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Abstract

Increased use of pesticide is causing detrimental effects on non-target species worldwide.

In this study, we examined the lethal and sub-lethal effects of fipronil and imidacloprid, two

commonly used insecticides, on juvenile brown shrimp (Farfantepenaeus aztecus), one of

the most commercially and ecologically important species in the United States. The effects

of six concentrations of fipronil (0.0, 0.005, 0.01, 0.1, 1.0, and 3.0 μg/L) and six concentra-

tions of imidacloprid (0.0, 0.5, 1.0, 15.0, 34.5, 320.0 μg/L) were tested in a laboratory. We

examined five different endpoints: growth, moulting interval, survivorship, behavioral

change, and body color change. Growth of shrimp was reduced significantly under higher

concentrations of both insecticides. Under fipronil exposure, shrimp in control showed the

shortest inter-moult interval (7.57 ± 2.17 day) compared with other treatments; similarly, in

the imidacloprid experiment, moulting increased from 8.43 ± 2.52 day in control to 11.95 ±
4.9 day in 0.5 μg/L treatment. Higher concentrations of fipronil (1.0 and 3.0 μg/L) showed a

0.0% survival rate compared with 100% survival in the control and 0.005 μg/L treatment.

Under imidacloprid, survivorship decreased from 100% in the control to 33.33% in the

320.0 μg/L treatment. The 96-h LC50 of fipronil was 0.12 μg/L, which makes brown shrimp

one of the most sensitive invertebrates to the pesticide. Changes in behavior and body color

were observed under both insecticides after different durations of exposures depending on

concentrations. We conclude that, at the corresponding EPA benchmark concentrations,

fipronil had more lethal effects than imidacloprid, and imidacloprid had more sub-lethal

effects than fipronil. Both effects are of serious concern, and we suggest monitoring is nec-

essary in estuaries.

Introduction

The use of chemical pesticides has become critically important to assure both quality and pro-

ductivity of agricultural products [1, 2] and to control household pests such as termites, fire
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ants, and mosquitoes [3–5]. However, pesticides also have negative effects on non-target

organisms [6–9], which may be considered beneficial organisms. Because chemical pesticides

eventually flow into the surface water, it is expected these toxicants to affect aquatic environ-

ments more than terrestrial environments [10].

Although these negative effects could be acute (lethal) or chronic (sub-lethal) and vary

depending on species [11, 12], the majority of ecotoxicological studies neglect their sub-lethal

effects [13, 14] and focus on selected model species, such as daphnia Daphnia magna and zeb-

rafish Danio rerio [2, 15]. Here, we present the results of experimental studies on the effects of

fipronil (5-amino-1-[2, 6-dichloro4-4(trifluoromethyl) phenyl]-4[(trifluoromethyl) sulfinyl]-

1H- pyrazole-3-carbonitrile) and imidacloprid (1-[(6-Chloro-3-pyridinyl) methyl]-N-nitro-

2-imidazolidinimine), two of the most commonly used chemical pesticides worldwide on

brown shrimp F. aztecus.
Brown shrimp is considered one of the most important commercial species for fisheries

along the Atlantic Coast of the southeastern United States and in the Gulf of Mexico [16, 17].

Its commercial landing value was estimated at $166,542 million in 2016 [18]. In addition to its

economic importance, brown shrimp also has an essential ecological role as prey for many

important fish species in the region [17, 19, 20]. In particular, these shrimp are abundant

along the coasts of Texas and Louisiana, U.S.A. and inhabit the estuaries during their juvenile

stage [16, 17]. However, because of the increased use of fipronil and imidacloprid in coastal

communities, as well as the detection of pesticides residues in estuaries [21], the effects of

these insecticides on penaeid shrimp specifically brown shrimp are particularly a serious

concern.

Phenylpyrazoles (including fipronil) and neonicotinoids (including imidacloprid) are

applied in a large scale, such as protecting plants from agricultural pests, controlling household

pests, and controlling parasites on domesticated animals [22]. Presently, they account for

approximately one third of the world insecticide market [23]. Although both fipronil and imi-

dacloprid operate by disrupting neural transmission in the central nervous system of inverte-

brates [23], each product has a different mode of action. Fipronil interferes with the passage of

chloride ions by binding to a specific site within the gamma-aminobutyric acid (GABA) recep-

tor, while imidacloprid binds to postsynaptic nicotinic acetylcholine receptors (nAChR) [24,

25]. Compared to other types of insecticides, fipronil and imidacloprid are considered safer

because of their low toxicity on fish and mammals. However, fipronil and imidacloprid are

very effective on arthropods in small concentrations [26]. Their increased use in recent years

[22, 23, 26], moderate to high solubility [27, 28], and persistence in water [29–31] pose a seri-

ous concern regarding the potential adverse impacts on non-target aquatic invertebrates.

