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Abstract

Network modeling is a challenging task due to non-trivial evolution dynamics. We introduce

multiple-selection-procedure with ‘N’ possible growth mechanisms (MSP-N). In MSP-N, an

incoming node chooses a single option among N available options to link to pre-existing

nodes. Some of the potential options, in case of social networks, can be standard preferen-

tial or random attachment and node aging or fitness. In this paper, we discuss a specific

case, MSP-2, and shows its efficacy in reconstructing several non-trivial characteristic prop-

erties of social networks, including networks with power-law degree distribution, power-law

with an exponential decay (exponential cut-off), and exponential degree distributions. We

evaluate the proposed evolution mechanism over two real-world networks and observe that

the generated networks highly resembles the degree distribution of the real-world networks.

Besides, several other network properties such as high clustering and triangle count, low

spectral radius, and community structure, of the generated networks are significantly closer

to the real-world networks.

Introduction

We witness a variety of complex social systems and non-trivial interactions among actors of

the network [1]. In real-world networks, actors are represented as nodes, and interactions

among actors are represented as edges. The definition of nodes is contextual, for example, in

World Wide Web (WWW) network [2], web pages are considered as the nodes while in pro-

tein-protein interaction network [3, 4], proteins act as nodes. This diversity results in the non-

trivial distribution of fundamental properties including degree distribution [5, 6], clustering

coefficient, triangle distribution [7], small-world property [8–14], low average path length,

assortativity [15–17], and community structure [18]. The degree of a node in a network is the

number of connections it has w other nodes, and the degree distribution is the probability dis-

tribution of these degrees over the whole network. The degree distribution varies from power-

law (a.k.a., scale-free) [1, 19, 20] to exponential. Similarly, a clustering coefficient is a measure of

the extent to which nodes in a graph tend to group together [21]. Clustering coefficient varies

from meager value to very high-value [1]. Assortativity represents a tendency of nodes to
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connect to other nodes that posses similar properties, for example, the tendency of actors to

connect others having similar degree. In literature, for different networks, assortativity varies

from negative (disassortative mixture) to positive values (assortative mixture) [15–17]. A net-

work is considered to have community structure if the nodes of the network can be easily

grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely con-

nected internally. Modularity [22] is often used in optimization methods for detecting com-

munity structure in networks.

In past, several classical growth mechanisms [8, 23–33] have been proposed to explain the

network properties. Some of these interesting hypotheses include scaling behavior of the

degree distribution, node aging, cost of link formation, randomness and preferential attach-

ment in link formation. Interestingly, in 1955, Herbert Simon [34] confirmed the existence of

‘rich get richer’ phenomena leading to power-law tail in degree distribution of several real-

world networks. Later, Derek De Solla Price [35] proposed a similar idea in the context of bib-

liographic networks. Albert and Barabási [8] (hereafter BA model) proposed a degree-based

preferential attachment process that beautifully explains power-law tail. The fundamental intu-

ition behind the preferential attachment is that the probability (pij) of connecting a newborn

node i to an older (pre-existing) node j is an affine function of the degree of node j given by

pij ¼
kj þ xj
P

lkl þ xl
: ð1Þ

where xj is a constant and kj is the degree of node j. If N denotes the total number of nodes,

then l 2 [1, N]. The BA model proposed a constant value (= 3) for the power-law exponent

with the clustering coefficient (Oð1=nÞ) vanishing as the network grows. However, majority of

the real-world networks possess a wide range of exponent values and non-zeros clustering

coefficients. Some of the interesting real-world networks that follow power-law distribution

are phones call graphs [36], Internet [37], Web [8, 38, 39], click-stream data [40], who-trusts-

whom social network [41], etc.

Similarly, random attachment mechanisms emphasize on the uniform-random attachment

of nodes and edges. Empirically, they generate networks with lower clustering coefficient

along with Binomial or Poisson degree distribution [1]. In 1998, Watts and Strogatz [14] pro-

posed a variant based on the random rewiring of a regular network. This mechanism generates

networks with higher clustering along with a bell-shaped degree distribution. Additionally,

several other network models have been proposed in the literature that capture different

statistical and spectral properties of real-world networks [8, 42–48]. We claim that these

mechanisms do not perform well in isolation with each other. Thus, we encompass above

mechanisms in a more generic network growth model based on Multiple Selection Procedure
(MSP).

In real-world networks, a node can interact with other nodes in more than one possible

linking mechanism. A simple analogy is people traveling from one place to another using dif-

ferent modes of travel. Each person (node) may use a different mode of traveling, depending

on his financial conditions, comfort level, age, popularity, and delay estimate. Similarly,

MSP-N assumes the availability of N-possible linking mechanisms. An incoming node chooses

one out of N mechanisms.

