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Abstract

Feral pigeons, common wood pigeons and Eurasian collared doves are the most common

representatives of the Columbidae family in Switzerland and are mostly present in highly

populated, urban areas. Pigeons may carry various members of the obligate intracellular

Chlamydiaceae family, particularly Chlamydia (C.) psittaci, a known zoonotic agent, and C.

avium. The objective of the study was to identify the infection rates of common free-roaming

pigeons for different Chlamydia species with the overall aim to assess the risk pigeons pose

to public health. In this study, 431 pigeons (323 feral pigeons, 34 domestic pigeons, 39 Eur-

asian collared doves, 35 common wood pigeons) from several geographic locations in Swit-

zerland were investigated for the presence of Chlamydiaceae. Samples consisted of pooled

choanal-cloacal swabs (n = 174), liver samples (n = 52), and paired swab and liver samples

from 205 pigeons (n = 410). All 636 samples were screened using a Chlamydiaceae family-

specific 23S rRNA real-time PCR (qPCR). Subsequent species identification was performed

by DNA-microarray assay, sequencing of a 16S rRNA gene fragment and a C. psittaci spe-

cific qPCR. In total, 73 of the 431 pigeons tested positive for Chlamydiaceae, of which 68

were positive for C. psittaci, four were C. avium-positive and one pigeon was co-infected

with C. avium and C. psittaci. The highest infection rates were detected in feral (64/323) and

domestic pigeons (5/34). Common wood pigeons (2/35) and Eurasian collared doves (2/39)

revealed lower infection rates. Additionally, multilocus sequence typing of twelve selected

C. psittaci-positive samples revealed closely related sequence types (ST) between and

within different Swiss cities. Furthermore, liver and corresponding swab samples from the

same bird were colonized by the same ST. Considering the high infection rates of C. psittaci

in domestic and feral pigeons, close or frequent contact to these birds poses a human health

risk.
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Introduction

Members of the Chlamydiaceae family are gram negative, obligate intracellular bacteria with a

biphasic developmental cycle. The single genus Chlamydia (C.) consists of thirteen species and

three Candidatus species [1–3]. The most well-known chlamydial species harboured by birds

is C. psittaci, which has been reported in at least 467 bird species belonging to 30 different

orders [4]. This pathogen causes asymptomatic to severe systemic infections in several bird

species, depending on susceptibility of the host species, immune status, infectious dose and vir-

ulence of the strain involved [5]. Transmission can occur by inhalation of contaminated dust,

feather particles and respiratory tract secretions [6]. In birds, bacterial shedding can be inter-

mittently activated by stressful events such as breeding, migration or other illnesses, without

presentation of clinical symptoms [5].

C. psittaci is a zoonotic agent causing ornithosis, an influenza-like illness in humans, poten-

tially leading to atypical pneumonia with sometimes fatal outcome [7]. Humans contract dis-

ease during close contact with infected birds by inhalation of respiratory secretions or dust

from dried feces [6].

Based on the outer membrane protein A (ompA), C. psittaci is divided into nine genotypes

and several subtypes, which are more or less associated with different hosts. Seven of these

genotypes are generally found in avian hosts (A-F and E/B) [8–11]. Genotypes A and F are pri-

marily found in psittacine birds, B in pigeons, C in ducks and geese, and D in turkeys. Geno-

type E infects a broad range of birds including pigeons [11], while E/B has been described in

ducks [9]. Human infections are most frequently associated with genotype A, causing more

severe infections than other genotypes [12–15].

C. avium, another chlamydial species infecting birds, was first described in 2014 [16] and

has so far been reported in feral pigeons from Italy, France, Germany and the Netherlands,

in a parrot from Germany and in a mallard from Poland [16–18]. To date, it is still unclear

whether it causes disease in birds, if it has zoonotic potential or how it is transmitted.

Pigeons may become infected with several chlamydial species, including C. psittaci (the

most common Chlamydia species identified in pigeons), C. avium, C. abortus, C. pecorum and

C. trachomatis [19]. In Swiss feral pigeons, C. psittaci is the only species of the family Chlamy-
diaceae identified to date [20–22] and in general, research in avian Chlamydia seems to focus

on C. psittaci and feral pigeons. Worldwide, several studies on C. psittaci in feral pigeons have

been conducted, revealing a seroprevalence of up to 95.6%, while chlamydial DNA could be

detected in up to 50% of the tested pigeons [23]. Especially in cities, where feral pigeons find

easy access to food sources, they can build large populations of more than 300–400 pigeons per

km2, leading to more stressed and diseased birds and thus to an increased risk for pathogen

transmission to humans [5, 24]. Additionally, the close contact to feral pigeons through feed-

ing, or even briefly passing areas with a high pigeon density, may increase the likelihood for

zoonotic transmission of C. psittaci [23]. Whether any of the other Chlamydiaceae harboured

by pigeons, apart from C. psittaci, may cause psittacosis-like disease in humans is not known.