Fipronil in the environment has been reported in the U.S. and other parts of the world, and

its environmental concentrations can be as high as 10.004 μg/L [12, 32–35]. Among the sites

where imidacloprid are actively used, its concentration has ranged between 0.016 μg/L and

320.0 μg/L [12, 30, 36–38]. Many of these studies reported the detection of fipronil and imida-

cloprid, or one or more of their degradation products, in aquatic environments exceeding

their chronic levels of the U.S. EPA aquatic life benchmark for invertebrates (0.01 μg/L for

both insecticides) [39].

In recent years, many studies have investigated the potential adverse effects of these

insecticides on non-target organisms; however, the majority of these studies have focused on

a limited number of commercially beneficial terrestrial invertebrates or on selected model

organisms in aquatic ecosystems. For example, Pisa, et al. [22] found that, of 376 papers

reviewed, the majority focused on the effects of fipronil and neonicotinoids on honeybees, and

very few studied aquatic invertebrates, particularly marine species.
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Both of fipronil and imidacloprid have been detected in aquatic environments in Texas,

U.S. in recent years due to their increased use in coastal communities [40]. No previous study

published in the peer-reviewed literature has reported the potential effects of these widely-

used insecticides on the estuarine-dependent penaeid shrimp such as the brown shrimp

F. aztecus, which are commercially and ecologically important. Therefore, determining the

adverse effects of these insecticides on this particular species was critically important. The

objective of this study was to evaluate both lethal and sub-lethal effects of the phenylpyrazole

fipronil and neonicotinoid imidacloprid on the juvenile brown shrimp under the concentra-

tions observed in the aquatic environment using multiple endpoints: growth (weight and

length), moulting, survivorship, and behavioral change. This research complemented many

recent studies that highlighted the risks of commonly used pesticides on different species of

aquatic organisms, especially not-targeted marine species that have high ecological or com-

mercial impact and limited ecotoxicology data. In addition, this study is the first to investigate

the effects of imidacloprid on brown shrimp, and the previous experiments investigating the

effects of fipronil on brown shrimp [41] was done only at higher concentrations, where all

shrimp individuals died during the first weeks of the experiment and no information about

the effects of lower concentrations of fipronil are available.

Materials and methods

Collection of brown shrimp

Juvenile brown shrimp were collected on June 12, 2017 (Scientific research permit, SPR-

0396-777, Texas Parks and Wildlife Department) from Gangs Bayou in Galveston Bay (on

Sportsman Road, N 29.25549; W 94.91575), Texas, using hand nets and a 3-m bag seine of

0.6 cm mesh size. Shrimp were transported to a laboratory in Texas A&M University, College

Station, Texas in 45-liter coolers supplied with portable air pumps. After 4–5 hours of water

temperature equilibration (between transportation coolers and room temperature), active

shrimp were selected for the fipronil experiment (weight 0.57 ± 0.008 g and total length

4.41 ± 0.03 cm) and imidacloprid experiment (weight 0.81 ± 0.01 g and total length

5.31 ± 0.03 cm). After equilibrating temperature, the shrimp were moved to larger plastic

tanks of 53-liter filled with artificial brackish water made using Instant Ocean1 Sea Salt and

dechlorinated tap water. In this study, no vertebrate species, endangered or protected species

was involved; no ethical approval was required under Texas A&M University Animal Use

Protocol.

Acclimation period

Shrimp were acclimated for 9 days to laboratory conditions. During the acclimation period,

API1 Bottom Feeder Shrimp Pellets were used to feed shrimp twice a day to maintain the

nutritional requirements of shrimp [42] and to ensure the palatability and acceptability of the

pellets by the shrimp. In order to remove excrement and remaining food, the acclimation

tanks were cleaned and approximately 50% of their water was replaced on the daily basis.