Fig 1 shows the graphical representation of MSP-N. Specifically, we derive and investigate

MSP-2 that encompasses preferential attachment [8], cost of linking [29, 30], local dynamics

[31], and aging [32].

We show that MSP-2 leads to non-trivial characteristic features of a larger class of social

networks, including networks with power-law degree distribution, power-law with an

MSP-N

PLOS ONE | https://doi.org/10.1371/journal.pone.0224383 December 12, 2019 2 / 21

https://doi.org/10.1371/journal.pone.0224383


exponential decay (exponential cut-off), and exponential degree distributions. The generated

class of scale-free networks (power-law degree distribution) shows power-law exponent

(1 + 1/β) in the range (2,1) and phase transition in average connectivity, derived as (2β − 1),

at β = 1/2. We also present bounds on the average connectivity of the networks under different

settings of model parameters. We demonstrate the high similarity between generated networks

against real-world networks. The simulated networks show high clustering, slow growth of

hubs (high degree nodes), edge densification, and community structure—presenting a good

resemblance with real-world networks. We also show that the edge densification restricts the

growth of the diameter in a random network.

Materials and methods

Real networks

We leverage two real-world network datasets to evaluate the generative ability of our proposed

model by fitting the parameter values corresponding to each dataset. Intuitively, the aim is to

find whether proposed models can mimic real-world networks efficiently. The two datasets

are:

1. High Energy Physics-theory citation network (ca- HepTh) [49]: It is a collaboration net-

work of scientists working in High Energy Physics-theory field. The network consists of

authors as nodes and co-authorship relation between authors as an edge. It contains 8, 638

nodes and 24, 806 edges.

Fig 1. Graphical representation of Multiple-Selection-Procedure (MSP-N). Each incoming node can choose one out

of N mechanisms for link formation.

https://doi.org/10.1371/journal.pone.0224383.g001
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2. Power-grid Network (PGN) [14]: It is an electricity transport network in which a node rep-

resents either a generator, a transformer or a substation and an edge corresponds to a

power supply line between two nodes. It contains 4, 941 nodes and 6, 594 edges.

Multiple selection procedure

We propose a network growth mechanical model based on the idea of multiple selection pro-

cedures (with N = 2). In particular, the model focuses on two plausible selection procedures

closely resembling the observed processes in real-world networks. We combine these real-

world processes in an MSP framework leading to a more realistic and generalized evolution

process of networks. An incoming node in the system connects to the existing nodes in the

network based on any of the following two selection procedures:

1. Preferential attachment with aging.

2. Random attachment with local growth.

Preferential attachment with aging. The first procedure combines degree-based prefer-

ential attachment with self aging. At each time-step (t), a new node enters the system. An

already existing node (i) with degree ki(t) attracts the new node j due to its preferential ability

(π) as

piðtÞ ¼
kiðtÞ
t

ð2Þ

In contrast to the above preferential mechanism, the self-aging mechanism restricts the

ability of an existing node to attract incoming nodes. For example, in a paper citation network,

older papers receive fewer citations than similar newer papers due to field obsolescence [50,

51]. A young node possesses more ability to attract incoming nodes than an older node [52].

Similar growth behavior was observed by Dorogovtsev et al. [24]. They found that the aging is

proportional τ−α, where τ is the age of the node and α is the aging exponent. They also claimed

that the network shows scaling behavior only in the region α> 1. Even though aging function

can exist in several possible mathematical forms, we propose a novel variant parameterized by

the current degree of the node. The intuition lies in the hypothesis that the willingness of a

node to accept new connections decreases as the current number of neighbors increases. The

self-aging function fi(t) is a non-increasing function of time (t) defined below

fiðtÞ ¼
1

1þ bikiðtÞ
; ð3Þ

where, bi is a positive constant that controls the rate of the aging of node i. As evident from

Eq (3), fi(t + 1)� fi(t) 8t and fi(t) < 1, 8i and t 2 [11). The self-aging restricts the growth in

the number of connections of a node as time advances. More specifically, self-aging restricts

the growth of hubs in a network. Next, we combine preferential attachment (described in Eq

(2)) with self-aging expression (described in Eq (3)) in single formulation Fi(t) given by

FiðtÞ ¼ piðtÞ � fiðtÞ ¼
kiðtÞ

ð1þ bikiðtÞÞt
¼

ki
ð1þ bkiÞt

: ð4Þ

The rightmost derivation in Eq (4) simplifies the nomenclature by replacing ki(t) with ki
and bi with b (assuming that all nodes have similar aging rate). Next, we describe the second

procedure.

