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Abstract

The circadian rhythm functions as a master clock that regulates many physiological pro-

cesses in humans including sleep, metabolism, hormone secretion, and neurobehavioral

processes. Disruption of the circadian rhythm is known to have negative impacts on health.

Light is the strongest circadian stimulus that can be used to regulate the circadian phase. In

this paper, we consider the mathematical problem of time-optimal circadian (re)entrainment,

i.e., computing the lighting schedule to drive a misaligned circadian phase to a reference cir-

cadian phase as quickly as possible. We represent the dynamics of the circadian rhythm

using the Jewett-Forger-Kronauer (JFK) model, which is a third-order nonlinear differential

equation. The time-optimal circadian entrainment problem has been previously solved in

settings that involve either a reduced-order JFK model or open-loop optimal solutions. In

this paper, we present (1) a general solution for the time-optimal control problem of fastest

entrainment that can be applied to the full order JFK model (2) an evaluation of the impacts

of model reduction on the solutions of the time-optimal control problem, and (3) optimal feed-

back control laws for fastest entrainment for the full order Kronauer model and evaluate their

robustness under some modeling errors.

1 Introduction

The circadian rhythm is a mechanism with which living beings can synchronize their biologi-

cal processes with the light and dark pattern of the terrestrial day [1]. Effectively, the circadian

rhythm functions as a master clock that regulates these processes [2]. In humans, the circadian

rhythm is heavily linked to various physiological processes, including sleep, metabolism,

hormone secretion, and neurobehavioral processes. Disruption of the circadian rhythm is

known to have negative impacts on health, ranging from fatigue in travelers with jet-lag to an

increased risk of cancer in rotating shift workers [3].

Light is the strongest circadian stimulus. In the literature, there are mathematical models

that capture the dynamics of the circadian rhythm and how light affects it. The most detailed

models are based on the biochemical and gene regulation processes behind the circadian
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rhythms, such as those in [4–6]. Empirical models, such as variants of the well-known Jewett-

Forger-Kronauer (JFK) model [7, 8], are simpler and capture the essential behavior of the

human core body temperature oscillation and the effect of light on the phase and amplitude of

this oscillation. As demonstrated in [9], the JFK model may be considered as the asymptotic

case of the biochemical models in an averaged sense.

One aspect of circadian rhythm regulation that has received a lot of attention is the (re)

entrainment problem, i.e., the problem of driving a misaligned circadian phase to a reference

circadian phase. Such problems occur, for example, in travelers with jet-lag or workers with

rotating shifts. This problem is typically expressed as an optimal control problem of a system

with nonlinear dynamics. The control inputs into the system are typically light [10] and chemi-

cals that target circadian genes [11]. Some researchers have proposed to use model predictive

control to deal with the nonlinear dynamics of the circadian rhythm without any guarantee of

optimality of the solutions [12–15]. In contrast, others consider the time-optimal control prob-

lem related to circadian entrainment [16]. Our prior work (c.f. [17–21]) that used the Pontrya-

gin Maximum Principle approach falls under this category. A related work reported in [22]

also posed the time-optimal control problem and solved it by assuming that the optimal light

schedule would alternate between using maximally bright circadian light and darkness. In the

optimal control literature, such strategies are called bang-off strategies. Subsequently, the time-

optimal scheduled is computed by optimizing the switching times of the light (i.e., between

light on and off).

In this paper, we solve the time-optimal control problem of the fastest entrainment on the

JFK model. The JFK model for human circadian rhythm is a third-order nonlinear differential

equation, which is detailed in Sec. 2. In our prior work [18, 19], we study the optimal entrain-

ment of a reduced model with second-order dynamics, which is obtained by ignoring a (fast)

part of the dynamics, which is called the Process-L. In some later work [20, 21], we study the

optimal entrainment of a further reduced model, which is obtained by ignoring the amplitude

of the circadian oscillation and focusing on the phase dynamics of the oscillation. These reduc-

tions were necessary to solve the time-optimal control problem; otherwise, the solution proce-

dures that we used were not numerically stable. The contributions of this paper can be stated

as follows.

• We formulate a general solution for the time-optimal control problem of fastest entrainment

that can be applied to the full order JFK model.

• We evaluate the impacts of the ignored dynamics in the reduced-order models on the solu-

tions of the time-optimal control problem.

• We formulate optimal feedback control laws for fastest entrainment for the full order JFK

model and evaluate their robustness under modeling error.

The main tool that we use to achieve these results are (i) the lower order models that allow

us to compute the solutions of similar (but simpler) problems as initial approximations of the

optimal solution, and (ii) the calculus of variations that allows us to formulate a functional gra-

dient descent algorithm to minimize the objective (i.e., entrainment time) from the initial

approximations above. Note that the algorithms which are proposed to calculate the (locally or

globally) optimal light input for the minimum-time entrainment only depend on the known

initial states (open-loop form) instead of the current circadian states during the whole entrain-

ment time (feedback form). If the given values of the initial states are not accurate or distur-

bances in the light inputs or circadian states occur during the entrainment processes, the

minimum-time optimal light inputs which are given as a function of time might turn out to be

invalid for entrainment. The feedback implementation of the optimal light input becomes
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necessary for robust entrainment. To implement the feedback entrainment, we collect data

from the computed open-loop optimal trajectories to learn an optimal feedback control strat-

egy. In contrast, existing results to this problem, e.g., those reported in [22], only report on the

procedure to obtain the open-loop optimal trajectories. We also demonstrate the robustness of

the optimal feedback control strategy by applying it on problem setups that are not used in the

training data set.

The rest of the paper is organized as follows. Section 2 covers the full order model and the

definition of the time-optimal control problem. In Section 3, we define the reduced-order

models and the corresponding time-optimal control problems. In Section 4, we present the

algorithms that we use to solve the time-optimal control problems above. In Section 5, we eval-

uate the impacts of the ignored dynamics in the reduced-order models on the solutions of the

time-optimal control problem. In Section 6, we present the optimal feedback control laws for

the time-optimal control problem. Finally, Section 7 concludes the paper with some discussion

on the main results.

