herbsleb J. Influence of Social and Technical Factors for Evaluating Contribution in

GitHub. In: Proceedings of the 36th International Conference on Software Engineering. ICSE 2014.

Hyderabad; 2014. p. 356–366.

15. Marlow J, Dabbish L, Herbsleb J. Impression Formation in Online Peer Production: Activity Traces and

Personal Profiles in Github. In: Proceedings of the 2013 Conference on Computer Supported Coopera-

tive Work. CSCW’13. San Antonio, TX; 2013. p. 117–128.

16. Jøsang A, Hayward R, Pope S. Trust Network Analysis with Subjective Logic. In: Proceedings of the

29th Australasian Computer Science Conference - Volume 48. ACSC’06; 2006. p. 85–94.

17. Sinha VS, Mani S, Sinha S. Entering the Circle of Trust: Developer Initiation As Committers in Open-

source Projects. In: Proceedings of the 8th Working Conference on Mining Software Repositories.

MSR’11. Waikiki, Honolulu; 2011. p. 133–142.

18. Gousios G, Storey MA, Bacchelli A. Work Practices and Challenges in Pull-based Development: The

Contributor’s Perspective. In: Proceedings of the 38th International Conference on Software Engineer-

ing. ICSE’16. Austin, Texas; 2016. p. 285–296.

19. Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V. Quality and Productivity Outcomes Relating to Con-

tinuous Integration in GitHub. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-

ware Engineering. ESEC/FSE 2015. Bergamo: ACM; 2015. p. 805–816.

20. Sapkota H, Murukannaiah PK, Wang Y. Dataset and Software for Estimating Trust between Open

Source Software Developers; 2019. Available from: https://doi.org/10.5281/zenodo.3522461.

21. Golbeck JA. Computing and Applying Trust in Web-based Social Networks. University of Maryland.

College Park, MD; 2005.

22. Jøsang A. A Logic for Uncertain Probabilities. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems. 2001; 9(3):279–311. https://doi.org/10.1142/S0218488501000831

23. Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press; 1976.

24. Begel A, Khoo YP, Zimmermann T. Codebook: Discovering and Exploiting Relationships in Software

Repositories. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-

ing—Volume 1. ICSE’10. Cape Town; 2010. p. 125–134.

25. Hallgren KA. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tuto-

rials in quantitative methods for psychology. 2012; 81:23–34. https://doi.org/10.20982/tqmp.08.1.p023

26. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space.

arXiv preprint arXiv:13013781. 2013;.

27. Islam MR, Zibran MF. Leveraging Automated Sentiment Analysis in Software Engineering. In: Proceed-

ings of the 14th International Conference on Mining Software Repositories. MSR’17. Buenos Aires;

2017. p. 203–214.

28. GitHub API. GraphQL API v4 Reference: CommentAuthorAssociation; Accessed: July 2019. https://

developer.github.com/v4/enum/commentauthorassociation/.

29. XGBoost Developers. Gradient Boosting (XGBoost); Accessed: July 2019. https://xgboost.

readthedocs.io/en/latest/index.html.

30. Scikit-Learn. Ensemble methods: AdaBoost; Accessed: July 2019. https://scikit-learn.org/stable/

modules/ensemble.html#adaboost.

31. Scikit-Learn. Ensemble methods: Bagging; Accessed: July 2019. https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.BaggingRegressor.html.

32. Scikit-Learn. Generalized linear models: Lasso; Accessed: July 2019. https://scikit-learn.org/stable/

modules/linear_model.html#lasso.

33. Scikit-Learn. Support Vector Machines (SVM); Accessed: July 2019. https://scikit-learn.org/stable/

modules/svm.html.

34. Liu G, Wang Y, Orgun MA. Optimal Social Trust Path Selection in Complex Social Networks. In: Pro-

ceedings of the Twenty-Fourth Association for the Advancement of Artificial Intelligence Conference on

Artificial Intelligence. Atlanta; 2010. p. 1391–1398.

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 28 / 30

https://doi.org/10.1016/j.jss.2018.06.028
https://doi.org/10.1016/j.jss.2018.06.028
https://doi.org/10.1007/s10606-012-9164-4
https://doi.org/10.5281/zenodo.3522461
https://doi.org/10.1142/S0218488501000831
https://doi.org/10.20982/tqmp.08.1.p023
https://developer.github.com/v4/enum/commentauthorassociation/
https://developer.github.com/v4/enum/commentauthorassociation/
https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
https://scikit-learn.org/stable/modules/linear_model.html#lasso
https://scikit-learn.org/stable/modules/linear_model.html#lasso
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://doi.org/10.1371/journal.pone.0226281


35. Lu J, Liu G, Zheng B, Zhao Y, Zheng K. Social context-aware trust paths finding for trustworthy service

provider selection in social media. Multimedia Tools and Applications. 2019;.