MSP-N
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Random attachment with local growth. The second procedure accounts random attach-

ment with local growth. It facilitates attachment in two scenarios; direct (DRA) and indirect

random attachment (IDRA). In DRA, the incoming node (j) attaches to an already existing

node (i), randomly. Thus each existing node at time-step (t) attracts the incoming node with

equal probability (¼ 1

t). In IDRA, an initial attachment to a neighbor of node i favors link for-

mation with i (similar to the link-copying mechanism proposed by Kumar et al. [53]). How-

ever, due to limited link formation capacity (of node i), the IDRA probability decreases as the

degree (of node i) increases. We also term IDRA as “random attachment mechanism with

local growth”. The above two scenarios are combined in a single formulation ϕi(t) given by

�iðtÞ ¼ DRAþ IDRA; ð5Þ

�iðtÞ ¼
1

t
þ
giðtÞ
t

1 �
1

t

� �

; ð6Þ

For larger value of t, 1 � 1

t

� �
! 1

�iðtÞ ¼
1

t
þ
giðtÞ
t
; ð7Þ

where 1/t denotes DRA probability, gi(t) is a non-negative real-valued function which associ-

ates cost of linking with the local growth. Even though local growth dynamics helps in increas-

ing the concentration of triangles in the network, the cost of link formation restricts the

growth of the degree of nodes.

A plausible cost function. Consider a node i placed under IDRA process. Node i has ki
neighbours (degree). Node j joins the network formation process at time (t + 1). Node j con-

nects to a neighbour of node i with probability 1/t. Later, j attempts to connect with i. The

probability of a connection between node i and j depends on the linking cost. We argue that

this indirect linking cost is inversely proportional to the current degree / 1

kiðtÞ

� �
. The intuition

lies in the capacity constraints in link formation [54]. In general, researchers have shown that

the formation of a link can inhibit the formation of another one, typically due to time, space,

or capacity constraints [55]. The process is explained in Fig 2. Node i has ki chances to receives

Fig 2. Random attachment with local growth having cost of linking. Sub-figure (a) is showing the random

attachment of node j to a neighbour of node i by probability 1/t (first step). In sub-figure (b), after connecting to a

neighbour of node i in the first step, node j has linking cost inversely proportional to the degree of node i under local

growth.

https://doi.org/10.1371/journal.pone.0224383.g002

MSP-N
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new links due to the local growth process of its neighbors. This results in

giðtÞ ¼ a
Xki

x¼1

1

ki
¼ a ð8Þ

where α (>0) is a proportionality constant for a network. Different networks might exhibit dif-

ferent values of α.

Consider a new node j randomly connects with an older node r, then attempts to form a

link with first neighbors of node r. Let node i is one of the first neighbors of node r then cost

of linking of nodes i and j depends on 1/ki which tells that higher degree node has higher cost

or low probability of being connected to a new node under local growth scheme. At the same

time in the same process of link formation, for an older node i, 1/ki is fixed for all the possibil-

ities when a new node joins one of its neighbors and tries to connect with node i with proba-

bility 1/ki and collectively results in a constant value α. In another way, we can understand

the cost of linking to an older node. Constant α tells that an older node of higher degree has

higher chances to be connected with a new joining node as compared to an older node of low

degree but in both the cases gain is same which signifies the high linking cost of higher degree

node.

MSP-2: The proposed network growth model. We combine the above two selection pro-

cedures in an MSP framework (hereafter MSP-2). The combined effect is reformed in terms of

a differential equation using standard mean-field approximation [56] given by

@ki
@t
¼ bjFiðtÞ þ ð1 � bjÞ�iðtÞ: ð9Þ

where βj 2 (0, 1). Here Fi(t) and ϕi(t) corresponds to expected gain in degree of node i due

to preferential attachment with aging and random attachment with local growth, respec-

tively. To keep the notation simple, we assume that all incoming nodes have same β, thus

βj = β 8j.
The generative algorithm

1. Consider an initial connected network of m0 nodes.

2. A new node j joins the network.

3. Toss coin with head probability βj = β,

• If head: node j chooses preferential attachment mechanism with self-aging. The probability

of connecting a node i in the pre-existing network is given by
ki

ð1þ bkiÞt
:

• If tail: node j randomly selects a node i and gets connected to it. After that node j connects

with the first neighbors of the node i according to the probability α/kl� 1, where l is a

neighboring node of the node i.

4. Repeat steps 2and3 until the network has desired number of nodes.

Results

Next, we analyze the degree distribution, average connectivity, and edge densification. We also

explore various structural and spectral measures such as triangle count, modularity structure

and spectral radius, by theoretical calculations, and numerical validations.

MSP-N
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The degree distribution

We, first of all, derive the generic degree distribution by combining Eqs (4), (7), (8) and (9),

that results in the following formulation

@ki
@t
¼ b

1

1þ bki

ki
t
þ 1 � bð Þ

1þ a

t
: ð10Þ

rearranging above equation results in

ki þ 1=b
c1ðki þ c2Þ

� �
@ki
@t
¼

1

t
; ð11Þ

where c1 = β/b + (1 − β)(1 + α) and c2 ¼
ð1� bÞð1þaÞ

bþbð1� bÞð1þaÞ.