The Swiss feral pigeon population has been stable or, in some areas, slightly declining in the

last 20 years [25], due to different population management programs, e.g. culling schemes or

reduction of food availability. In 2001, Lucerne introduced a population management program

[26, 27] primarily focusing on banning public feeding and building two pigeon lofts to attract

the birds. Droppings accumulating in the lofts are disposed resulting in a decreased fecal load

in the city decreasing the risk of disease transmission to humans. In 2012, a different popula-

tion management program was introduced in Berne consisting of catching all available

pigeons, followed by euthanasia of clinically unhealthy birds and endoscopic sterilization of

males. In addition, all caught pigeons were ringed and placed in one of five pigeon lofts. Both
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of these city loft programs were successful: the pigeon population decreased from around

7’000 individuals in 2001 to 2’500 in 2015 in Lucerne and from around 10’000 in 2011 to cur-

rently 1’500 birds in Berne [27, 28]. In Zurich, the feral pigeon population is managed primar-

ily by culling. In 2019, an estimated 16’000 feral pigeons lived in the city of Zurich [29].

Switzerland is home to five different species of free-roaming pigeons. In detail, the four

wild pigeon species common wood pigeon (Columba palumbus), stock dove (Columba eonas),
Eurasian collared dove (Streptopelia decaocto), and European turtle dove (Streptopelia turtur),
and feral pigeons (Columba livia domestica). In areas inhabited by humans, feral pigeons, com-

mon wood pigeons and Eurasian collared doves are well documented with a tendency towards

increasing populations for the last two species [25]. These three pigeon species are potential

hosts for Chlamydia psittaci [4] and possibly other Chlamydia species. However, there is no

data available about the presence of C. psittaci and other Chlamydia species in Swiss wild

pigeons. The present study aimed at collecting baseline data on the presence of Chlamydiaceae
in three different free roaming Swiss pigeon species (feral and domestic pigeons, common

wood pigeons and Eurasian collared dove), with insights into the population genetics of C.

psittaci by using typing schemes such as ompA genotyping and multilocus sequence typing

(MLST) [30, 31].

Materials and methods

Samples

A total of 636 samples from 431 pigeons belonging to the three species i) Columbia livia domes-
tica, i.e. domestic (homing pigeons, fancy pigeons, flying/sporting pigeons) and feral pigeons

(“city pigeons”), ii) Streptopelia decaocto (Eurasian collared dove) and iii) Columba palumbus
(common wood pigeon) from different geographical areas in Switzerland between May 2014

and October 2018 were analyzed. Individual samples consisted of combined choanal/cloacal

swabs (c/c-swabs; n = 174) and liver samples (n = 52). Additionally, paired samples of c/c-

swab and liver (n = 107), and cloacal swab (c-swab) and liver (n = 98) were available (Table 1).

Samples derived from the diagnostic service of the National Reference Centre for Poultry and

Rabbit Diseases (NRGK) and originated from birds found at various locations admitted to the

rehabilitation center of the Swiss Ornithological Institute based in the Canton of Lucerne

(n = 58) and from feral pigeons inhabiting three of the five pigeon lofts in Berne (loft A,

Table 1. Number of pigeons according to type of pigeon, sample material and place of origin.

Single samples Paired samples Place of origin Total no. of

pigeonsC/c-swab Liver C/c-swab�

+ liver

C-swab��

+ liver

Berne Greater Lucerne

area��
Greater Zurich

area

Various���

Feral pigeon 142 47 36 98 123 23 142 35 323

Domestic pigeon 17 2 15 0 0 8 0 26 34

Eurasian collared

dove

12 1 26 0 0 2 3 34 39

Common wood

pigeon

3 2 30 0 0 13 1 21 35

Total 174 52 107 98 123 46 146 116 431

�C/c-swab = combined choanal/cloacal swab; ��C-swab = cloacal swab

��Lucerne, Kriens, Horw, Emmen, Emmenbruecke, Rothenburg

���More rural places as compared to the city areas within the cantons Lucerne, Obwalden, Nidwalden, Schwyz, Zug, Aargau, Solothurn, Zurich, Schaffhausen, Basel-

Land, Thurgau and St. Gallen

https://doi.org/10.1371/journal.pone.0226088.t001
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n = 25; loft B, n = 49; loft C, n = 23). All loft birds were tested on the same day excluding

repeated sampling of individuals. Additional samples from feral pigeons culled by the game

warden in the context of the local population control program in the city of Zurich and sur-

rounding areas (greater Zurich area) (n = 142) completed the sample set (Table 1). The major-

ity of the rehabilitation center pigeons were found in rural regions, like small villages or

farmland (Table 1). Upon collection and until DNA extraction, the swabs and liver samples

were stored at -20˚C, samples from Zurich were stored at -80˚C. A complete list of samples is

provided in S1 Table.