2 Problem formulation

The circadian rhythm entrainment problem in this paper is studied based on the JFK model

[7]. This model is proposed on the dynamics and light-induced variations in the core body

temperature (CBT), comprised with two processes: (1) the Process-L simulates the transduc-

tion from the light energy received by the retina to the neuron stimulus transmitted by the ret-

ina. It is also closely linked to the light adaption process of our eyes; (2) the Process-P

simulates when the SCN receives the stimulus from the retina, how does the CBT change with

this light-induced stimulus. The dynamics of the CBT oscillator is formulated and normalized

on the Van Der Pol limit cycle. The dynamics of this circadian rhythm model is expressed as

the following ordinary differential equations:

dx
dt
¼
p

12
xc þ m

1

3
xþ

4

3
x3 �

256

105
x7

� �

þ B
� �

; ð1Þ

dxc

dt
¼
p

12
qxcB �

24

0:99729tx

� �2

x � kxB

" #

; ð2Þ

dn
dt
¼ 60ðaðIÞð1 � nÞ � bnÞ; ð3Þ

aðIÞ ¼ a0 �
I
I0

� �p

; ð4Þ

u ¼ GaðIÞð1 � nÞ; ð5Þ

B ¼ ð1 � 0:4xÞð1 � kcxcÞu: ð6Þ

Here x(t) and xc(t) are the states of the CBT oscillator, and n(t) is the state of the process

that represents retinal photoreceptor saturation (termed Process-L). The states x(t) and n(t) are

normalized and do not have physical units. The unit of xc(t) is h−1. Light input that enters the

receptor is represented by its intensity I(t), which drives the Process-L. The signal u(t) is the

input to the circadian oscillator, downstream from the Process-L. The values of the parameters

of this model are reported in Table 1 below.
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We define a 24 h- periodic light input

IwðtÞ ¼

( Iw;max; 0 � t < 16;

0; 16 � t < 24;
ð7Þ

simply simulating the natural light-dark cycle, which is treated as the reference light in the fol-

lowing entrainment processes. The reference state trajectories in this model, denoted as �xðtÞ,
�xcðtÞ and �nðtÞ, respectively, are the stable limit cycle solution of the JFK model with the peri-

odic input Iw(t). The time-optimal entrainment (TOE) problem is formulated as finding the

light input I(t) that drives a given initial state to this periodic solution as quickly as possible.

The jet-lag caused by rapid transmeridian travel is considered in this paper. We basically

assume that the circadian rhythm of the entraining subject keeps synchronization with the

local time in the starting point during the travel time, formally:

PROBLEM (TOE)

Given the system dynamics (1)–(6) and initial conditions

½x; xc; n�ð0Þ ¼ ½�x; �xc; �n�ðTlagÞ; ð8Þ

where Tlag 2 (0, 24) is the amount of jet-lag, i.e., time shift between the destination and starting

point of travel. We want to minimize T such that

xðTÞ

xcðTÞ

" #

�
�xðTÞ

�xcðTÞ

" #�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

2

� tol1 ¼ 0; ð9Þ

using I(t) as the optimization variable, where tol1 = 0.01 corresponds to about 30 minutes dif-

ference in the circadian phase and is small enough to ignore. We assume that, when the

entraining state trajectory reaches the reference one (achieves the stopping criterion), the ref-

erence light in (7) is applied on the subject. Thus, the entrainment light strategy in this model

during the whole time is given as

ÎðtÞ ¼
I�ðtÞ; t � T;

IwðtÞ; t > T;

(

where I�(t) represents the optimal light input of the TOE problem. As ½�x; �xc� is the stable peri-

odic solution of the dynamics with the input Iw, the reference light Iw will drive the entrain-

ment state [x, xc] to the reference state ½�x; �xc� gradually if they are close with each other. Note

that n is introduced in the Process-L of the JFK model to simulate the nonlinear relation of the

light input and circadian drive received by the SCN. It has a very fast time scale and very small

effects on the stability of the limit cycle, which is shown in the following section. The full order

Table 1. Model parameters.

Parameter Value Parameter Value

μ 0.13 h−1 q 1/3

k 0.55 h−1 p 0.5

α0 0.05 h−1 β 0.0075 h−1

G 33.75 I0 9500 lux

τx 24.2 h kc 0.4 h

https://doi.org/10.1371/journal.pone.0225988.t001
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model behaves just like the 2nd-order one. Therefore, n is ignored in the terminal condition

(9). We also impose the constraint

0 � IðtÞ � Imax; ð10Þ

for all t 2 [0, T], where Imax is a parameter representing the maximum light intensity that can

be used.

Throughout the paper, we define the circadian phase(in radian) of any point on the limit

cycle of the circadian oscillation [x, xc, n] as

y≜ � tan � 1
xc

x

� �
; y 2 ½0; 2pÞ: ð11Þ

3 Model simplification

To reduce the complexity of solving the optimization problem above, some simpler models

have been introduced. The optimization problem was then reformulated for the simplified

models. In this section, we briefly review the simplified models and compare their behaviors

under the periodic light input in Eq (7).

3.1 Second-order model

In this model, we exploit the fact that the Process-L (3) has a much faster time scale than the

circadian oscillator. We use quasi steady-state approximation to assume that the Process-L is

always at its steady-state. This yields

n ¼
aðIÞ

aðIÞ þ b
¼

a0
I
I0

� �p

a0
I
I0

� �p
þ b

: ð12Þ

Further, from (5) we have

u ¼
Gba0

I
I0

� �p

a0
I
I0

� �p
þ b

: ð13Þ

Since u is related to I through a static nonlinear mapping (13), we can simplify the circadian

oscillation model by assuming that u is the control input and removing the Process-L from the

model. The resulting model is therefore

dx
dt
¼
p

12
xc þ m

1

3
xþ

4

3
x3 �

256

105
x7

� �

þ B
� �

; ð14Þ

dxc

dt
¼
p

12
qxcB �

24

0:99729tx

� �2

x � kxB

" #

; ð15Þ

B ¼ ð1 � 0:4xÞð1 � kcxcÞu: ð16Þ
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Further, we map the periodic input in (7) through (13) and obtain a 24 h- periodic circadian

input

UwðtÞ ¼

(Uw;max; 0 � t < 16;

0; 16 � t < 24:
ð17Þ

The reference state trajectories in this part, denoted as ~xðtÞ and ~xcðtÞ, respectively, are the

stable limit cycle solution of the 2nd-order model with the periodic input Uw(t).
For the 2nd-order model, we can define a surrogate for the time optimal entrainment prob-

lem (TOE) as follows:

PROBLEM (TOE-2nd Order). Given the system dynamics (14)–(16) and initial condi-

tions

½x; xc�ð0Þ ¼ ½~xðTlagÞ; ~xcðTlagÞ�; ð18Þ

minimize T such that

xðTÞ

xcðTÞ

" #

�
~xðTÞ

~xcðTÞ

" #�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

2

� tol1 ¼ 0; ð19Þ

using u(t) as the optimization variable. We also impose the constraint

0 � uðtÞ � umax; ð20Þ

for all t 2 [0, T], where umax is a parameter representing the maximum circadian input that

can be used.

3.2 First-order model

Exploiting the fact that the 2nd-order circadian model has a stable limit cycle, we can further

reduce the 2nd-order model to one that basically only captures the dynamics of the phase of

the oscillation, and thus ignores the amplitude of the oscillation. The first-order model is of the

form

dy
dt
¼ o0 þ f ðyÞu; ð21Þ

where θ (in radians) is the circadian phase. The parameter ω0 is the so-called free running fre-
quency, whose value ω0 = 2π/24.2 rad/h is chosen to match the frequency of the limit cycle

(with u(t)� 0) in the second-order model (14)–(16). The input u is the circadian input with

the same interpretation as in (13). The function f(θ) is called the phase response function (or

phase response curve) in the literature [16, 20, 23, 24]. Based on (21), we can interpret this func-

tion as a map from the timing of the introduction of an impulsive input to the resulting shift in

the circadian phase.