1

c1

ki þ c2 þ 1=b � c2

ki þ c2

� �
@ki
@t
¼

1

t
; ð12Þ

1

c1

1þ
1=b � c2

ki þ c2

� �
@ki
@t
¼

1

t
;

1

c1

1þ
g

ki þ c2

� �
@ki
@t
¼

1

t
;

where

g ¼ 1=b � c2

After solving the PDE given above

1

c1

ki � k0

i þ g ln
ki þ c2

k0
i þ c2

� �

¼ ln
t
ti

ð13Þ

where k0
i is the initial degree of node i which appears at time ti.

ki � k0
i þ g ln

ki þ c2

k0
i þ c2

¼ c1 ln
t
ti

ð14Þ

ln eki� k0
i þ g ln

ki þ c2

k0
i þ c2

¼ c1 ln
t
ti

ln
eki

ek0
i
þ ln

ki þ c2

k0
i þ c2

� �g

¼ ln
t
ti

� �c1

ln
ekiðki þ c2Þ

g

ek0
i ðk0

i þ c2Þ
g
¼ ln

t
ti

� �c1

ekiðki þ c2Þ
g 1

ek0
i ðk0

i þ c2Þ
g
¼

t
ti

� �c1

:

MSP-N

PLOS ONE | https://doi.org/10.1371/journal.pone.0224383 December 12, 2019 7 / 21

https://doi.org/10.1371/journal.pone.0224383


By the law of large numbers, at large t, ek0
i ðk0

i þ c2Þ
g
! hek0

i ðk0
i þ c2Þ

g
i ¼ Zc1 (average of

expected initial degree of nodes), where η is a positive constant.

ekiðki þ c2Þ
g 1

Zc1
¼

t
ti

� �c1

:

Consider,

k < ki;

ekðkþ c2Þ
g 1

Zc1
< ekiðki þ c2Þ

g 1

Zc1
;

ekðkþ c2Þ
g 1

Zc1
<

t
ti

� �c1

;

ti < Ze� k=c1ðkþ c2Þ
� g=c1 t:

As the network is growing uniformally, the probability of selecting a node ti at time t,

P(ti) = 1/(t + m0), where m0 is the size (number of nodes) of initial seed network [56], and

Pðki > kÞ ¼ Pðti < Ze� k=c1ðkþ c2Þ
� g=c1 tÞ

¼
t

m0 þ t
Ze� k=c1ðkþ c2Þ

� g=c1

As t!1,

Pðki > kÞ ¼ Ze� k=c1ðkþ c2Þ
� g=c1 ; ð15Þ

The above equation represents a class of networks that demonstrate power-law degree dis-

tribution with exponential cut-off. Specifically, the two classes can be derived as follows:

• Exponential degree distribution: Assume that if β! 0, then c2 !
1

b and γ = 1/b − c2! 0.

The cumulative degree distribution expression Eq (15) reduces to

Pðki > kÞ ! Ze� k=ð1þaÞ; ð16Þ

Eq (16) refers to the networks of exponential degree distribution with k0
j ! ð1þ aÞ and

average degree �k ! 2ð1þ aÞ.

• Scale-free degree distribution: Assume that if b = 0, then from Eq (10)

@ki
@t
¼ b

ki
t

� �

þ 1 � bð Þ
1þ a

t

� �

; ð17Þ

and

Pðki > kÞ / ðkþ ð1 � bÞð1þ aÞ=bÞ� 1=b
: ð18Þ

Eq (18) refers to the class of scale-free networks that follow power-law degree distribution

MSP-N
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with k0
j ¼ b

�kt þ ð1 � bÞð1þ aÞ and

�ktþ1 ¼
t�kt þ 2k0

j

t þ 1
¼
t�kt þ 2b�kt þ 2ð1 � bÞð1þ aÞ

t þ 1
;

�ktþ1 ¼ ðt þ 1Þ
2b� 1
ð1þ yÞ � y; ð19Þ

where �kt is the average connectivity of the network at time t, y ¼ 2ð1� bÞð1þaÞ

ð2b� 1Þ
and β 2 (0, 1).

This represents a densification power law (DPL) [57], exhibiting phase transition at β = 1/2.

For β> 1/2, the average degree increases as the network evolves over the period of time and

for β� 1/2 average degree of evolving network approaches the limiting value of 2(1 − β)(1 +

α)/(1 − 2β) as t!1 (see Fig 3).