DNA extraction

DNA was extracted using a commercial kit (Genomic DNA from tissue, NucleoSpin1 Tissue
from Macherey-Nagel, Düren, Germany) according to the manufacturer’s instructions. For

each extraction lot, a negative extraction control was prepared by using “Buffer T1” instead of

the sample. Extracts were stored at -20˚C until further analysis was performed. Extracted DNA

was measured on a Nanodrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham,

MA, USA) to determine DNA quantity and quality (260/280 value).

Chlamydiaceae screening of extracted DNA

All extracted DNA samples (n = 636) were investigated according to the decision tree as

depicted in Fig 1. All primers and probes used in this study are listed in Table 2.

Quantitative and conventional PCRs

All quantitative PCRs (qPCR; Fig 1, Table 2) were run on an Applied Biosystems1 7500 Real-

Time PCR System (Thermo Fisher Scientific). As internal amplification control, eGFP was

added to the reaction mix [33].

Products from all conventional PCRs (Fig 1, Table 2) were purified using the QIAquick1

PCR Purification Kit (Qiagen) according to the manufacturer’s instructions.

Purified amplicons were Sanger sequenced by Microsynth (Balgach, Switzerland) [38]. The

obtained sequences were assembled and analyzed using the CLC Main Workbench 8 software

and compared against the NCBI database using the BLASTn tool (NCBI, https://blast.ncbi.

nlm.nih.gov/) or the MLST database (http://pubmlst.org/chlamydiales/).

Chlamydiaceae qPCR

The samples were analyzed with the 23S rRNA-based Chlamydiaceae family-specific qPCR

[32] as modified by Blumer et al. [37]. The cycle conditions were 95˚C for 20 s, followed by 45

cycles of 95˚C for 3 s, and 60˚C for 30 s. All samples were tested in duplicate and the cycle

threshold was set at 0.1 in each run. A sevenfold dilution series of C. abortus DNA with a

known number of DNA copies was included in each run as a standard curve allowing the soft-

ware of the Applied Biosystems™ 7500 Real-Time PCR System to calculate the number of cop-

ies in positive samples of that run. Molecular grade water was used as a negative control.

Samples were interpreted as positive if the mean cycle threshold (Ct value) was < 38. Samples

with higher Ct values or inhibited amplification were re-tested in duplicate. Samples repeat-

edly showing a Ct value > 38 were considered as positive. The Chlamydiaceae copy number

per μl was determined directly by the PCR instrument using the standard curve, calculating

the percentage of Chlamydia-DNA out of total DNA (Chlamydia-%).
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DNA microarray assay

The sample DNA, including internal control DNA (Intype IC-DNA, Qiagen Labor, Leipzig,

Germany), was amplified and biotin labelled using the method described by Borel et al. [34].

The cycle conditions were 96˚C for 10 min, followed by 39 cycles of 94˚C for 30 s, 50˚C for 30

s and 72˚C for 30 s and a last step of 72˚C for 4 min. The labelled DNA was hybridized using

the Hybridization Kit 245200100 (Alere Technologies GmbH; now Abbott, Chicago, Illinois,

USA) and analyzed using the ArrayStrip™ system (ChlamType-23S AS-4 Kit, Alere Technolo-

gies GmbH, Jena, Germany), as established by Borel et al [34]. With the current kit, eleven

Chlamydia species and nine Chlamydia-like organisms can be identified.

Fig 1. Decision tree for step-wise typing of samples originating from pigeons. Green-colored boxes mark methods using

quantitative PCRs, while conventional PCRs are colored in blue. Out of 86 C. psittaci-positive samples, 12 selected samples were

further characterized by multilocus sequence typing (MLST) and ompA genotyping.

https://doi.org/10.1371/journal.pone.0226088.g001
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16S ribosomal RNA (rRNA) PCR

The conventional 16S rRNA PCR was performed as described by Pospischil et al. [35], using

the primers 16S IGF (short) and 16S IGR (short) to amplify a sequence of 298 base pairs (bp)

(Table 2).

Per sample, a 50 μl reaction mix was prepared, containing 1 μl (< 150 ng/μl) sample tem-

plate, 1x PCR buffer with MgCl2 (Roche Diagnostics GmbH), 0.5 mM MgCl2 Stock Solution

Table 2. Primers and probes and their final concentration (nM) in the PCR reagent mix for different quantitative PCR (qPCR) and conventional PCR (PCR) tests

used in this study.

Method Target Primer &

Probe

Sequence (5’-3’) Final conc. of

primers and Probes

in the PCR reagent

mix

Amplicon size

(base pairs)

Annealing

temperature (˚C)

references

Chlamydiaceae 23S

rRNA qPCR

23S

rRNA

Ch23S-F CTGAAACCAGTAGCTTATAAGCGGT 500 nM 111 60 Ehricht et al.