Water quality parameters of acclimation tanks were as follows: dissolved oxygen, 5.6 ± 0.42

mg/L; salinity, 15.50 ± 0.06‰; temperature, 24.53 ± 0.04 ˚C; and pH, 8.03 ± 0.06 for the fipro-

nil experiment, and dissolved oxygen, 5.5 ± 0.66 mg/L; salinity, 15.73 ± 0.04‰; temperature,

24.43 ± 0.04 ˚C; and pH, 8.19 ± 0.01 for the imidacloprid experiment. We maintained con-

trolled photoperiod of 12-h: 12-h light: dark cycle. After the acclimation period, shrimp were

moved to aquariums used for experiment (S1A Fig).
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Fipronil and imidacloprid experimental solutions

Both fipronil, purity limit� 97% (HPLC), and imidacloprid, purity limit 99.5% (HPLC), were

purchased from Fisher Scientific Co. L.L.C., PA, U.S. Based on previously reported concentra-

tions in the environment in other studies (Table 1), six concentrations of fipronil (0.0, 0.005,

0.01, 0.1, 1.0, and 3.0 μg/L) and six concentrations of imidacloprid (0.0, 0.5, 1.0, 15.0, 34.5,

320.0 μg/L) were selected. Three replicates were used for each concentration (treatment).

For each experiment, test solutions of the six nominal concentrations were prepared by a

series of dilutions, beginning with mixing a specific amount of the insecticide powder (0.1 g

fipronil, and 0.01 g imidacloprid) in 1 liter of artificial brackish water to create a highly

homogenized 100 mg/L fipronil suspension and 10 mg/L imidacloprid solution using a mag-

netic stirrer. For both experiments, the specific dilutions of the nominal concentrations are

provided in S1 and S2 Tables. We prepared 21 liters of test solutions for each concentration

used in both experiments to fill three aquariums (replicates) of seven liters each. Although the

hydrolysis half-life of these compounds at 25˚C is much greater than 48 hours, >100 days for

fipronil [24] and>30 days for imidacloprid [43], 100% of test solutions were changed every

other day to maintain the concentrations relatively constant during the experiment.

Aquariums and experimental system

Experimental systems were designed in the same way for both fipronil and imidacloprid exper-

iments using new aquariums and other supplies in both experiments. Each system contains 18

glass aquariums of 9.5 liter (30.7 X 15.4 X 20.5 cm), and each aquarium was considered as one

replicate (S1A Fig). In order to keep track of shrimp moults individually and to prevent deaths

from cannibalism among shrimp, each aquarium was divided into six cells of the same size,

and one individual was assigned to each cell (S1B Fig). A screen was placed on each divider to

allow water to flow and dissolved oxygen to be distributed evenly among the cells (S1C Fig).

The dividers were made of fiberglass screen and polypropylene plates, materials that are com-

monly used in aquaculture studies.

Each aquarium was filled with 7 liters of test solution, and an air pump was used to provide

air. In addition, all aquariums were covered on the top with glass lids to prevent shrimp from

escaping. All sides of the aquariums were also covered with aluminum foils to reduce the deg-

radation of the insecticides from exposure to light (S1A Fig). The aquariums were organized in

three parallel rows. In each experiment, one of the six treatments was placed randomly in one

of the two-column blocks of aquariums.

Table 1. Fipronil and imidacloprid concentrations observed in the aquatic environment and reported in previous studies.

Fipronil Imidacloprid

Detected concentrations (μg/L) Location Reference Detected concentrations (μg/L) Location Reference

0.3–0.8 USA [21] 0.016 Canada [37]

1.0 Japan [12] 0–0.22 Vietnam [44]

0.28–2.11 USA [34] 0.2–0.42 Australia [38]

0.01–4.2 USA [45] 0–3.3 USA [46]

3.00–4.54 USA [47] 1.0–14.0 Slovenia [36]

0.15–5.0 USA [48] 17.0–36.0 USA [49]

0.007–6.0 USA [50] 49.0 Japan [12]

0.004–6.41 USA [32] 320.0 Netherlands [30]

0.0018–10.004 USA [33]

0.09–10.004 USA [35]

https://doi.org/10.1371/journal.pone.0223641.t001
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The fipronil experiment lasted 34 days from June 20, 2017 to July 24, 2017, and the imida-

cloprid experiment lasted 36 days from June 20, 2017 to July 26, 2017. During both experi-

ments, shrimp were fed on API1 Bottom Feeder Shrimp Pellets twice daily. The amounts of

food were adjusted weekly (according to the body weight of shrimp) and daily (according to

the weight of dead shrimp) using shrimp feeding tables [42]. The temperature (˚C), dissolved

oxygen (mg/L), salinity (‰), and pH (water quality parameters) were measured with the YSI1

Professional plus Multi-parameter Meter every other day.

Measurements

We conducted all experimental measurements according to the U.S. EPA guidelines [51] and

using static-renewal method, with the test solutions being replaced periodically during the

experiments. The sample size was determined based on previous studies [52, 53].