We compute the phase response function f(θ) with the following procedure.

Step 1. Obtain the free running periodic solution to (14)–(16) by setting u(t)� 0. Denote this

solution as ð~xf ðtÞ; ~xcf ðtÞÞ and the period as Tω. We assume the timing convention

occurs at ~xfcð0Þ ¼ 0 and ~xf ð0Þ is at maximum.

Time optimal entrainment control for circadian rhythm
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Step 2. Choose different values of τ 2 [0, Tω], run the model in (14)–(16) with initial condi-

tions xð0Þ ¼ ~xf ðtÞ and xcð0Þ ¼ ~xcf ðtÞ with the impulsive input signal

uyðtÞ ¼

( umax; t 2 ½0;D�;

0; else:
ð22Þ

The corresponding impulsing phase is defined as

y ¼ � tan � 1
~xcf ðtÞ

~xf ðtÞ

 !

; y 2 ½0; 2pÞ; ð23Þ

where umax = 0.2208 corresponds to Imax = 10000 lux. Here, Δ is a much shorter time

interval than 24 hours. In our implementation, we choose Δ = 0.5 hour.

Step 3. Since (x, xc) will converge back to the free running periodic orbit, we define the result-

ing time shift Tθ (modulo the period Tω) such that

lim
t!1

xðtÞ

xcðtÞ

" #

�

~xf ðt þ tþ TyÞ

~xcf ðt þ tþ TyÞ

2

4

3

5

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
¼ 0: ð24Þ

Then, the phase response function is given by

f ðyÞ ¼
2pTy

ToumaxD
: ð25Þ

The resulting PRC is demonstrated as Fig 1, which is used for the formulation of the

1st-order model in (21).

Forcing the first-order model in Eq (21) with the periodic circadian input Uw(t) from Eq

(17) results in a periodic limit cycle (modulo 2π), where the circadian phase trajectory is

denoted as �yðtÞ. For the first-order model, we can define a surrogate for the time-optimal

entrainment problem (TOE) as follows:

PROBLEM (TOE-1st order). Given the system dynamics (21) with an initial condition

yð0Þ ¼ �yðTlagÞ; ð26Þ

minimize T such that

jyðTÞ � �yðTÞj � tol2 ¼ 0 mod 2p ¼ 0; ð27Þ

using u(t) as the optimization variable, where tol2 = 0.1 also corresponds to about 30 minutes

difference in the circadian phase. We also impose the constraint

0 � uðtÞ � umax; ð28Þ

for all t 2 [0, T], where umax is a parameter representing the maximum circadian input that

can be used.

3.3 Behaviors under periodic light inputs

Under the periodic inputs Iw(t) (for the full order model) and Uw(t) (for the reduced models),

the system exhibits stable limit cycles. Fig 2 shows a comparison between the periodic orbits of

Time optimal entrainment control for circadian rhythm
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these models for Iw,max = 100 lux (comparable to the light intensity in a dim indoor space such

as office corridors or elevators [25]), and Iw,max = 10000 lux (comparable to the light intensity

outdoor on a bright day). The corresponding values of Uw,max (through (13)) are 0.1028 and

0.2208, respectively. We can make the following observations from these simulation data:

• The periodic orbits of the full order model and the second-order model are practically the

same.

• There is a relative phase shift between these models, marked by the circadian phases at sun-

rise. At Iw,max = 100 lux, the largest gap is 0.0974 rad (22.31 min) between the first-order and

second-order models. At Iw,max = 10000 lux, the largest gap is 0.1534 rad (35.15 min)

between the second-order and the full order model.

• The impact of the Process-L is more significant at the higher circadian light intensity. This

can be observed by comparing the waveforms of the circadian input u(t) in the full order

and second-order models. At Iw,max = 10000 lux, u(t) has more pronounced spikes when the

light is switched on, compared to at Iw,max = 100 lux.

4 Solution strategies for the time optimal entrainment problems

Solution strategies for TOE-2nd order and TOE-1st order have been reported in [19, 20],

respectively. For completeness, we summarize the strategies in this section.

First, note that all system models are single input affine nonlinear systems. That is, they can

be written in the following format

dx
dt
¼ �ðxÞ þ gðxÞu; ð29Þ

Fig 1. Phase response curve generated from the 2nd-order model.

https://doi.org/10.1371/journal.pone.0225988.g001

Time optimal entrainment control for circadian rhythm

PLOS ONE | https://doi.org/10.1371/journal.pone.0225988 December 18, 2019 8 / 30

https://doi.org/10.1371/journal.pone.0225988.g001
https://doi.org/10.1371/journal.pone.0225988


where x 2 Rn is the system state, and u 2 R is the control input. We assume that the control

input is bounded,

0 � u � umax: ð30Þ

Further, the time optimal entrainment (TOE) problem can be cast as a time optimal control

problem with terminal state constraint, which can be formulated as minimizing the objective

J ¼
Z T

0

1 dt; ð31Þ

Fig 2. (Left column) Limit cycles of the full order and 2nd-order models corresponding to the circadian light intensities Iw,max of

100 lux (top) and 10000 lux (bottom). The blue and yellow arrows indicate the values of x and xc at sunrise. The black arrow

indicates the phase of the 1st-order model at sunrise. (Right column, first and second panels) The graphs of x (solid) and xc (dash)

of the limit cycles versus time for the full order and second-order systems, respectively, for Iw,max = 100 lux. (Right column, third

panel) The graph of the circadian phase θ of limit cycle versus time for the first-order model for Iw,max = 100 lux. (Right column,

fourth to sixth panels) The same as the first three panels for Iw,max = 10000 lux. The red curves represent the circadian drive input of

each model. Note that the circadian drives of the 1st-order model in the third and sixth panels are equal to those in the second and

fifth panels, respectively.

https://doi.org/10.1371/journal.pone.0225988.g002
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subject to the initial and terminal state constraints

xð0Þ ¼ xinit; ð32Þ

ZðxðTÞ;TÞ ¼ 0: ð33Þ

The function Z : Rn � R! R can be used to represent the fact that the terminal state must

be at a time-varying target state (i.e., the reference). In terms of the entrainment problem of

the three models mentioned in this paper, we define the expression of η = 0 based on (9), (19)

and (27), respectively.

Following the Pontryagin’s Maximum Principle, we formulate the augmented cost function

Lðx; u;T; l; kÞ≜T þ
Z T

0

l
T
ðtÞ �ðxðtÞÞ þ gðxðtÞÞuðtÞ �

dx
dt

� �

dt þ kTZðxðTÞ;TÞ; ð34Þ

where lðtÞ 2 Rn is the co-state and κ is the Lagrange multiplier corresponding to the terminal

state constraint.