[32]Ch23S-R ACCTCGCCGTTTAACTTAACTCC

Ch23S-p FAM-CTCATCATGCAAAAGGCACGCCG-TAMRA 200 nM

eGFP eGFP-1-F GACCACTACCAGCAGAACAC 200 nM 177 Hoffmann et al.

[33]eGFP-10-R CTTGTACAGCTCGTCCATGC

eGFP-HEX HEX-AGCACCCAGTCCGCCCTGAGCA-BHQ1

DNA microarray

assay PCR

23S

rRNA

U23F-19 ATTGAMAGGCGAWGAAGGA 500 nM 171 50 Ehricht et al.,

Borel et al. [32,

34]
23R-22 biotin-GCYTACTAAGATGTTTCAGTTC

eGFP eGFP-11-F CAGCCACAACGTCTATATCATG 50 nM 276 Hoffmann et al.

[33]eGFP-

10-R-Bio

Bio-CTTGTACAGCTCGTCCATGC

16S rRNA PCR 16S

rRNA

16S IGF

(short)

GATGAGGCATGCAAGTCGAACG 300 nM 278 58 Pospischil et al.

[35]

16S IGR

(short)

CCAGTGTTGGCGGTCAATCTCTC

C. psittaci ompA

qPCR

ompA CppsOMP1-F CACTATGTGGGAAGGTGCTTCA 900 nM 76 60 Pantchev et al.

[36]CppsOMP1-R CTGCGCGGATGCTAATGG

CppsOMP1-S FAM-CGCTACTTGGTGTGAC-TAMRA 200 nM

eGFP eGFP-1-F GACCACTACCAGCAGAACAC 900 nM 132 Hoffmann et al.

[33]

PCR modified by

Blumer et al [37]

eGFP-2-R GAACTCCAGCAGGACCATG

eGFP-Hex HEX-AGCACCCAGTCCGCCCTGAGCA-BHQ1 200 nM

MLST PCR enoA YPenoA3 CCTATGATGAATCTCATTAATGG 200 nM 450–500 53 Pannekoek et al.

[31]YPenoA4 CCCAACCATCAAAATCTTCTTCCG

fumC YPfumC1 GGGCTCCTGAGGTTATGCC 500–600 53

YPfumC2 CGCAAATAATGAATCACCTTATC

gatA YPgatA3 GCCTTAGAGTTAAGAAATGCCG 500–600 60

YPgatA4 CCCCCTGTATCGGAACCTAACGC

gidA YPgidA1 GCTTATTAGAGAGCTGTCCTGGC 500–670 53

YPgidA2 CGCGTTTTCTAACCCACGG

hemN YPhemN1 GGATCCATTTCGGAGGAGGC 500–630 53

YPhemN2 CCTGAAAGGATTTTCTCATGG

hflX YPhflX3 GAGATTTTTGCTAATCGAGCG 500–610 53

YPhflX4 GTAAAACATCTTCATGTAACGC

oppA YPoppA3 ATGCGCAAGATATCAATGGG 500–610 60

YPoppA4 GGCAAGGTTTGGTGTAACTCGC

ompA PCR ompA ompA F

(CTU)

ATGAAAAAACTCTTGAAATCGG 200 nM 1200 49 Sachse et al. [30]

ompA rev TCCTTAGAATCTGAATTGAGC

https://doi.org/10.1371/journal.pone.0226088.t002
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(Roche Diagnostics GmbH), 0.2 nM dNTP (PCR Nucleotide Mix, Roche Diagnostics GmbH),

300 nM of both primers and 0.02 U/μl FastStart Taq DNA Polymerase.

Cycling conditions were 95˚C for 5 min, followed by 40 cycles of 95˚C for 60 s, 65˚C for 60

s and 72˚C for 90 s and a final extension of 72˚C for 10 min.

C. psittaci quantitative PCR

The C. psittaci-specific qPCR was performed according to the protocol as described by

Pantchev et al. [36]. The reaction mix contained 4 μl (< 150 ng/μl) sample template, 1 μl eGFP

template, 1x TaqMan Universal PCR MasterMix, 900 nM of the primers CppsOMP1-F and

CppsOMP1-R, 200 nM probe CppsOMP1-S, 900 nM of the primers eGFP-1-F and eGFP-2-R

and 200 nM probe eGFP-HEX [33] in a final volume of 25 μl.