1. Weight gain and total length. We measured the weight of shrimp in each treatment

every week by gently weighing each shrimp individually. First, shrimp was moved from its cell

in the aquarium and placed on paper towel to remove remaining water on the body, and then

the weight of shrimp was measured by placing the shrimp in a beaker containing a known

amount of water. By weighing shrimp, we were able to monitor the effect of insecticide on

growth of shrimp and to gain information for adjusting the amount of food.

Weight gain of shrimp was calculated using the following equation:

%Weight gain of shrimp ¼
Final weight � Initial weight

Initial weight

� �

x 100 ð1Þ

We also used a caliper (± 0.1 mm) to measure the total length of each shrimp by straighten

the body of shrimp carefully on the table and measure the total length from the tip of the head

to the end of the tail as shown in S1D Fig.

2. Moulting. Dates of moults of each individual shrimp in both experiments were

recorded and used to calculate inter-moult intervals of shrimp in each treatment. Because each

shrimp was placed in its own cell, we were able to count the number of days between the two

consecutive moults of a particular individual.

3. Shrimp survival and LC50. Shrimp movements were monitored multiple times every

day, and the numbers of live shrimp were recorded to measure shrimp survivorship during

both experiments. Shrimp were considered dead if they did not react or show any response

during feeding time, if they did not swim, jump, escape from a net, or move their swimming

legs when trying to pick them up for weighing, or if they were in abnormal position such as

laying down on the bottom of the aquarium on their back or side without any motion. All

dead shrimp were removed, counted, and weighed. Data gained by measuring the survivorship

of shrimp were used to estimate the survival rate under both insecticides and the 96-h acute

toxicity levels (LC50) of fipronil.

4. Behavioral and other physical changes. In both experiments, shrimp were monitored

multiple times every day in order to record any abnormal activity. The physical appearance of

shrimp in each aquarium was monitored, and changes such as malformations and changes in

body color were recorded in comparison with shrimp in the control treatments.

5. Statistical analysis. Non- parametric statistics were used for some measurements when

data were not normally distributed. We used Kaplan–Meier estimator to measure the survivor-

ship function of shrimp and non-parametric Log-Rank test to compare the survivorship distri-

bution among treatments. We also used the non-parametric Kruskal-Wallis test followed by

the pairwise Wilcoxon rank sum test to compare moulting intervals. LC50 value of fipronil was

estimated by fitting a generalized linear model to the proportion of individuals died against
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the pesticide concentration with a logit link and binomial distribution. For all other measure-

ments, we used linear regression analysis and One-way Analysis of Variance (ANOVA) to

determine the significance of differences among treatments compared to the control. JMP1

Pro 2016 [54] was used to calculate the LC50 toxicity test and its 95% confidence intervals,

Kruskal-Wallis, ANOVA, and Kaplan–Meier tests, and Microsoft Excel 2016 was used for lin-

ear regression analysis and to draw all figures. All of these statistical analyses were conducted

at α = 0.05 significance level.

Results

Weight gain and total length

The initial weight (at the first day of the experiment) of shrimp exposed to fipronil was not sig-

nificantly different among all treatments, and the treatment means ranged between 0.56 ± 0.04

g in the 0.01 μg/L treatment and 0.59 ± 0.03 g in the 0.005 μg/L treatment (ANOVA, P =

0.973). Fipronil had a significant effect on the growth of shrimp during the experiment. Final

weight of shrimp ranged between 1.02 ± 0.12 g in the 0.1 μg/L treatment and 1.31 ± 0.07 g in

the control (0.0 μg/L), which was significantly different from other treatments except the

0.005 μg/L treatment under which the final weight was 1.30 ± 0.03 g (ANOVA, P< 0.0001)

(Fig 1A and S3 Table). Fipronil also affected the percent weight gain of shrimp, and significant

differences were observed between the control (125.92 ± 28.42%) and the 0.1 μg/L treatment

(77.007 ± 21.83% weight gain) (ANOVA, P < 0.0001) whereas there was no significant differ-

ence between lower fipronil concentrations (0.005 μg/L and 0.01 μg/L) and the control. The

percent weight gain under the latter two concentrations was 120.17 ± 15.16% and 104.18 ±
28.62%, respectively. We could not calculate the final weight and the percent weight gain

under the 1.0 μg/L and 3.0 μg/L treatments because all shrimp died during the first days in

these treatments (Fig 1A and S3 Table).