The first variation of the objective J with respect to the input signal υ(t) is given by

dJ ¼
Z T

0

l
T
ðtÞgðxðtÞÞduðtÞ dt; ð35Þ

where δυ(t) is the perturbation of υ(t). The optimal control input can be found by

u�ðtÞ ¼ argmin
u

l
�
ðtÞTgðx�ðtÞÞu; ð36Þ

where ξ�(t) and λ�(t) are optimal state and co-state trajectories, respectively. We can see that

the optimal control input therefore necessarily follows a bang-off strategy

u�ðtÞ ¼

(
0; l

�T
ðtÞgðx�ðtÞÞ > 0;

umax; l
�T
ðtÞgðx�ðtÞÞ < 0:

ð37Þ

Remark 1 The case where λ�T γ(ξ�) is zero for a time interval of nonzero length is called a sin-
gular arc. We show in [19] that singular arcs do not affect the solution of TOE-2nd Order. Fur-
ther, although not presented here, it is not difficult to see that the singular arc does not exist in
the TOE-1st Order as it would violate the transversality condition explained below.

The evolution of the state follows the model in (29), while the co-state evolves according to

dl�

dt
¼ �

@�ðx
�
Þ

@x
� þ

@gðx
�
Þu�

@x
�

� �T

l
�
: ð38Þ

Further, λ�(t) needs to satisfy its terminal condition,

@Zðx
�
ðT�Þ;T�Þ
@x

� �T

k� ¼ l
�
ðT�Þ;

1þ l
�T
ðT�Þ �ðx�ðT�ÞÞ þ gðx�ðT�ÞÞu�ðT�Þð Þ þ k�T

@Zðx
�
ðT�Þ;T�Þ
@T

¼ 0:

ð39Þ

which is also known as the transversality condition [26, 27]. Here, T� and κ� denote the optimal

time and Lagrange multiplier, respectively.

To solve the optimal control problem above, we use two algorithms, which are explained

below along with their strengths and weaknesses.
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4.1 Direct shooting algorithm (DSA)

In this algorithm, we view the two point boundary value problem above as finding the appro-

priate initial co-state λ�(0). Observe that if (ξ�(t), υ�(t), λ�(t)) satisfy (29), (37), and (38), then

so do (ξ�(t), υ�(t), cλ�(t)) for any positive scalar c. The right scalar c has to be chosen to satisfy

the transversality condition (39). Therefore, the search space for λ�(0) can be reduced from Rn

to the unit sphere in Rn
. It turns out that for TOE-2nd Order and TOE-1st Order, we can solve

the two point boundary value problem rather efficiently. For TOE-2nd Order, this means λ�

(0) can be sought on a circle. For TOE-1st Order, there are only two candidates for λ�(0). The

basic direct shooting algorithm can then be expressed as follows:

Step 1. Create N sample points on the unit sphere inRn
. Denote them as λ1, � � �, λN.

Step 2. For each of i 2 {1, � � �, N} do: simulate ξ(t) and λ(t) forward using (29), (37), and (38),

under initial conditions ξ(0) = ξinit and λ(0) = λi. Terminate the simulation when the

final state constraint is satisfied,

t ¼ Ti; ZðxðTiÞ;TiÞ ¼ 0; ð40Þ

or when t reaches an upper bound Tmax. The upper bound Tmax can be initially set

based on the time needed for open-loop entrainment, and subsequently reduced as

shorter entrainment times are found.

Step 3. Several locally optimal solutions can be found using the direct shooting method by

searching abundant guesses of the initial co-state values. The optimal solution with

the minimum entrainment time among all found solutions is treated as the globally

optimal one, i.e., the optimal entrainment time is T� = min{Ti}i=1,� � �,N.

Note that (29), (37), (38), and (39) provide us with a necessary condition for local optimal-

ity. This direct shooting algorithm provides us with a means to search (through sampling) for

all solutions that satisfy this condition and therefore has the advantage of not getting trapped

in local minima. The weakness of this algorithm is that for higher-order systems, such as the

full order model, the number of samples generated can be impractically large. Another weak-

ness is the co-state dynamics in (38) is unstable for the second-order and the full order models.

This means forward numerical integration of this dynamics is unreliable for long periods of

time, e.g., in jet-lag cases with long entrainment time.

Representatives of the optimization results using the DSA for a jet-lag case, where a subject

whose initial circadian phase is at 6 am (corresponding to θ(0) = 0.8075 in TOE-1st Order)

seeks to minimize her entrainment time for a 12-hour jet-lag are shown in Fig 3. We assume

that umax = 0.1028, umax = 0.1731 and umax = 0.2208 (corresponding to steady circadian light-

ing levels of 100 lux, 1000 lux and 10000 lux, respectively). Applying the same algorithm for

the corresponding TOE-2nd Order case (corresponding to x(0) = 0.8033 and xc(0) = −0.6905)

leads to a success for the bright circadian light cases (umax = 0.2208 and 0.1731), as shown in

Fig 4. For dim circadian light (umax = 0.1028), the DSA does not converge because of the insta-

bility of numerical forward integration of the co-state dynamics in (38). This case is illustrated

in Fig 5, where we can observe that even with the same initial co-state value at t = 0, λ1 and λ2

from the numerical forward integration diverge from the backward integration values at about

180 hours. As the optimal entrainment times with Imax = 1000 and 10000 lux are always less

than 150 hours, the direct shooting algorithm has no issues in the forward integration in these

cases.
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4.2 Gradient descent algorithm (GDA)

This algorithm addresses the weaknesses of the DSA. The idea is to use gradient descent search

for the optimal input υ�(t) by using the first variation in (35). The basic gradient descent algo-

rithm can then be expressed as follows:

Step 1. Set k = 0. Choose an initial guess for control input u0 : Rþ ! ½0; umax�.

Step 2. Simulate ξk(t) forward using (29), the initial condition ξk(0) = ξinit, and the control

input υk(t) until t = Tk such that η(ξk(Tk), Tk) = 0.

Step 3. Find the final condition for the co-state by solving

@ZðxkðTkÞ;TkÞ

@x

� �T

kk ¼ lkðTkÞ;

1þ l
T
k ðTkÞ �ðxkðTkÞÞ þ gðxkðTkÞÞukðTkÞð Þ þ kT

k
@ZðxkðTkÞ;TkÞ

@T
¼ 0;

ð41Þ

for κk and λk(Tk).

Step 4. Simulate λk(t) backward using (38) and the final condition λk(Tk).

Step 5. Compute the descent direction using (35), i.e.,

DkðtÞ≜ l
T
k ðtÞgðxkðtÞÞ; t 2 ½0;Tk�: ð42Þ

Step 6. Update the control input along the descent direction:

ukþ1ðtÞ ¼ min ðmaxð0; ukðtÞ � akDkðtÞÞ; umaxÞ: ð43Þ

The step size αk > 0 should be chosen such that the entrainment time is improved or

the same as the previous value (Tk+1� Tk). In our simulations, we use a line search

(bisection search, etc.) to solve the optimization problem given as follows:

ak ¼ arg min
a>0

Tðmin ðmaxð0; ukðtÞ � aDkðtÞÞ; umaxÞÞ:

This process would be time-consuming, but it guarantees that the updating step

decreases the entrainment time as much as possible or has no effects on the entrain-

ment time in every iteration.