C. psittaci typing

Twelve C. psittaci strains were selected for further characterization by performing C. psittaci-
specific multilocus sequence typing (MLST) as described by Pannekoek et al. [31] and geno-

typing based on the major outer membrane protein (ompA) gene [30]. Selection aimed at cre-

ating a sample subset that represents the diversity of the main sample set. It was based on (I)

geographical location (city, pigeon loft), (II) pigeon species and (III) positivity in a set of paired

samples. Samples finally included were: swab samples of five feral pigeons from the lofts A, B,

and C in Berne (1, 2, and 2 pigeons, respectively), two feral pigeons from Zurich, and two feral

pigeon from the greater Lucerne area; a matching liver sample to one of the feral pigeons from

the greater Lucerne area; a swab sample of a domestic pigeon from the greater Lucerne area,

and one swab sample from an Eurasian collared dove from Inwil. To make sure that MLST

analysis will be successful, only samples wih a Chlamydia-% above 0.002 were selected. Thus, a

sample from a common wood pigeon could not be included.

Multilocus sequence typing

The conventional PCRs targeting seven housekeeping genes were performed as previously

described [31]. For each sample, a 50 μl reaction mix was used, containing 1x AmpliTaq Gold™
360 Master Mix (Thermo Fisher Scientific), 200 nM of each primer (Table 2) and 3 μl sample

template with a DNA concentration of 25 ng/μl. Cycling conditions were 95˚C for 10 min, fol-

lowed by 35 cycles of 95˚C for 30 s, 53˚C (enoA, fumC, gidA, hemN, hflX) or 60˚C (gatA,

oppA) for 30 s, 72˚C for 60 s and a final step at 72˚C for 7 min. If amplification resulted in

weak bands, a modified cycling protocol with 40 cycles of 95˚C for 60 s, 53˚C/60˚C˚ for 60 s,

72˚C for 90 s was used. Subsequently, the PCR products were analyzed as mentioned above.

The alignments of the concatenated sequences (3098 bp) were generated using MAFFT as

implemented in Geneious 11.0.5 [39]. The mid-point rooted Bayesian tree was constructed

using the concatenated MLST 3098 bp MAFFT alignment with the MrBayes program (as

implemented in Geneious). The tree parameters included: GTR +G nucleotide model, with 4

MCMC chains with million generations, sampled every 1000 generations and with the first

100 000 trees discarded as burn-in. The additional strains used for Bayesian analysis as shown

in Fig 2 are listed in S2 Table. The MLST sequences generated in this study are deposited in

PubMLST/Chlamydiales (https://pubmlst.org/chlamydiales/).

OmpA genotyping

Each reaction mix with a final volume of 50 μl contained 1x AmpliTaq Gold 360 master mix

(Thermo Fisher Scientific), 200 nM of the primers CTU and ompA rev [30] and 3 μl sample

Chlamydiaceae in Swiss pigeons including multilocus sequence typing of Chlamydia psittaci
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template with a DNA concentration of 25 ng/μl. Cycling conditions were 10 min at 95˚C, fol-

lowed by 35 cycles of 95˚C for 30 s, 49˚ for 30 s, 72˚C for 60 s and a final elongation at 72˚C

for 7 min. If amplification resulted in weak bands, a modified cycling protocol with 40 cycles

of 95˚C for 60 s, 49˚ for 60 s, 72˚C for 90 s was used. Alignments of the 1050 bp sequences and

Bayesian analysis was performed as described above. The C. psittaci strains used for Bayesian

analysis as shown in Fig 3 are listed in S2 Table. The sequences generated in this study are

available in Genbank under accession numbers MK805041—MK805052.

Ethics statement

Samples for this study included swab and organ samples of pigeons taken during necropsy and

choanal/cloacal swab samples of live animals collected by a certified veterinarian for diagnostic

use. Therefore, no approval of the ethics committee was sought.

Results

Chlamydiaceae PCR revealed an average infection rate of 16.9% in Swiss

pigeons

A total of 70 swab (18.5%) and 22 liver samples (8.6%) of a total of 73 pigeons (16.9%) were

positive for Chlamydiaceae (Table 3).

Fig 2. Bayesian phylogenetic tree of concatenated multilocus sequence typing (MLST) sequences from 40 Chlamydia psittaci strains from avian and

mammalian hosts. The host is color-labeled as depicted in the legend. M56 taxa was used as an outgroup. Samples from this study are marked in bold letters. The

posterior probability values are displayed on the tree nodes.

https://doi.org/10.1371/journal.pone.0226088.g002
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In feral pigeons, Chlamydiaceae infection rates differed according to geographical origin.