Shrimp exposed to imidacloprid also exhibited a reduction in growth during the experi-

ment. The initial mean weight of shrimp ranged between 0.80 ± 0.06 g in the 15.0 μg/L treat-

ment and 0.84 ± 0.06 g in the 34.5 μg/L treatment, and there was no significant difference

among all treatments (ANOVA, P = 0.971) (Fig 1B and S4 Table). Final weight ranged between

1.04 ± 0.13 g in the 320.0 μg/L treatment (calculated based on 5 survived shrimp) to

1.95 ± 0.12 g in the control (calculated based on 15 survived shrimp). The final weight under

the control was significantly different from all treatments except the 0.5 μg/L treatment

(ANOVA, P< 0.0001) (S4 Table). There were also significant differences between the percent

weight gain of the control (140.3 ± 16.15%) and three higher imidacloprid concentrations

(15.0 μg/L, 34.5 μg/L, and 320.0 μg/L), which showed a reduction in their percent weight gains

(64.40 ± 17.14 g%, 44.01 ± 12.09 g%, and 29.48 ± 16.43 g%, respectively)(ANOVA, P =

0.0008), but both 0.5 μg/L and 1.0 μg/L treatments had no significant effect on the percent

weight gain compared with the control (S4 Table).

There was no significant difference in the initial body length of shrimp exposed to fipronil,

and it ranged between 4.37 ± 0.15 cm in the 1.0 μg/L treatment and 4.46 ± 0.09 cm in the con-

trol (0.0 μg/L) treatment (ANOVA, P = 0.794) (S5 Table). Starting from week 1 to week 4, sig-

nificant differences were observed between the control and all other fipronil concentrations

except the 0.005 μg/L treatment (ANOVA, P = 0.004–0.04). At the end of the experiment (fifth

length measurement), body length of the control was 6.32 ± 0.10 cm (S5 Table). Body length

was not measured in shrimp under both 1.0 μg/L and 3.0 μg/L treatments because the shrimp

died during the first days of fipronil exposure.

In the imidacloprid experiment, the initial body length of shrimp was not significantly dif-

ferent among all treatments and ranged between 5.28 ± 0.1 cm in the control and 5.38 ± 0.11
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cm in the 34.5 μg/L treatment (ANOVA, P = 0.96) (S6 Table). After the second length mea-

surement (week 2) and until the final measurement (week 5), there were significant differences

between the control and other treatments except for the 0.5 μg/L and 1.0 μg/L treatments

(ANOVA, P< 0.0001–0.019). At the end of the experiment, body length ranged between

5.91 ± 0.23 cm in the 320.0 μg/L treatment and 7.07 ± 0.12 cm in the control (S6 Table).

Moulting

In the fipronil experiment, shrimp under the control (0.0 μg/L) showed the shortest inter-

moult interval (7.57 ± 2.17 day) compared with other treatments, 0.005 μg/L, 0.01 μg/L, and

Fig 1. Wet weight of individual juvenile shrimp (g) during 5 weeks of the experiments. The vertical axis is the wet weight (g) of

individual shrimp in each treatment, and the horizontal axis is the week from the beginning of experiment. Error bars indicate the

standard errors (n = 18 in fipronil exp. and n = 15 in imidacloprid exp.). (A) Fipronil experiment, (B) Imidacloprid experiment.

https://doi.org/10.1371/journal.pone.0223641.g001
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0.1 μg/L, which had inter-moult intervals of 9.29 ± 4.22 day, 9.47 ± 2.73 day, and 9.20 ± 2.93

day, respectively (Fig 2A). The inter-moult interval of the control group differed significantly

from treatment 0.01 μg/L (P = 0.0117); whereas, there was no difference with treatments

0.005 μg/L and 0.1 μg/L. Shrimp under the 1.0 μg/L and 3.0 μg/L treatments died during the

first days of the experiment; thus we could not observe consecutive moults to calculate the

inter-moult intervals.

Fig 2. Inter-moult interval of juvenile shrimp under different concentrations of fipronil and imidacloprid. The vertical

axis is the time (days) between consecutive moults of the same individual, and the horizontal axis is the six insecticide

concentrations (μg/L) including the control. Error bars indicate the standard errors (n = 18 in fipronil exp. and n = 15 in

imidacloprid exp.). (A) Fipronil experiment, (B) Imidacloprid experiment.

https://doi.org/10.1371/journal.pone.0223641.g002
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Shrimp under imidacloprid exposure showed a significant difference in inter-moult interval

between the control (8.43 ± 2.52 day) and all other treatments (P = 0.0020–0.045). Inter-moult

intervals under imidacloprid exposure ranged between 10.50 ± 4.04 day in the 15.0 μg/L treat-

ment and 11.95 ± 4.9 day in the 0.5 μg/L treatment (Fig 2B).