36. Ruan Y, Zhang P, Alfantoukh L, Durresi A. Measurement Theory-Based Trust Management Framework

for Online Social Communities. ACM Transactions Internet Technology. 2017; 17(2):16:1–16:24.

https://doi.org/10.1145/3015771

37. GitHub. GitHub Terms of Service: API Terms; Accessed: October 2019. https://help.github.com/en/

github/site-policy/github-terms-of-service#h-api-terms.

38. Hollander M, Wolfe DA. Nonparametric Statistical Methods. New York: Wiley; 1999.

39. Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964; 6(3):241–252. https://doi.org/

10.1080/00401706.1964.10490181

40. Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics.

1979; 6(2):65–70.

41. Cliff N. Ordinal Methods for Behavioral Data Analysis. Psychology Press; 2014.

42. Scikit-Learn. Decision Tree Classifier; Accessed: July 2019. https://scikit-learn.org/stable/modules/

generated/sklearn.tree.DecisionTreeClassifier.html.

43. Gershman SJ, Tenenbaum JB. Phrase similarity in humans and machines. In: Proceedings of the 37th

Annual Conference of the Cognitive Science Society; 2015. p. 776–781.

44. Yu L, Hermann K, Blunsom P, Pulman S. Deep Learning for Answer Sentence Selection. In: Proceed-

ings of the Deep Learning and Representation Learning Workshop: NIPS-2014; 2014. p. 1–9.

45. Laat PB. How Can Contributors to Open-source Communities Be Trusted? On the Assumption, Infer-

ence, and Substitution of Trust. Ethics and Information Technology. 2010; 12(4):327–341. https://doi.

org/10.1007/s10676-010-9230-x

46. Calefato F, Lanubile F, Novielli N. A Preliminary Analysis on the Effects of Propensity to Trust in Distrib-

uted Software Development. In: 2017 IEEE 12th International Conference on Global Software Engi-

neering (ICGSE); 2017. p. 56–60.

47. Acedo-Carmona C, Gomila A. Personal Trust Increases Cooperation beyond General Trust. PLOS

ONE. 2014; 9(8):e105559. https://doi.org/10.1371/journal.pone.0105559 PMID: 25144539

48. Lane MS, van der Vyver G, Basnet P, Howard S. Interpretative Insights into Interpersonal Trust and

Effectiveness of Virtual Communities of Open Source Software (OSS) Developers. In: Proceedings of

the 15th Australasian Conference on Information Systems (ACIS 2004). University of Tasmania; 2004.

p. 1–11.

49. Sirkkala P, Hammouda I, Aaltonen T. From Proprietary to Open Source: Building a Network of Trust. In:

Proceedings of Second International Workshop on Building Sustainable Open Source Communities

(OSCOMM 2010); 2010. p. 26–30.

50. Wang Y, Redmiles D. Cheap talk, cooperation, and trust in global software engineering. Empirical Soft-

ware Engineering. 2016; 21(6):2233–2267. https://doi.org/10.1007/s10664-015-9407-3

51. Wang Y, Redmiles D. The Diffusion of Trust and Cooperation in Teams with Individuals’ Variations on

Baseline Trust. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative

Work & Social Computing. CSCW’16. San Francisco, California; 2016. p. 303–318.

52. Zolin R, Hinds PJ, Fruchter R, Levitt RE. Interpersonal trust in cross-functional, geographically distrib-

uted work: A longitudinal study. Information and Organization. 2004; 14(1):1–26. https://doi.org/10.

1016/j.infoandorg.2003.09.002

53. Stewart KJ, Gosain S. The Impact of Ideology on Effectiveness in Open Source Software Development

Teams. MIS Quarterly. 2006; 30(2):291–314. https://doi.org/10.2307/25148732

54. Gallardo-Valencia RE, Tantikul P, Sim SE. Searching for Reputable Source Code on the Web. In: Pro-

ceedings of the 16th ACM International Conference on Supporting Group Work. GROUP’10. Sanibel

Island; 2010. p. 183–186.

55. Orsila H, Geldenhuys J, Ruokonen A, Hammouda I. Trust issues in open source software development.

In: Proceedings of the Warm Up Workshop for ACM/IEEE ICSE; 2009. p. 9–12.

56. Gysin FS, Kuhn A. A Trustability Metric for Code Search Based on Developer Karma. In: Proceedings

of 2010 ICSE Workshop on Search-driven Development: Users, Infrastructure, Tools and Evaluation.

SUITE’10. Cape Town; 2010. p. 41–44.

57. Calefato F, Lanubile F. Establishing Personal Trust-based Connections in Distributed Teams. Internet

Technology Letters. 2018; 1(4):e6. https://doi.org/10.1002/itl2.6

58. Jøsang A, Ismail R, Boyd C. A Survey of Trust and Reputation Systems for Online Service Provision.

Decision Support Systems. 2007; 43(2):618–644. https://doi.org/10.1016/j.dss.2005.05.019

59. Kafali Ö, Yolum P. Action-Based Environment Modeling for Maintaining Trust. In: Trust in Agent Socie-

ties. vol. 5396; 2008. p. 81–98.