While pigeons from the greater Zurich area showed an infection rate of 27.5% (39/142),

pigeons from the greater Lucerne area and Berne showed lower overall infection rates of 15.5%

(19/123) and 17.4% (4/23), respectively. The results from the pigeons of the three lofts within

Berne, however, differed greatly with 4/23 (17.4%) Chlamydiaceae-positive pigeons in Loft C,

but only 1/25 (4.0%) and 2/49 (4.1%) in Loft A and B. The latter infection rates were similar to

the overall infection rate determined for feral pigeons from the more rural places of different

cantons (Lucerne, Obwalden, Nidwalden, Schwyz, Zug, Aargau, Solothurn, Zurich, Schaffhau-

sen, Basel-Land, Thurgau, St. Gallen), where only 2/35 (5.7%) individuals were positive for

Fig 3. Bayesian phylogenetic tree of ompA gene sequences from 40 Chlamydia psittaci strains from avian and mammalian hosts. The host is color-labeled as

depicted in the legend. M56 taxa was used as an outgroup. Samples from this study are marked in bold letters. The posterior probability values are displayed on the

tree nodes.

https://doi.org/10.1371/journal.pone.0226088.g003

Table 3. Number of samples (positive/total) by pigeon species tested for Chlamydiaceae.

Species Swabs only Paired samples: Liver only Total no. of pigeons

swabs liver

Feral pigeons 20/142 42/129 18/129 1/47 64/323

Domestic pigeons 4/17 1/15 0/15 0/2 5/34

Common wood pigeon 0/3 1/30 1/30 0/2 2/35

Eurasian collared dove 0/12 2/26 2/26 0/1 2/39

Total 24/174

(13.8%)

46/205

(22.4%)

21/205

(10.2%)

1/52

(1.9%)

73/431

(16.9%)

https://doi.org/10.1371/journal.pone.0226088.t003
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Chlamydiaceae. Similar infection rates again were detected in the Swiss wild pigeon species

Eurasian collared dove (2/39; 5.1%) and common wood pigeon (2/35; 5.7%).

Different results were also detected for the different sample materials. A comparison of the

results for the paired swab and liver samples (410 samples of 205 pigeons) revealed a total of

46/205 (22.4%) swab samples and 21/205 (10.2%) liver samples to be positive for Chlamydia-
ceae. These samples originated from 19 pigeons positive in both samples (swab and liver), 27

pigeons positive in the swab sample only and two pigeons positive in the liver sample only. In

average, the chlamydial load (Chlamydia-%) in swab samples was 104 times higher than in the

matching liver sample with only one pigeon showing a higher Chlamydia-% in the liver sample

compared to the associated swab sample (S3 Table).

C. psittaci is the predominant chlamydial species in Swiss pigeons

All 92 Chlamydiaceae positive samples originating from 73 pigeons were further investigated

by the Arraymate microarray assay. Of these, 53 samples (57.6%) of 37 individuals could be

identified as C. psittaci, five samples (5.4%) of 4 individuals as C. avium and one (1.1%) as a

mixed infection of C. psittaci and C. avium. The remaining 33 samples (35.9%) could not be

further identified by microarray assay and were subjected to the conventional 16S rRNA PCR,

as were the five C. avium-positive samples and the mixed-infected sample for confirmation

reasons. Sequencing of PCR products was successful for 13 samples. Of those, the five samples

from two domestic and two feral pigeons previously identified with a single infection with C.

avium by microarray assay, were confirmed to be positive for C. avium, whereas the other

eight samples from feral pigeons, including the one previously identified with a mixed infec-

tion of C. avium and C. psittaci, were identified as C. psittaci.
The 25 yet unidentified samples originating from 22 feral pigeons, two domestic pigeons,

one common wood pigeon and one Eurasian collared dove, were further investigated with the

C. psittaci ompA qPCR. All 25 samples were positive for C. psittaci (Table 4), including the

samples with Ct values > 38 in the Chlamydiaceae qPCR.

Different STs identified in different pigeon populations belong to OmpA

genotype B and E

MLST analysis of twelve selected samples revealed that pigeons within one city were infected

with C. psittaci strains from the same or closely related sequence types (ST). Between cities,

however, the identified STs were distinct (Fig 2, S4 Table). Additionally, three new STs were

detected due to a single nucleotide polymorphism (SNP) in the house keeping gene hflX
(ST212, feral pigeons from Zurich), a SNP in the house keeping gene gatA (ST216, Eurasian

collared dove from Inwil) and due to a novel combination of house keeping gene alleles

(ST213, Feral pigeon from Lucerne). Additionally, the analysis of the paired swab (377_T) and

liver sample (377_Li) of one pigeon showed the same ST (ST27) in both samples (S4 Table).

Table 4. Number of samples (positive/total) for Chlamydia species detected in different pigeon species.