Shrimp survival and LC50

In the fipronil experiment, survivorship of shrimp under higher fipronil concentrations

(1.0 μg/L and 3.0 μg/L) decreased rapidly during the first week of the exposure, and all shrimp

died by day 6 and day 1, respectively. During the first week, survival rate in the control (100%)

was significantly different from that in the 0.1 μg/L treatment (44.44%, P = 0.0006) (Table 2).

The survivorship after week 2 differed significantly between the two lowest concentrations

(control and 0.005 μg/L) and two higher concentrations (0.01 μg/L and 0.1 μg/L) (P <0.0001)

(Table 2). Lethal concentration of fipronil to reach 50% mortality of shrimp within 96 hours

(96-h LC50) of the juvenile brown shrimp was 0.12 μg/L with 95% confidence intervals 0.06–

0.24 (S2 Fig).

In the imidacloprid experiment, shrimp showed higher survivorship percentage during the

first two weeks compared with those in the fipronil experiment, and there was no significant

difference among treatments including the control (Table 3). Starting from week 3, however,

significant differences were observed in the survivorship of shrimp in treatments of higher

concentrations. At the end of the experiment (36 days), the control treatment showed signifi-

cant differences in the survival rate (100%) compared with the 15.0 μg/L, 34.5 μg/L, and

Table 2. Percentage of individuals alive (mean ± standard deviation) of juvenile shrimp in fipronil experiment starting from day1 to the end of the experiment.

Fipronil concentrations (μg/L) n Survival %

Day 1 Week 1 Week 2 Week 3 Week 4 Week 5

Control 18 100 100 100 100 100 100

0.005 18 100 100 100 100 100 100

0.01 18 100 77.77 ± 9.62 77.77� ± 9.62 72.21� ± 9.62 72.21� ± 9.62 72.21� ± 9.62

0.1 18 100 44.44� ± 34.69 33.33� ± 16.67 33.33� ± 16.67 33.33� ± 16.67 33.33� ± 16.67

1.0 18 100 0 0 0 0 0

3.0 18 100 0 0 0 0 0

n = number of shrimp individuals in each treatment (6 shrimp per replicate aquarium, 3 aquariums per treatment). Values with star (�) indicate treatment is

significantly different from the control (P < 0.0001–0.004).

https://doi.org/10.1371/journal.pone.0223641.t002

Table 3. Percentage of individuals alive (mean ± standard deviation) of juvenile shrimp in imidacloprid experiment starting from day1 to the end of the

experiment.

Imidacloprid concentrations (μg/L) n Survival %

Day 1 Week 1 Week 2 Week 3 Week 4 Week 5

Control 15 100 100 100 100 100 100

0.5 15 100 100 93.33 ± 11.54 93.33 ± 11.54 93.33 ± 11.54 93.33 ± 11.54

1.0 15 100 93.33 ± 11.54 93.33 ± 11.54 93.33 ± 11.54 93.33 ± 11.54 86.66 ± 11.54

15.0 15 100 100 100 100 73.33 ± 23.09 66.66 � ± 30.55

34.5 15 100 100 100 73.33 � ± 23.09 60.0 � ± 20.0 40.0 �

320.0 15 100 100 100 80.0 ± 20.0 60.0 � ± 34.64 33.33 � ± 11.54

n = number of shrimp individuals in each treatment (5 shrimp per replicate aquarium, 3 aquariums per treatment). Values with star (�) indicate treatment is

significantly different from the control (P < 0.0001–0.039).

https://doi.org/10.1371/journal.pone.0223641.t003
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320.0 μg/L treatments, which had the survival rates of 66.6%, 40%, and 33.3%, respectively

(Kaplan-Meier survival analysis followed by the non-parametric Log-Rank test, P < 0.0001).

However, there were no significant differences among the control (100% survival), 0.5 μg/L

(93.3% survival) and 1.0 μg/L treatment (86.6% survival) according to the Kaplan-Meier sur-

vival analysis (Table 3).

Behavioral and other physical changes

Swimming and feeding behaviors of brown shrimp under the exposure of fipronil and imida-

cloprid changed noticeably in comparison with those in the control treatments. These changes

were consistent between fipronil and imidacloprid exposures, and a sequence of changes in

behaviors was observed from the first day of the exposure (in some treatments) until the death

of the affected shrimp. First, affected shrimp became unable to swim normally, and they

started exhibiting circle-like movements. After that, shrimp stopped moving and sprawled on

the bottom of an aquarium at the same time their swimming legs kept moving involuntary.