Step 7. Increment k by 1. Repeat from Step 2 until convergence. In our numerical simula-

tions, we set the stopping criterion for the gradient descent process as

Z Tkþ1

0

jukðtÞ � ukþ1ðtÞjdt � 10� 10:

The stopping criterion is used to verify that υk(t) has reached or approximately

reached the fixed point and the entrainment time cannot be improved. In most cases,

the gradient descent algorithm takes at most 50 iterations to reach the stopping crite-

rion mentioned above.
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We can show that the following property characterizes fixed points of the iteration proce-

dure above.

Lemma 2 The iteration reaches a fixed point, i.e., υk+1(t) = υk(t) for any positive step size αk

in Step 6 if and only if the following condition is satisfied for all t 2 [0, Tk]

ukðtÞ ¼ 0) DkðtÞ � 0;

ukðtÞ ¼ umax ) DkðtÞ � 0;

ukðtÞ 2 ð0; umaxÞ ) DkðtÞ ¼ 0:

9
>=

>;
ð44Þ

Proof: Assume Eq (44) is satisfied. For all t 2 [0, Tk], when υk(t) = 0, we have Δk(t)�0.

Based on Step 6, for any positive αk, υk+1(t) = υk(t) = 0. It can also be proved that, for any t 2
[0, Tk], if υk(t) = υmax, υk+1(t) = υmax; if υk(t) 2 (0, υmax) and Δk(t) = 0, we must have υk+1(t) =

υk(t) for any αk > 0. Therefore, the iteration reaches a fixed point. If Eq (44) is not satisfied, for

example, if υk(t) = 0 but Δk(t)< 0 for any t 2 [0, Tk], we have υk+1(t)> 0 by Eq (43). We can

also prove that υk(t) 6¼ υk+1(t) if the second or third row of Eq (44) does not hold. Therefore,

υk(t) is not a fixed point if it does not satisfy the condition in (44).

Note that convergence of the iteration essentially means we hit a locally optimal control

input. While the locality is a drawback of this algorithm, it has an advantage over the DSA

because it does not require forward simulation of (38) that is numerically unstable. We dem-

onstrate the use of GDA in solving the 12-hour jet-lag case for TOE-2nd Order (corresponding

Fig 3. Solutions of TOE-1st order for the 12-hour jetlag case for the circadian lighting levels of 100 lux (top), 1000 lux (umax =

0.1731) (middle) and 10000 lux (bottom), obtained using the DSA. The black and blue curves indicate the circadian phases of the

subject and the reference, respectively. The red curve indicates the optimal light input of the 1st-order model. The green dash

curves give the corresponding TOE solutions of the full order model.

https://doi.org/10.1371/journal.pone.0225988.g003
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to x(0) = 0.8033 and xc(0) = −0.6905) under dim circadian light (umax = 0.1028). We have

shown in the previous section that DSA cannot be used to solve this problem. The TOE solu-

tion of this case is shown in the upper panels in Fig 6. Observe that since the co-states dynam-

ics are integrated backward, we do not have the instability issue encountered in the DSA. Fig 6

also shows the TOE results of the 2nd-order model with Imax = 1000 and 10000 lux. We can

observe in these cases that the amplitude suppression occurs in the oscillator of the core body

temperature. The amplitude suppression regions are usually called the phaseless set [28],

which, under higher light intensities, gives a ‘shortcut’ for the circadian states to follow and

shortens the entrainment time. We can also observe in the amplitude suppression cases that,

in the first two days, the light inputs are almost centered around the minimum value of x, i.e.,

the minimum value of the core body temperature. These light strategies are very similar to

those in the trials in [29], whose results also prove that amplitude suppression contributes to

the rapid circadian phase shift (as strong type 0 PRC) and fast entrainment under bright light.

We also apply GDA on the full order TOE problem. Again, we assume that the subject’s

initial circadian phase is at 6 am (corresponding to x(0) = 0.7562, xc(0) = −0.7591, and

Fig 4. Solution of TOE-2nd Order for 12 hours jetlag case with circadian lighting level of 10000 lux, obtained using DSA. (Top)

The black and blue curves indicate the circadian phases of the subject and the reference, respectively. The red curve indicates the

optimal circadian input. (Bottom) The optimal co-state trajectories.

https://doi.org/10.1371/journal.pone.0225988.g004
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n(0) = 0.4061). We consider 3 values of Imax, 100 lux (dim indoor space), 1000 lux (overcast

day outdoor or bright indoor space), and 10000 lux (full daylight outdoor). Fig 7 demonstrates

the 12-hour minimum-time entrainment cases with Imax = 100, 1000 and 10000 lux and TOE

solutions. We can also observe that the amplitude suppression occurs in the bright light cases,

e.g. 1000 and 10000 lux, these results are consistent with those in the 2nd-order model. Fig 8

shows the results of applying the GDA on the 11-hour jet-lag case for the full order model,

using Imax = 1000 lux. The fact that the locally optimal solutions provided by the GDA are gen-

erally not unique is demonstrated in Fig 8, where two solutions are shown to satisfy the condi-

tions in Lemma 2. Fig 9 shows how the objective function improves over the iterations of the

GDA for the two solutions shown in Fig 8.

4.3 Combining direct shooting and gradient descent algotihms

Local optimality of the results of GDA implies that their quality heavily depends on the initial

guess of the optimal control input. On the other hand, DSA can be used effectively to find the

global optimal solution for lower-order models. We then combine the use of both algorithms

by using the solutions obtained using DSA on a lower-order model to warm start the GDA.

Specifically, if u�(t) is the optimal circadian input found by applying DSA on a 1st- or 2nd-

order model, then our initial guess for the optimal circadian light input intensity I�(t) for the

Fig 5. Numerical integrations of the co-state dynamics (38) in TOE-2nd Order. The backward integration (blue curves) is

performed first. When forward integration is performed to re-trace the backward integration, the solutions (black curves) diverge.

https://doi.org/10.1371/journal.pone.0225988.g005
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Fig 6. Locally optimal solutions of TOE-2nd Order for the 12-hour jet-lag case for the circadian lighting levels of 100 lux

(umax = 0.1028) (top row), 1000 lux (umax = 0.1731) (middle row) and 10000 lux (umax = 0.2208) (bottom row), obtained using

the GDA. The left column are the graphs of the state trajectories, locally optimal light inputs, and the reference trajectories. The red

curves indicate the optimal light inputs of the 2nd-order model. The green dash curves give the corresponding TOE solutions of the

full order model. The right column are the graphs of the corresponding gradient of the entrainment time with respect to the

circadian light input. Observe that, per Lemma 2, both solutions are indeed (locally) optimal.