Species C. psittaci C. avium C. psittaci + C. avium
Feral pigeons 61/323 2/323 1/323

Domestic pigeons 3/34 2/34 0/34

Common wood pigeon 2/35 0/35 0/35

Eurasian collared dove 2/39 0/39 0/39

Total 68/431

(15.8%)

4/431

(0.9%)

1/431

(0.2%)

https://doi.org/10.1371/journal.pone.0226088.t004
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OmpA typing of the twelve strains revealed, that 9/12 strains shared 100% sequence

identity with the reference C. psittaci strain CP3 and thus belong to ompA genotype B. The

strains identified as ST26 (194_T) and ST216 (451_T) both shared 99.9% sequence identity

with the C. psittaci CP3 ompA sequence, showing a synonymous (A! G) single nucleotide

polymorphism (SNP) on position 748 and a non-synonymous (A! G) SNP on position

466, and were denoted genotype B”and B#, respectively. Additionally, both strains showed

99.7% and 99.9% sequence identity with the novel genotype B’ detected in a horse from

Queensland, Australia (strain Qld/H/Pl, Accession no. MG587894.1) (S4 Table). The strain

identified as ST213 (394_T) belongs to genotype E, sharing 100% sequence identity with the

previously described reference strain MN. Phylogenetic analysis of the ompA gene is shown

in Fig 3.

Discussion

Different infection rates of feral pigeons in different geographical areas

The percentage of Chlamydiaceae-positive feral pigeons originating from Berne was notably

higher in loft C (32.7%) as compared to lofts A and B (4.0% and 4.1%) although pigeons of all

three lofts were kept under equal conditions. It can also be expected that the C. psittaci strains

infecting the pigeons of the different lofts express similar virulence, since samples taken from

five feral pigeons originating from these three different lofts were all typed as ST55 by MLST

and ompA genotype B, the most common genotype found in pigeons [23, 40–42]. A possible

explaination for the differences in infection rate might be the geographical location of the lofts

with loft C being situated in the outskirts of Berne in close proximity to a forest and lofts A

and B being located in an urban environment. However, distances to forest areas in Switzer-

land are relatively short: Switzerland is a small country with a total area of 41,285 km2 and one

third covered by forests. Apart from bodies of water (>4%), and mountains above tree line,

there is no area without any smaller or larger wood nearby.

While a study on feral pigeons from Lucerne from 2007 detected Chlamydiaceae DNA in 2/

60 (3.3%) individuals, the present study, tested 4/23 (17.4%) of feral pigeons from the greater

Lucerne area positive for Chlamydiaceae. Since the pigeons from the current study had been

admitted to a wildlife hospital, sampled animals predominantly suffered from trauma or dis-

ease, which could have induced or increased chlamydial shedding due to stress [5].

In contrast to a previous study on feral pigeons from Zurich from 2008 [21], where 10/24

(42.7%) pigeons tested positive for Chlamydiaceae, the infection rate of 39/142 (27.4%)

detected in the present study was much lower. It is unclear whether the amount of infected

birds decreased over time or whether the difference is biased due to different sample sizes.

Since the infection rate seemed to be higher in the city of Zurich as compared to other

Swiss cities (see above), which implemented different population management programs, the

type of program might influence urban Chlamydiaceae epidemiology. The two population

management programs in Berne and Lucerne were more effective than culling to achieve a

smaller and healthier pigeon population. It was shown that culling, as performed in Zurich,

only results in a temporary population size decrease; most likely due to the high compensatory

potential of pigeons [43]. Additionally, the continuous extraction of animals by culling might

result in an increased contact rate between individual pigeons due to the frequent restructur-

ing of the population [44], thus leading to a potential increase of disease transmission events

within the population.

The infection rate of Chlamydiaceae-positive feral pigeons (2/35, 5.7%) originating from

rather rural geographical locations is comparable with the infection rate detected in wild

pigeon species in the present study. This might be explained by the lower population density

Chlamydiaceae in Swiss pigeons including multilocus sequence typing of Chlamydia psittaci
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of feral pigeons in small villages and on farmland as compared to urban areas and which is

comparable to that of common wood pigeons throughout Switzerland [25].

The infection rate of C. psittaci in feral pigeons varies widely between different European

countries or cities, e.g. from 2.4% in Utrecht, the Netherlands [18], to 50% in Vinica, Republic

of North Macedonia [23], and may even vary from year to year [19]. The infection rates seen

in the greater Lucerne area and Berne are comparable to those of other cities in Europe [19, 23,

45]. Zurich on the other hand, shows one of the highest infection rates throughout Europe

[23].

Infection rates of domestic pigeons, Eurasian collared doves and common

wood pigeons

Literature on Chlamydiaceae infection rates for free-roaming pigeons other than feral pigeons

is scarce. In the present study, 5/34 (14.7%) domestic pigeons were positive for Chlamydiaceae
which is comparable to infection rates reported in domestic pigeons elsewhere in Europe such

as Slovenia with a infection rate of 16% [46] and Germany with 12.8–42.6% [47].

The infection rate of 2/39 (5.1%) Eurasian collared doves being positive for C. psittaci
seems relatively low when compared to the results of a recent study on urban collared dove

populations from Italy, where 46/76 (61%) were positive for C. psittaci [48]. However, compar-

ison of results is difficult since birds from the present study originated from different locations,

most-likely belonging to different colonies, while the Italian study analysed individuals from

one population.