Then, their swimming legs stopped moving, and they died. Shrimp in the fipronil experiment

showed these behavioral changes after only one day of the exposure and even in the lowest

concentration (0.005 μg/L). Similarly, shrimp under imidacloprid exposure showed same

behavioral changes by day one in all treatments except in the 0.5 μg/L treatment (lowest imida-

cloprid concentration). Under the lowest imidacloprid concentration, these changes started in

day 5. During all of these abnormal swimming behaviors, shrimp exhibited difficulty in feed-

ing, and food remained in aquariums were cleaned routinely.

At the end of the experiments, visible changes in color were noticed in shrimp bodies under

the exposure to either pesticide. Fig 3 shows the changes in color of shrimp from the normal

bright color under the control to gray and dark body color of shrimp in treatments of high

fipronil and imidacloprid concentrations. In the fipronil experiment, shrimp exposed to

higher concentrations (1.0 μg/L and 3.0 μg/L) died during the first days and did not show

color changes.

Water quality

In both fipronil and imidacloprid experiments, all water quality parameters were within suit-

able ranges that fit the environmental requirements of brown shrimp [55]. Statistical analysis

of these parameters showed no significant differences among treatments during the experi-

ments. In the fipronil experiment, the mean values of water quality parameters were the fol-

lowing: temperature, 24.12 ± 0.06 ˚C; dissolved oxygen (DO), 5.82 ± 0.41 mg/L, salinity,

15.02 ± 0.14‰; and pH, 8.01 ± 0.06 (S7 Table). In the imidacloprid experiment, mean values

were the following: temperature, 24.34 ± 0.03 ˚C; dissolved oxygen (DO), 5.87 ± 0.06 mg/L,

salinity, 15.48 ± 0.08‰; and pH, 8.15 ± 0.05 (S8 Table).

Discussion

In the present study, all nominal concentrations of fipronil and imidacloprid were within the

range of the concentrations reported in recent studies [12, 30, 35, 37] for both insecticides

(Table 1). Our results showed that, for both insecticides, significant differences were observed

in the final weight and final length (length at week 5) of shrimp under many of these concen-

trations compared with the control (S3–S6 Tables) suggesting the insecticides have effects to

reduce growth of shrimp. Reduction in growth of aquatic arthropods resulting from contami-

nants has been demonstrated in several other studies: e.g. the Glyphosate-based herbicide

(Roundup1) on freshwater shrimp Caridina nilotica [56], petroleum hydrocarbons from oil

spill on juvenile brown shrimp F. aztecus and white shrimp L. setiferus [57], and imidacloprid
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on midge Chironomus tentans, amphipod Hyalella azteca [58], and harlequin fly Chironomus
riparius [59]. However, we note that growth of juvenile blue crabs Callinectes sapidus showed a

significant increase under all treatments of fipronil compared to the control in a short-term

(96-h) experiment [60], suggesting the effects of insecticides on growth may not be always

negative.

Many potential reasons exist for the reduced growth of juvenile brown shrimp under fipro-

nil and imidacloprid exposures in our study. For example, organisms in polluted environ-

ments use the metabolic energy to detoxify the contaminant. Therefore, this will affect their

growth performance by affecting the metabolism of protein and carbohydrate [61]. Shrimp is

Fig 3. Color change of shrimp in different concentrations (μg/L) of the insecticides at the end of the experiments.

(A) Control 0.0 μg/L fipronil, (B) 0.005 μg/L fipronil, (C) 0.01 μg/L fipronil, (D) 0.1 μg/L fipronil, (E) Control 0.0 μg/L

imidacloprid, (F) 0.5 μg/L imidacloprid, (G) 1.0 μg/L imidacloprid, (H) 15.0 μg/L imidacloprid, (I) 34.5 μg/L

imidacloprid, (J) 320.0 μg/L imidacloprid.

https://doi.org/10.1371/journal.pone.0223641.g003
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known to derive energy more efficiently from protein compared with carbohydrates and lipids

[62]; consequently, fipronil and imidacloprid in our study may have affected brown shrimp

growth by reducing protein levels in bodies of those under exposure compared with shrimp in

the control, which in turn affected their growth at the end of the experiment (S3–S6 Tables).

Alternatively, the reduction in growth may also be caused by reduced feeding. Both insecti-

cides are neurotoxins, which act by disrupting the central nervous system activity of exposed

arthropods either by blocking the chloride channels at the gamma-aminobutyric acid (GABA)

by fipronil [63] or by binding strongly to the nicotinic acetylcholine receptor (nAChR) by imi-

dacloprid [64]. These effects on the nervous system activities may suppress feeding of inverte-

brates [65]. Regardless of the underlying mechanisms, the reduced growth from the insecticide

is a great concern because the survival of juvenile brown shrimp is thought to be size depen-

dent [66] and the abundance of adult white shrimp, which has very similar life history as

brown shrimp has been demonstrated to be very sensitive to survival during a juvenile stage

[67].