https://doi.org/10.1371/journal.pone.0225988.g006

Fig 7. Locally optimal solutions of TOE-full order for the 12 hours jet-lag case for the circadian lighting levels of 100 lux (top

row), 1000 lux (middle row) and 10000 lux (bottom row), obtained using GDA. On the left column are the graphs of the state

trajectories, locally optimal light input, and the reference trajectories. The red curve indicates the optimal circadian input of the full

order model. On the right column are the graphs of the corresponding gradients and light inputs. Observe that, per Lemma 2, both

solutions are indeed (locally) optimal.

https://doi.org/10.1371/journal.pone.0225988.g007
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Fig 8. (Left) Two locally optimal solutions of TOE (full order) for the 11-hour jet-lag case with Imax = 1000 lux, obtained by using

the GDA with two different initial guesses of the circadian light input signal. (Right) Graphs of the corresponding optimal circadian

light inputs I�(t) and the descent direction Δ(t). We can also observe that, per Lemma 2, both solutions are (locally) optimal.

https://doi.org/10.1371/journal.pone.0225988.g008

Fig 9. The optimization objective (i.e., entrainment time) improves over the iterations of the GDA for both of the solutions

shown in Fig 8. The initial guess 1 in the blue curve in this figure converges to the TOE solution in the upper panels in Fig 8, the

initial guess 2 in the black curve in this figure converges to the TOE solution in the lower panels in Fig 8.

https://doi.org/10.1371/journal.pone.0225988.g009
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full order model is determined by

I�ðtÞ ¼

(
0; u�ðtÞ ¼ 0;

Imax; u�ðtÞ ¼ umax:
ð45Þ

Then, we apply the GDA to further optimize I�(t). Note that we do not assume that the

GDA will converge to I�(t) that only assumes two values, 0 or Imax.

We compare the performance of the solutions that we obtained using this strategy with

published results by Serkh and Forger [22]. The entrainment time for various jet-lag cases for

our results and those from [22] are shown in Fig 10. In the same figure, we can also see the per-

formance improvement between the solutions before the application of the GDA algorithm

(thus, the initial guesses) and the solutions after the GDA algorithm. The comparison between

the blue (results in [22]) and black curves (our results) verifies the performance of our algo-

rithm. Also, the TOE light inputs from our algorithm (shown as the green dash curves in Fig

6) are also consistent with those in [22] (in particular, Fig S13 in [22]).

The entrainment time in Fig 10 implies that the maximum entrainment time in our gradi-

ent descent results occurs at around 12-13 hours shift (westward travel), which means that the

JFK model is almost east-west symmetrical. These results are consistent with those in [22],

which addressed the minimum-time entrainment problem of the same circadian model. How-

ever, if we only use the natural light-dark cycle in (7) with Iw,max = 100 lux for entrainment

without any other light input, the entrainment time in Fig 11 demonstrates that the JFK model

is still east-west asymmetrical as maximum entrainment time occurs at around 15 hours

westward shift. These results are consistent with those in [28], which also considered the

entrainment of the JFK model using the natural light-dark cycle. These results imply that the

JFK model is east-west asymmetrical under natural light but the optimal light inputs for mini-

mum-time entrainment can remove this east-west asymmetry.

The solution strategy proposed by Serkh and Forger is briefly described as follows. It

assumes that the optimal light input I�(t) only has two values, 0 or Imax. This assumption is

motivated by the fact that time optimal control problems with bounded input constraints gen-

erally have bang-bang or bang-off optimal solutions [26, 27]. The exceptions of this case are

when the optimal solutions lie in a so-called singular arc [26, 27].

The switching time instants of the light input are parameterized as t1, t2, � � �, tN and consid-

ered as the optimization variables. The optimal control problem in TOE is reformulated as fol-

lows. To represent entrainment, the concept of isochrons is used. Essentially, this is established

by using a phase function φ : R� R! S1; such that two pair of states of the circadian oscilla-

tor (x1, xc1) and (x2, xc2) are considered to have the same phase if φ(x1, xc1) = φ(x2, xc2). Then,

the following objective is optimized

J ¼ T þ C �
xðTÞ

xcðTÞ

" #�
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�
�
�
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 !2

; ð46Þ

under the constraint

φðx1ðTÞ; xc1ðTÞÞ ¼ φðx2ðTÞ; xc2ðTÞÞ: ð47Þ

The constant C> 0 in (46) represents the trade-off between minimizing the end time and

matching the amplitude of the circadian oscillator with that of the reference signal. The opti-

mal switching time instants t�
1
; t�

2
; . . . ; t�N are then computed using a gradient descent tech-

nique. Compared with [22], the algorithm used in this paper is proposed without the

assumption that the minimum-time optimal input is always bang-off and computes the light
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Fig 10. Comparison of the entrainment costs for the TOE (full order) problem for various jet-lag cases with the

levels of circadian light intensity of 100 lux (top), 1000 lux (middle), and 10000 lux (bottom). The black curves

represent results obtained using the GDA algorithm with initial guesses described in Sec. 4.3, while the blue curves

represent those from [22]. The red curves represent the results of applying the optimal solutions of the corresponding

TOE 2nd-order problems to the full order model. These are the initial guesses before the GDA is applied.

https://doi.org/10.1371/journal.pone.0225988.g010

Time optimal entrainment control for circadian rhythm

PLOS ONE | https://doi.org/10.1371/journal.pone.0225988 December 18, 2019 19 / 30

https://doi.org/10.1371/journal.pone.0225988.g010
https://doi.org/10.1371/journal.pone.0225988


input during the whole entrainment process instead of only the switching times. The results in

[19] and [30] show the existence of singular arcs in the minimum-time entrainment solutions

in several circadian rhythm models. These singular arcs violate the assumption that the opti-

mal input is always bang-off. Therefore, our algorithm is more general in solving the optimal

solution in various models.

5 The impacts of model reduction on the TOE solutions

In Sec. 3, we discussed two steps of model reduction of the full order JFK model. First, we

ignored the dynamics of the Process-L and introduced the 2nd-order model. Second, we

ignored the amplitude of the oscillation and introduced the 1st-order model. Here, we study

the impacts of these model reduction steps on the solutions of the time-optimal entrainment

problems. The TOE solutions of the full order model are also demonstrated in Figs 3 and 6.