The average connectivity

Next, we investigate the dynamics of the average connectivity of MSP-2. At each time step, a

node arrives and attaches itself to pre-existing nodes in the network. Consider node j being

introduced in the network formation process at the time step (t + 1). From Eq (10), the initial

Fig 3. Average degree, �kðtÞ, is plotted for different size of networks simulated under MSP-2 by setting β = 0.4 (plot

in dots) and β = 0.6 (plot in circles), and α = 1 in both the cases. For β = 0.4 average degree reaches to steady state

(constant) and for β = 0.6 (> 0.5) average degree increases continuously.

https://doi.org/10.1371/journal.pone.0224383.g003

MSP-N
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degree of node j is given by

k0
j ¼

X

i2Nt

b
1

1þ bki

ki
t

� �

þ 1 � bð Þ
1þ a

t

� �� �

: ð20Þ

Average connectivity of the network at time t + 1 will be

�ktþ1 ¼
t�kt þ 2k0

j

t þ 1
;

�ktþ1 ¼
t�kt þ 2ð1 � bÞð1þ aÞ þ 2b=b � 2b

b

P
i

1

ðbkiþ1Þt

t þ 1
;

�ktþ1 �
t�kt þ 2ð1 � bÞð1þ aÞ þ 2b=b � 2b

b

P
i

1

ð1þbÞt

t þ 1
;

�ktþ1 �
�kt �

� �kt þ 2 b

b þ 2ð1 � bÞð1þ aÞ �
2b=b
1þb

t þ 1
;

@�ktþ1

@t
�
� �kt þ 2 b

b þ 2ð1 � bÞð1þ aÞ �
2b=b
1þb

t þ 1
:

ð21Þ

The solution of Eq (21) is given by,

�ktþ1 � ðt þ 1Þ
� 1
ð1 � �kLÞ þ �kL;

where �kL ¼
2b

1þbþ 2ð1 � bÞð1þ aÞ. As t !1) �k1 ! �kL. Similarly,

�ktþ1 � ðt þ 1Þ
� 1
ð1 � �kUÞ þ �kU ;

where �kU ¼ 2b=bþ 2ð1 � bÞð1þ aÞ. As t !1) �k1 ! �kU . �kL and �kU are lower and upper

bounds of the average connectivity of the network model defined by Eq (10).

Edge densification

Edge densification prevents the growth of the diameter of networks generated under the pro-

posed model. Consider two networks with same number of nodes corresponding to β1 and β2

(� β1) (discussed in Eq (19)), MSP-2 generate networks with different average connectivity

and different diameter growth rate. Let D1 and D2 be the diameters of the networks generated

under Eq (19) by setting β = β1 and β2, respectively, such that β� 1/2 and b = 0. The proposed

modelling scheme results in networks with D/ (1 − β) (proof, similar to [33], is omitted due

to space constraints). Again consider

b1 � b2 )
�kðb1Þ �

�kðb2Þ;

b1 � b2 ) 1 � b1 � 1 � b2 ) D1 � D2:

So, if β has different values and keeping the rest of the parameters constant in Eq (19), then

�kðb1Þ �
�kðb2Þ ) b1 � b2 ) D1 � D2:

Modularity or community structure

Real-world networks inherit community structure. Community is a group of nodes possessing

more number of links than expected in random networks [18]. In the context of social struc-

ture, a community is a group of similar people having a significantly high number of
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connections within the community and lesser connections to the outside world. To measure

the quality of community structure inside a network, modularity index Q [18] is defined as

Q ¼
1

2m

X

ij

Aij �
kikj
2m

� �

dcicj

where m is the number of edges in the network, ki and kj are the degrees of the nodes i and j
which belong to communities ci and cj respectively, and δ is the Kronecker delta function.

Next, we conduct the theoretical analysis of the possibility of community structure in MSP-

2. We argue that similar results hold for higher-order MSP variations (N> 2). Consider the

connection probability pij between two nodes i and j which appear at time ti and tj(> ti),
respectively

pij ¼ b
ki

1þ bki

1

t
þ ð1 � bÞ

1þ a

t
:

As we know that at each time a new appears, so t = tj and we get

pij ¼ b
ki

1þ bki

1

tj
þ ð1 � bÞ

1þ a

tj
:

Here, (1 + bki) is applied to restrict the growth of the degree of node i. Hence, without loss

of generality, we consider a simpler case, where b = 0. We claim that similar results true for

other cases of the proposed model. We consider

pij ¼ b
kiðtjÞ
tj
þ ð1 � bÞ

1þ a

tj
: ð22Þ

and after solving PDE Eq (17), we have

kiðtjÞ ¼ c0
i

tj
ti

� �b

�
ð1 � bÞð1þ aÞ

b
;

c0
i ¼ k0

i þ
ð1 � bÞð1þ aÞ

b

� �

:

ð23Þ

Let A be the adjacency matrix associated with a network G, where Aij = 1, if nodes i and j
are connected otherwise 0. Corresponding null-model is defined in the following way: if ki and

kj are the degrees of nodes i and j, respectively, and m is the number of edges in the network G
then kikj/2m is the expected value of Aij under null-model and community structure is mea-

sured by the non-zero heterogeneous values of Aij �
kikj
2m . Here, we have only expected values of