The analysis of common wood pigeons identified 2/35 (5.7%) individuals to be positive for

C. psittaci; a similar infection rate (1/25, 4.0%) as detected by Sharples et al. [49] by ompB PCR

in common wood pigeons in the UK.

Molecular identification of C. psittaci strains and infection rate with C.

avium
As expected, the present study revealed that C. psittaci is the predominant Chlamydia species

identified in the three species of free-roaming Swiss pigeons with 68/73 Chlamydiaceae-posi-

tive pigeons positive for C. psittaci, 4/73 positive for C. avium, and 1/73 positive for both Chla-
mydia species. Confirmation by 16S rRNA PCR of C. psittaci, but not C. avium in the sample

initially identified as mixed-infected might be explained by a higher copy number of C. psittaci
in the sample, which was then predominantly amplified by the 16S rRNA PCR.

C. psittaci is the most common Chlamydia species identified in pigeons [19] and for Swiss

feral pigeons the only Chlamydia species described so far [20–22].

C. avium was first described in 2014 [16]. So far, C. avium has been found in pigeons from

France, Germany, Italy, and the Netherlands [16, 18]. In Germany, co-infections of C. avium
and C. psittaci were detected in two young pigeons, both showing respiratory symptoms [16].

Szymańska-Czerwińska and Niemczuk [50] suggested that co-infection with C. psittaci and C.

avium may cause clinical symptoms in birds. However, the pigeon tested positive for both of

these Chlamydia species in the present study was euthanized due to an open metacarpal frac-

ture. Apart from that, no clinical symptoms were observed. Although C. avium has been found

mainly in pigeons, more recent studies reported C. avium infections in a parrot in Germany

and a mallard duck in Poland [16, 17]. The zoonotic potential of C. avium is still unknown.

MLST analysis of selected C. psittaci strains revealed the same or closely related STs within

a population, but distinct STs in different geographic locations, supporting the hypothesis that

the exchange between different pigeon populations is limited [43, 44]. Therefore, it can be

assumed that direct pathogen transmission between different populations is occurring only
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infrequently. Additionally, the same ST (ST27), ompA genotype B was detected in swab and

liver of the same pigeon. A finding that was expected, indicating that infections are caused by a

single genotype also being able to induce a systemic infection.

As expected, most C. psittaci-positive samples (9/12) that were further investigated by

ompA sequencing were identical to the strain CP3 and thus belonged to genotype B, the geno-

type responsible for the majority of the C. psittaci infections in pigeons and thought to be

endemic in the European pigeon population [23]. Two pigeons were infected by a strain show-

ing 99.9% identity to strain CP3, but had a synonymous (sample 194_T) and a non-synono-

mous (sample 451_T) SNP compared to strain CP3 and were denoted ompA genotype B”and

B#. Both strains additionally showed high identity (99.9% and 99.7%) with the strain Qld/H/Pl

(Accession no. MG587894.1) isolated from the placenta of a horse abortion in Queensland,

Australia. It may therefore be speculated that certain C. psittaci strains carried by birds have

the potential to infect horses leading to abortion. One feral pigeon (394_T) was infected by a

C. psittaci strain belonging to genotype E, which is frequently found in pigeons worldwide and

has been detected in several other avian species from Europe and Asia, [23, 48, 51–54]. This

genotype has been associated with several outbreaks in ducks and turkeys as well as fatal cases

of chlamydiosis in ratites [6].

Public health concerns

The detection of C. psittaci, a zoonotic agent, in all investigated pigeon species proves that not

only feral and domestic pigeons may represent a potential public health hazard, but also wild

pigeon species such as the common wood pigeon or Eurasian collared dove. Due to intermit-

tent shedding, even clinically healthy pigeons or pigeons with a negative result in a PCR analy-

sis might still be a source of infection [55, 56]. OmpA analysis of selected C. psittaci strains

detected genotype B and E, both considered to be less pathogenic to humans than the closely

related genotype A, predominantly found in psittacine birds [12, 14, 57, 58]. However, all

genotypes of C. psittaci are considered zoonotic. A major risk factor identified for human C.

psittaci infection was unprotected daily contact to domestic pigeons (i.e. contact to feather

dust and fecal matter) [59].

Conclusion

Of the four pigeon types investigated, feral pigeons showed the highest rate of infection with

Chlamydiaceae (19.8%), followed by domestic pigeons (14.7%). While the identification of

Chlamydiaceae in wild pigeon species from Switzerland was described for the first time, the

infection rate was much lower (5.1% for Eurasian collared doves, 5.7% for common wood

pigeons). Chlamydia psittaci was the most common Chlamydia species detected and the pres-

ence of C. avium in Switzerland was reported for the first time.
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