Comparing them with the TOE solutions of the 1st-order and 2nd-order models, we observe

that, when the light input is dim (100 lux in the upper panels), the light on-off switching times

in the TOE solutions of the 1st-order and 2nd-order models are both very similar with those

in the full order model, while the difference between the 1st-order and full order model is

enlarged when the light intensity is increased (middle and lower panels in Fig 3). The TOE

solutions of the 2nd-order model are close to those of the full order model even under a bright

light input, as demonstrated in the lower panel in Fig 6. However, even if we apply the optimal

light input from the 2nd-order model on the full order model in the form of (45) in the bright

light cases, it still brings a large difference in the entrainment time from the optimal entrain-

ment time in many cases, shown as Fig 10. Specifically, for jet-lag cases, we evaluate the perfor-

mance of the solutions derived using the lower-order models when applied on the higher-

order models. For this, we simply replay the computed optimal control input trajectory u�(t)
on the higher-order models until we reach entrainment, which is marked by the circadian

Fig 11. Entrainment time by the natural light-dark cycle in (7) with Iw,max = 100 lux.

https://doi.org/10.1371/journal.pone.0225988.g011
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states of the subject matching those of the reference, within a certain error tolerance band. If at

the end of the computed u�(t) we do not reach entrainment, we append the control input with

the reference input trajectory until we reach entrainment. As a concrete example, suppose that

we consider the 12-hour jet-lag case with the maximum circadian lighting level of 10000 lux,

and want to replay the optimal control input trajectory u�(t) computed using the 1st-order

model on the full order model. The trajectory u�(t) in this case has a duration of 121 hours, as

shown in Fig 3. The same 12-hour jet-lag case for the full order model is associated with the

initial conditions

½x; xc; n�ð0Þ ¼ ½0:7562; � 0:7591; 0:4061�:

We then simulate the full order JFK model with the initial conditions above under the circa-

dian light intensity signal I�(t) obtained using Eq (45) until entrainment is reached or t = 121

hours. If we do not reach entrainment by t = 121 hours, we continue I�(t) with the reference

circadian lighting,

I�ðtÞ ¼ IwðtÞ; t > 121;

until entrainment is reached. Physically, this step means exposing the subject to the local/refer-

ence circadian lighting until his circadian rhythm is synchronized with the local/reference cir-

cadian rhythm.

Fig 12 shows the results from the procedure above. We can observe that at lower circadian

light intensity the gaps between the solutions of the time optimal entrainment problem of the

reduced model and those of the full order model are smaller. In particular, at Imax = 100 lux,

the solutions obtained using the second order are very similar to those from the full order

model. However, the solutions obtained using the first order model already deviate quite sig-

nificantly from those from the higher order models. This indicates that taking into account the
amplitude dynamics is relatively more important than the Process-L dynamics in solving the

time optimal entrainment problem.

6 Feedback implementation of the TOE solutions

The solution strategies obtained with all of the approaches described in the previous section

are open loop in nature. Given an initial state and the reference state trajectory, the entire opti-

mal control input trajectory υ�(t) and the corresponding optimal state trajectory ξ�(t) can be

computed. However, because of Bellman’s Principle of Optimality [26, 27], we also know that

the optimal input can be given in terms of an optimal feedback law υ�(ξ�, t). In this section, we

discuss our approach to construct such an optimal feedback law from the obtained open loop

optimal solutions.

6.1 Feedback implementation of the TOE solutions—First order case

A feedback implementation of the TOE 1st-order problems amounts to expressing the optimal

circadian input u�(t) as a function of the subject’s circadian phase θ(t) and the reference circa-

dian phase �yðtÞ. We have obtained and reported such feedback laws in our prior publication

[20].

Feedback implementation of the optimal control solutions confers more robustness to the

solutions, e.g., under modeling error, compared to the open-loop implementation of the solu-

tions. By open-loop implementation we mean simply replaying the optimal control input, as

done in Sec. 5. We demonstrate this point by comparing the performance of the open-loop

and feedback implementations of the solutions of TOE 1st-order on the full order model. The

data are shown in Fig 13.
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Fig 12. Entrainment time when the optimal input derived using a lower-order model is applied to the higher-

order models. The top, middle, and bottom graphs represent the cases of circadian light intensity of 100 lux, 1000 lux,

and 10000 lux, respectively. The graph labeled as “1st to 1st” represents the case when the result from the first-order

model is applied to the first-order model, thus the optimal solution itself. The graph labeled as “1st to 3rd” represents

the case when the result from the first-order model is applied to the full order model, and so on.

https://doi.org/10.1371/journal.pone.0225988.g012
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Fig 13. Entrainment time when the optimal input derived using the first-order model is applied to the full

order models. The top, middle, and bottom graphs represent the cases of circadian light intensity of 100 lux, 1000 lux,

and 10000 lux, respectively. The red and black curves represent the results from the feedback and open-loop

implementations, respectively. The blue curves represent results from the full order TOE, which are shown as

benchmarks.

https://doi.org/10.1371/journal.pone.0225988.g013
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6.2 Feedback implementation of the TOE solutions—Full order case

Applying the idea above to the solution of full order TOE means we need to compute the opti-

mal circadian light input I� as a function of the three states of the system (x, xc, and n) and the

states of the reference system (�x, �xc, and �n). However, since the reference trajectory is periodic,

we can replace the states of the reference system with its circadian phase θr, where the defini-

tion of the circadian phase is given in Eq (11). Further, we aim for the feedback law to be inde-

pendent of n (the state of the Process L), because the implementation of such feedback law

would require measuring (or estimating) n, which has much faster dynamics than the circa-

dian rhythm.

The procedure for constructing the feedback law is as follows:

Step 1. For a given Imax, collect a number of optimal trajectories ½x�ðtÞ; x�c ðtÞ; n
�ðtÞ; yrðtÞ; I�ðtÞ�

each with different initial conditions ½x�ð0Þ; x�c ð0Þ; n
�ð0Þ�.

Step 2. Generate Ns data points by sampling the trajectories. That is, each data point

½x�i ; x
�
c;i; n

�
i ; yr;i; I�i � 2 R

5, i 2 {1, � � �, Ns} is a point on a trajectory described in Step 1.

Step 3. Find an interpolation function F : R3
! R that interpolates ½x�i ; x

�
c;i; yr;i� ! I�i , i 2

{1, � � �, Ns}. For the results reported in this paper we use a feedforward neural network

trained by gradient propagation and cross-entropy loss function with a single hidden

layer of 32 neurons (implemented by the patternnet function in Matlab) to repre-

sent the feedback function F : R3
! f0; Imaxg.

Fig 14 shows the representations of the feedback controllers that we generated using this

procedure for 3 values of Imax, 100 lux (dim indoor space), 1000 lux (overcast day outdoor or

bright indoor space), and 10000 lux (full daylight outdoor). The optimal trajectories for the

training data are obtained by solving 23 cases of jetlag (Tlag 2 {1, 2, � � �, 23}) and sampled at

intervals of 0.01 hour.

Fig 14. Optimal feedback control laws learned from the optimal feedforward solutions data for three levels of circadian light

intensity, 100 lux (left), 1000 lux(center), and 10000 lux (right). Blue and yellow indicate cases where the optimal circadian light is

maximum and zero, respectively.

https://doi.org/10.1371/journal.pone.0225988.g014
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We evaluate the robustness of the feedback controller in three ways, as described below.

Cross-validation with new jetlag cases. We apply the learned feedback controllers on jet-

lag cases that are not used in the training data set. Specifically, we consider the jetlag cases with

Tlag 2
1

2
; 1 1

2
; � � � ; 23 1

2

� �
. We compare performance of the optimal open loop solutions of the

TOE as described in Sec. 4.3 for these cases with the respective performance of the learned

feedback controllers. The results are shown in Fig 15. We can confirm that the feedback con-

trollers indeed perform well in this cross-validation.