Aij of a network obtained under MSP-2 that is E[Aij] = pij. Using Eqs (22) and (23), we have

E½Aij� ¼
bc0

i

tbi t
1� b
j

ð24Þ

and

kikj
2m
¼

c0
i c

0
j

ð1þ yÞtbj t
b
i

if b � 1=2

c0
i c

0
j

ytbj t
b
i t1� 2b

if b < 1=2

8
>>>>><

>>>>>:

ð25Þ
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where c0
i and c0

j are initial conditions. As we know that β controls the contribution of two

micro-level network growth processes in the resulting evolution of the network, so we analyze

the effect of the parameter β over the strength of community structure of the obtained network

under the proposed model. We consider the condition when β approaches to 1 (main contri-

bution made by preferential attachment scheme), and have

pij ¼ E½Aij� ¼
bc0

i

tbi t
1� b
j

ð26Þ

and as b! 1) c0
j ! k0

j ! b�ktj ! t2b� 1
j , θ! 0 that results

kikj
2m
�

bc0

i

tbi t
1� b
j

ð27Þ

From Eqs (26) and (27), when β approaches to 1, the distribution of links (pij) in the net-

work simulated under the proposed model approaches to null model (
kikj
2m) and strength of com-

munity structure (Q) gets reduced, see Fig 4.

Again we consider another condition when β approaches to 0, and have

pij ¼ E½Aij� ¼
1þ a

tj
ð28Þ

Fig 4. Modularity index, Q, is plotted for different size of networks generated by the proposed model with

different values of β. Horizontal-axis represents the number of nodes in the networks and the vertical-axis represents

modularity index of the networks.

https://doi.org/10.1371/journal.pone.0224383.g004
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and

kikj
2m
�

1þ a

t
log

t
ti
log

t
tj

ð29Þ

From Eqs (28) and (29), when β approaches to 0, the distribution of links (pij) are different

from null model (
kikj
2m) and strong community structure appears, see Fig 4.

Modularity index Q is defined over matrix B, where

Bij ¼ Aij �
kikj
2m
� E½Aij� �

kikj
2m
¼ pij �

kikj
2m

:

We discuss the strength of modularity in terms of positive eigenvalues of matrix B. We have

already shown two extreme ends when β = 1 and β = 0. As β approaches to 1 Bij ¼ pij �
kikj
2m

approaches to 0 and maximum eigenvalue approaches to 0 and weak community structure

arises. In another direction, when β approaches to 0 we have heterogeneous values of

Bij ¼ pij �
kikj
2m , and eigenvalues spread over a wide range (it is true due to constant volume of

matrix B) and gets higher maximum eigenvalue of B, close to 1 (strong community structure).

While finding communities in a network, we decompose the network into small sub-networks

that is equivalent to decomposition of matrix B in such a way that diagonal of B has blocks of

positive entries and off-diagonal blocks have maximum negative entries, and it can happen

only when B has heterogeneous structure which appears when β has lower value. We can con-

clude that local dynamics is responsible for community structure.

The distribution of expected links in the proposed model is different from the correspond-

ing distribution of kikj/2m values. If the probability of the existence of a link between nodes i
and j is different from the value kikj/2m, which is the probability of the existence on a link

between nodes i and j under null model, then the structure of the network obtained under the

model would be different as compared to the expected null structure (under null model) for

given degree sequence. This leads to the existence of community structure in the network

(higher value of maximum eigenvalue of B explained in the previous paragraph). As the β

reduces, the heterogeneity of E½Aij� �
kikj
2m increases and network generated under MSP-2 shows

strong community structure. Fig 4 demonstrates the modularity index of the networks gener-

ated by the proposed model. It clearly shows the existence of the community structure. The

contribution of local dynamics, (1 − β), in the network evolution, affects the community struc-

ture of the resulting network positively. A smaller value of β does not indicate that the network

is denser as we have the condition that if (2β − 1) is greater than 1/2 then network would show

densification. However, as β decreases (1 − β) increases but (2β − 1) decreases. Theoretical

analysis and numerical simulation show similar results. As β decreases, the value of modularity

index (Q) increases (see Fig 4). It is needless to mention that this phenomenon is common in

various social networks [58]. We leverage Louvain algorithm [59] to detect community struc-

tures in networks.