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 29 / 30

https://doi.org/10.1145/3015771
https://help.github.com/en/github/site-policy/github-terms-of-service#h-api-terms
https://help.github.com/en/github/site-policy/github-terms-of-service#h-api-terms
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1080/00401706.1964.10490181
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://doi.org/10.1007/s10676-010-9230-x
https://doi.org/10.1007/s10676-010-9230-x
https://doi.org/10.1371/journal.pone.0105559
http://www.ncbi.nlm.nih.gov/pubmed/25144539
https://doi.org/10.1007/s10664-015-9407-3
https://doi.org/10.1016/j.infoandorg.2003.09.002
https://doi.org/10.1016/j.infoandorg.2003.09.002
https://doi.org/10.2307/25148732
https://doi.org/10.1002/itl2.6
https://doi.org/10.1016/j.dss.2005.05.019
https://doi.org/10.1371/journal.pone.0226281


60. Sherchan W, Nepal S, Paris C. A Survey of Trust in Social Networks. ACM Computing Surveys. 2013;

45(4):47:1–47:33. https://doi.org/10.1145/2501654.2501661

61. Artz D, Gil Y. A Survey of Trust in Computer Science and the Semantic Web. Web Semantics: Science,

Services and Agents on the World Wide Web. 2007; 5(2):58–71. https://doi.org/10.1016/j.websem.

2007.03.002

62. Hamdi S, Gancarski AL, Bouzeghoub A, Yahia SB. IRIS: A Novel Method of Direct Trust Computation

for Generating Trusted Social Networks. In: 2012 IEEE 11th International Conference on Trust, Security

and Privacy in Computing and Communications; 2012. p. 616–623.

63. Guha R, Kumar R, Raghavan P, Tomkins A. Propagation of Trust and Distrust. In: Proceedings of the

13th International Conference on World Wide Web. WWW’04. New York; 2004. p. 403–412.

64. Zhao T, Li C, Li M, Ding Q, Li L. Social Recommendation Incorporating Topic Mining and Social Trust

Analysis. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Man-

agement. CIKM’13. San Francisco; 2013. p. 1643–1648.

65. Kafali Ö, Yolum P. Adapting Reinforcement Learning for Trust: Effective Modeling in Dynamic Environ-

ments. In: 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent

Agent Technology. vol. 1; 2009. p. 383–386.

66. Richters O, Peixoto TP. Trust Transitivity in Social Networks. PLOS ONE. 2011; 6(4):e18384. https://

doi.org/10.1371/journal.pone.0018384 PMID: 21483683

67. Liu G, Wang Y, Orgun MA. Trust Transitivity in Complex Social Networks. In: Proceedings of the

Twenty-Fifth AAAI Conference on Artificial Intelligence. AAAI’11. San Francisco; 2011. p. 1222–1229.

68. Zhang P, Durresi A. Trust management framework for social networks. 2012 IEEE International Confer-

ence on Communications (ICC). 2012; p. 10420–1047.

69. Sun YL, Yu W, Han Z, Liu KJR. Information Theoretic Framework of Trust Modeling and Evaluation for

Ad Hoc Networks. IEEE Journal on Selected Areas in Communications. 2006; 24(2):305–317. https://

doi.org/10.1109/JSAC.2005.861389

70. Victor P, Cornelis C, Cock MD. Trust Networks for Recommender Systems. 1st ed. Atlantis Publishing

Corporation; 2011.

71. Golbeck J, Hendler J. Inferring Binary Trust Relationships in Web-based Social Networks. ACM Trans-

actions Internet Technology. 2006; 6(4):497–529. https://doi.org/10.1145/1183463.1183470

72. Lee SYT, Kim HW, Gupta S. Measuring open source software success. Omega. 2009; 37(2):426–438.

https://doi.org/10.1016/j.omega.2007.05.005

A network-centric approach for estimating trust between open source software developers

PLOS ONE | https://doi.org/10.1371/journal.pone.0226281 December 30, 2019 30 / 30

https://doi.org/10.1145/2501654.2501661
https://doi.org/10.1016/j.websem.2007.03.002
https://doi.org/10.1016/j.websem.2007.03.002
https://doi.org/10.1371/journal.pone.0018384
https://doi.org/10.1371/journal.pone.0018384
http://www.ncbi.nlm.nih.gov/pubmed/21483683
https://doi.org/10.1109/JSAC.2005.861389
https://doi.org/10.1109/JSAC.2005.861389
https://doi.org/10.1145/1183463.1183470
https://doi.org/10.1016/j.omega.2007.05.005
https://doi.org/10.1371/journal.pone.0226281