Robustness w.r.t. n(0). The feedback controllers ignore the influence of n(t) in comput-

ing the optimal control response. To evaluate the validity of the assumption that n(t) can be

ignored, we use the feedback controllers under various initial conditions n(0). The results

shown in Fig 16 confirm that n(t) plays a very small role in the performance of the feedback

controlled system.

Robustness w.r.t. change in Imax. We train several feedback controllers for different Imax

values. As shown in Fig 14, there are significant differences between these controllers. To eval-

uate their generalizability, we use the learned feedback controllers with light inputs with differ-

ent Imax. Specifically, we evaluate the performance of the feedback controllers that are learned

using data with Imax = 10000 lux and Imax = 1000 lux on circadian light source with Imax = 5000

lux. The results are shown in Fig 17, which shows that these controllers can still perform well

under the change in Imax. For example, the feedback controller for Imax = 10000 lux results in

entrainment times that are less than 10 hours longer compared to the optimal open-loop

solutions.

7 Discussion and conclusions

In summary, we developed a method for constructing an optimal feedback controller for the

time-optimal entrainment problem for the Jewett-Forger-Kronauer (JFK) circadian rhythm

Fig 15. Performance of the feedback optimal control compared to that of the open-loop optimal solutions for jet-lag cases with

Tlag 2
1

2
; 1 1

2
; � � � ; 23 1

2
g

�
for three levels of circadian light intensity. The vertical axis denote entrainment time in hours.

https://doi.org/10.1371/journal.pone.0225988.g015
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Fig 16. Performance of the feedback optimal control for the 12-hour jet-lag case with three levels of circadian light intensity

and various initial conditions for n(0). Observe that n(0) (and consequently n(t)) only has little effect on the entrainment times.

https://doi.org/10.1371/journal.pone.0225988.g016

Fig 17. Performance of the optimal feedback controllers trained using data from the cases of circadian light intensities of 1000

and 10000 lux (red and blue curves, respectively) applied to the case of circadian light intensity of 5000 lux. Observe that the

feedback controllers perform quite well compared to the actual optimal solutions (black curve).

https://doi.org/10.1371/journal.pone.0225988.g017
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model. Our approach is based on the calculus of variations, which enables us to formulate

local optimality conditions for the solutions. It also enables us to define a gradient descent

algorithm based on the local optimality criteria.

Comparison of our method and the method in [22]

The optimal entrainment results from our method and the method in [22] demonstrate that

our method works as well as the method in [22] in minimizing the entrainment time. The opti-

mal solutions found in this paper demonstrate that we do not encounter singular arcs. In other

words, the optimal light input for the minimum-time entrainment of the JFK model is bang-

off. The method in [22] is less complex because it has fewer decision variables (i.e., the switch-

ing times), but the assumption that the minimum-time optimal light input is bang-off does

not always hold, as shown in [19] and [30], due to the existence of the singular arc in the opti-

mal solution. Our method is more general because it does not assume bang-off solutions and,

then, could find an optimal solution that contains some singular arcs.

On the relevance of lower-order circadian rhythm models

Because of the local optimality property, finding the global optimum would require us to

search the solution space exhaustively for solutions that satisfy these conditions. While this

procedure is not feasible for the full order JFK model, we demonstrate that it can be performed

successfully on reduced-order models that we discuss in this paper. Further, the resulting opti-

mal solutions can be used as initial guesses for the optimal solution of the full order model and

then improved using the gradient descent algorithm. Therefore, effectively we use the lower-

order models as surrogates to the full order model to warm start the gradient descent search

algorithm for the optimal solutions.

Impacts of model reduction on the TOE solutions

Two simplified versions of the JFK model have been discussed in this paper: (i) the 2nd-order

model that is the result of ignoring the dynamics of the Process-L, (ii) the 1st-order model

resulting from ignoring the dynamics of both the Process-L and the amplitude of the circadian

oscillation. We evaluate the impacts of the model reduction on the solutions of the TOE prob-

lems by replaying the solutions for the lower-order models on the higher-order ones. The

results indicate that for low light intensity, the solutions from the second-order model are

practically the same as those from the full order model. Meanwhile, the solutions from the

first-order model differ more significantly from those from the second-order model. This sug-

gests that the amplitude dynamics is relatively more important than the Process-L dynamics in

solving the TOE problems. Another indicator of the importance of the amplitude dynamics is

the fact that in many optimal solutions for the second and full order models the oscillation

amplitude is quenched along the way to reach entrainment. This is shown, e.g., in Fig 6 (bot-

tom) and Fig 7 (bottom).

Potential impacts of amplitude suppression in circadian oscillator

The amplitude suppression phenomenon had been discussed in [29], whose experimental data

showed that both the amplitude and phase of the circadian temperature were dramatically

changed by the bright light pulses (7000*12000 lux). This helps explain why the circadian

oscillator is dramatically quenched in Imax = 10000 lux but almost remains on the limit cycle

when Imax = 100 lux during the minimum-time entrainment processes. The amplitude sup-

pression in the circadian oscillator is closely linked to the minimum-time entrainment with
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bright light in this paper and previous literature. However, CBT amplitude suppression may

also have potential connections with health-related issues: the experimental results in [31]

indicates that the CBT rhythm tends to flatten with increasing age. The work in [32] also dem-

onstrates that the quenched amplitude of the CBT is closely connected with sleep disruption.

Therefore, the entrainment under very bright light with potential sleep disorders may be not

suitable for every individual.

Robustness of the optimal feedback controller

We use a machine learning algorithm to learn an optimal feedback controller for the (full

order) TOE problem using data collected from the optimal open-loop trajectories, which are

computed using the approach above. In general, we discover that the optimal feedback con-

troller depends on Imax, the maximum circadian light intensity that is used for entrainment.

We subsequently train separate optimal feedback controllers for three different values of Imax.

However, we also demonstrate that the trained optimal controller is robust to some variations

in Imax. Further, the trained feedback controllers depend only on the states of the circadian

oscillator, but not on the state of the Process-L. We find that the state of the Process-L has little

effect on controller performance.

The minimum-time optimal light strategies proposed in this paper can be implemented on

the entraining travelers if the initial circadian states and local time in the destination are

known. Although the light intensities of most outdoor lights are highly noisy and maintaining

the same lux for hours could be unrealistic, some lighting devices (re-timer and light therapy

glasses) and indoor light (the light in the hospital rooms and offices) can be used for offering

stable light inputs. The robustness of entrainment against the variation in the light intensity

and circadian states is improved by using the feedback entrainment strategy in Section 6,

which requires the real-time measurement of the circadian states, i.e., core body temperature.

For this purpose, some portable sensors had been developed for instantaneous measurements

of the core body temperature [33]. The feedback implementation of the entrainment process is

enabled by these sensors.
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