Number of triangles

In a network, a triangle is a cycle of three nodes. The high concentration of triangles in a net-

work is a fundamental property of many real networks. In real-world networks, social phe-

nomena such as “friends of a friend are friends” beautifully explain the high concentration of

triangles. Several social networks have a high density of triangles, for example, ego-Facebook

network, ego-Gplus network, and ego-Twitter [7].
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We provide a lower bound to estimate the number of triangles for the proposed model. As

evident from previous discussions, the local dynamics of network evolution is responsible for

the triangle generation. Consider an existing node i with degree ki and an incoming node j. In

MSP-2, triangle generation occurs in the following two scenarios:

• Node j, first, connects to one of neighbours of node i with probability 1/t. Later, j connects to

i with probability α/ki. Thus, node i has ki chances to form a triangle, each with probability
a

kit
.

• Similarly, node j can first link to node i with probability 1/t and then connects with the

neighbours of i with probability α/kl, where node l is the neighbour of node i other than j.

Next, we compute expected number of triangles generated by above two scenarios at time t.
At each time step, network generates atleast Tr triangles, given by

TrðtÞ ¼
Xt

i¼1

ð1 � bÞa

t
þ
Xt

i¼1

ð1 � bÞa

t

Xt

l¼1

Ail
1

kl
¼ 2ð1 � bÞa:

The expected number of total triangles in the network is given by

Dt � 2ð1 � bÞat:

The number of triangles in a network produced by the proposed model is lower bounded

by a linear function which has slope 2(1 − β)α, and β controls the density of triangles in the

model generated networks.

Simulation experiments validate the above theoretical bounds. We generate networks using

MSP-2 by setting β = 0.1, α = 1 and b = 1. The theoretical and numerical results are plotted in

Fig 5. The theoretical result provides a good estimate of numerical values for triangle count in

the networks generated under MSP-2.

Spectral radius

The largest eigenvalue of an adjacency matrix associated with a network is known as the spec-

tral radius (SR) of the network. Empirically, the reciprocal of SR quantifies the threshold of

viral propagation in the network [60]. The networks with smaller spectral radius have larger

robustness against the spread of viruses [60]. We derive bounds on SR for the networks pro-

duced under MSP-2. The bounds on SR can be leveraged to attain bounds on diffusion thresh-

old. Let λ1(A) is the largest eigenvalue of the adjacency matrix A associated with a network

produced by MSP-2. From [61], we know that

kmax � l1ðAÞ � �k; ð30Þ

where kmax is the maximum degree and �k is the average degree of the network.

By Eq (13), we get the expected value of maximum degree in a network of size n nodes

obtained under MSP-2 by setting k0
i ¼ 1, ti = 1 and t = n that is

kmax þ g ln ðkmax þ c2Þ ¼ 1þ g ln ð1þ c2Þ þ c1 lnn:

After simplifications and approximations, we get

1þ c1 lnn � kmax �
c1

1þ g
lnn: ð31Þ

MSP-N

PLOS ONE | https://doi.org/10.1371/journal.pone.0224383 December 12, 2019 14 / 21

https://doi.org/10.1371/journal.pone.0224383


By Eqs (30) and (31) and lower bound on average connectivity �kL (Eq (21))

1þ c1 lnn � l1ðAÞ �
2b

bþ 1
þ 2ð1 � bÞð1þ aÞ:

SR of a growing network under MSP-2 has a growth rate lower than the logarithm of the

size of the network. Using the bounds on SR, we can select the model parameters to generate a

network of the desired property.

Reconstructing real networks

As discussed earlier, the majority of the real-world networks follow a combination of multiple

degree distributions and not just power-law distribution [5, 6]. The neuronal network of the

worm C. elegans and the power-grid network of Southern California shows exponential decay

in cumulative connectivity of the nodes [5] while networks of scientific collaborators exhibit

power-law with exponential cut-off [6].

Parameter tuning. Assume that we produce a model network corresponding to a real net-

work which has Δr triangles, kmax maximum degree and n number of nodes. We know that, if

β and α are model parameters then the network obtained under the proposed model would

have at-least α(1 − β)n triangles. We consider the relation

Dr

n
¼ að1 � bÞ; ð32Þ

to ensure that the reconstructed network has at-least Δr triangles. We have another relation

Fig 5. Number of triangles (Δ) is plotted for different size of networks generated by the proposed model by setting

β = 0.1, b = 1, and α = 1.0. Theoretically calculated lower bound (2(1 − β)α) is also plotted. Horizontal-axis represents

the number of nodes in the networks and the vertical-axis represents number of triangles in the networks.

https://doi.org/10.1371/journal.pone.0224383.g005
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between maximum degree and the size of the network.

ekmaxðkmax þ c2Þ
g 1

eð1þ c2Þ
g ¼ nc1 ð33Þ

First we discretize the interval [0, 1], and let say S be the set of those discrete points. Select β
2 S and using Eq (32) compute the value of α. Again, using the obtained values of α and β, we

compute the value of b by solving Eq (33), numerically. Now, we simulate model for the

computed values of (β, α, b) and select the model network which has minimum value of

|P(ki� k) − Pr(ki� k)| for the set S, where P(ki� k) and Pr(ki� k) are cumulative degree dis-

tributions of model network and given real network, respectively.

Here, we reconstruct two real networks described in Material and Methods section; one is a

collaboration network (ca −HepTh), which is an example of power-law degree distribution

with exponential cut-off [49] and second is a Power-Grid-Network (PGN) which has exponen-

tial degree distribution. Cumulative degree distribution of both the networks (in black squares)

and corresponding model networks (in blue stars) are plotted in Fig 6a and 6b, respectively.

The model parameters are tuned as β = 0.15, α = 3.8 and b = 0.05 to generate a network corre-

sponding to ‘ca −HepTh’ network. Similarly, β = 0.5, α = 0.26 and b = 0.1 are the parameter

values to generate model network corresponding to PGN network. The overlapping of the

plots in Fig 6a and 6b clearly shows that the MSP-2 generative mechanism is significantly capa-

ble enough to capture the degree distribution of different classes of real-world networks. In Fig

6a and 6b, the degree distribution of model networks are corresponding to a single snapshot.

Apart from degree distribution, we compare other statistical properties such as triangles’ count

Δ, spectral radius SR, clustering coefficient CC, and modularity index Q of real networks and

corresponding model networks. Results are tabulated in Table 1. It is observed that the pro-

posed model produces networks which have statistical properties close to real data, for exam-

ple, low-spectral radius, large triangles’ count, clustering, and modularity index. It is more

generalized as compared to the other previous growth models.

Fig 6. (a) Cumulative degree distribution of collaboration network (in black) and Model network (in blue). The parameter values are β = 0.15, α = 3.8

and b = 0.05. (b) Cumulative degree distribution of power grid network (in black) and Model network (in blue). The parameter values are β = 0.5, α =

0.26 and b = 0.1.

https://doi.org/10.1371/journal.pone.0224383.g006
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Discussion

The previous section demonstrates how well the MSP-2 mechanism can imitate real-world

structural properties. Also, the proposed model is useful in generating several types of net-

works under different conditions depending on the settings of the parameters in Eq (10). Intu-

itively, we can generate the following three classes of networks conditioned on the selection

procedure and parameter initialization.

• Empty network: If all incoming nodes consider only the first branch of the MSP-2 (β = 1)

along with high aging factor (b!1), then an empty network with a single edge will be gen-

erated. The generated network is closer to an extreme of the network structures (see Fig 7a).

• Tree network: If all incoming nodes consider only the second branch of the MSP-2 (β = 0)

and the cost of linking under local growth is very high, then a tree network is generated (see

Fig 7b).

• Complete network: Again, consider that the incoming nodes consider only the second

branch of the MSP-2 (β = 0). If the cost of the local connection is zero, then it will generate a

complete network (see Fig 7c). It is another extreme of the network topology of the possible

network structures.

Table 1. Structural and spectral properties of real-world networks and corresponding synthetic networks obtained

under our proposed model. Values in brackets represent proposed model properties.

ca-HepTh (MSP-2) PGN (MSP-2)

SR 31 (20.3) 7.5 (5.9)

Δ 27869 (38251) 651 (646)

CC 0.48 (0.39) 0.08 (0.11)

Q 0.72 (0.66) 0.93 (0.75)

https://doi.org/10.1371/journal.pone.0224383.t001

Fig 7. β = 1 and b!1 (left most network). β = 0 and g(t)! 0, very high cost of link formation (network in the middle). β = 1 and b = 0, or β = 0 and cost of link

formation is zero (right most network).

https://doi.org/10.1371/journal.pone.0224383.g007
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If all incoming nodes only consider preferential attachment without aging (β = 1 and b = 0),

then the generated network would be almost complete. However, node aging affects its

growth during network evolution. b 6¼ 0 bounds the degree of the node and average degree

of the network.

All the network structures lie between the two extremes, the empty network, and the com-

plete network. Most of the real-world networks lie between the tree and complete network

topology. The simulated results described in the previous section show the potential of MSP-2

to reconstruct real-networks from different classes structurally.

Conclusion

In this work, we propose a novel random network growth model (MSP-2) based on the

observed phenomena of link formation. MSP-2 combines concepts of preferential attachment,

random selection, aging, and the cost of link formation in a single process of network evolu-

tion. The combined dynamics leads to non-trivial properties exhibited by real-world networks.

The proposed model successfully generates the networks corresponding to the real-world net-

works, like collaboration network and Power-Grid-Network. We find that the degree distribu-

tion of the real-world networks is significantly closer to the corresponding modeled networks.

The properties of the networks generated under the proposed model are similar to the real-

world networks. We also show that densification in a random network restricts the growth of

diameter of that network. In the future, more generalized cost, and aging functions can be

implemented using complex MSP-N (N>2) to incorporate various other physical phenomena.
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