Moulting in arthropods is useful endpoint to test sub-lethal exposure of chemicals, and con-

sidered one of the most important physiological processes for these animals because in order

to grow normally they have to cast their exoskeleton periodically [68, 69]. Moulting process is

regulated by hormones and nervous system secretions; therefore, it is susceptible to the nega-

tive effects of endocrine disrupting chemicals EDCs including many pesticides [69], such as

fipronil [70] or those who act like EDCs such as imidacloprid [71]. In our study, both fipronil

and imidacloprid affected moulting of brown shrimp with significant differences between the

control and other treatments. Inter-moult interval of shrimp under fipronil exposure was sig-

nificantly delayed under the 0.01 μg/L treatment compared with the control (Fig 2A). This

result is consistent with our previous study, which showed the prolonged inter-moult intervals

under the 0.1 μg/L and 1.0 μg/L treatments compared with the control [41]. In our previous

study, we evaluated the adverse effects of higher concentrations of fipronil (0.0, 0.1, 1.0, 3.0,

6.4, 10.0 μg/L) on brown shrimp juveniles, and because of the higher concentrations used, the

exposure to all of the fipronil treatments resulted in all individuals dying before the end of the

experiment. Under imidacloprid exposure in the current study, shrimp under all treatments

showed a significant delay (P = 0.0020–0.045) in their inter-moult intervals (10.89 ± 3.97 day

in 34.5 μg/L to 11.95 ± 4.90 day in 0.5 μg/L) compared with shrimp in control (8.43 ± 2.52

day) (Fig 2B). Many studies have reported similar delay in moulting of marine and freshwater

arthropods after exposing them to different pesticides [41]. Such delay in moulting of shrimp

may be linked to the reduction in growth and suggests that normal development of shrimp

was affected even under concentrations below chronic level (0.01 μg/L) of fipronil.

Our study showed that survival of juvenile brown shrimp was concentration-dependent

under both insecticides (Tables 2 and 3). Fipronil and imidacloprid caused significant lethal

and sub-lethal effects on shrimp especially in higher concentrations. Under fipronil exposure,

all shrimp died during first few days in the 1.0 μg/L and 3.0 μg/L treatments and survivorship

declined significantly (P< 0.0001) under the 0.1 μg/L (33.33%) and 0.01 μg/L (72.21%) treat-

ments compared with the control (100% survival) (Table 2). Under imidacloprid exposure,

survivorship declined significantly (P< 0.0001) in the 320.0 μg/L (33.33%), 34.5 μg/L (40.0%),

and 15.0 μg/L (66.66%) treatments compared with control (100%) (Table 3).

The nominal 96-h LC50 of fipronil for brown shrimp was 0.12 μg/L (0.06–0.24). This sug-

gests brown shrimp is one of the most sensitive crustaceans to fipronil among all aquatic inver-

tebrates studied so far. This 96-h LC50 for brown shrimp is less than that for estuarine mysid

shrimp Neomysis americana LC50 = 0.14 μg/L reported in Gan, et al. [33]. Other sensitive

marine invertebrates include estuarine grass shrimp Palaemonetes pugio with 96-h LC50 of

0.32 μg/L [72, 73], estuarine copepod Amphiascus tenuiremis with 96-h LC50 of 6.8 μg/L [21],
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and estuarine Chinese mitten crab Eriocheir sinensis with 96-h LC50 of 8.56 μg/L [52]. Many

previous studies reported the greater sensitivity of marine invertebrates to fipronil compared

with freshwater invertebrates, such as the copepod Acanthocyclops robustus with 48-h LC50 of

194.2 μg/L [74], the water flea D. magna with 48-h LC50 of 190.0 μg/L [27], and the red swamp

crayfish Procambarus clarkia with 96-h LC50 of 163.5 μg/L [73]. As for imidacloprid, we could

not measure the LC50 for brown shrimp because there was not enough mortality in shrimp

during the first 96 hours of the exposure under the concentrations used in this study.

We also note that the LC50 of fipronil measured in this study (0.12 μg/L) was below the

LC50 measured in the previous study in 2016, 1.3 μg/L [41]. This may be because of the

difference in the temperature between the two studies: 20.84˚C ± 0.24 (in 2016 study) and

24.12˚C ± 0.06 (in present study). Although temperature was increased, these water tempera-

tures are considered within the optimum temperature range for the brown shrimp develop-

ment 18˚C and 25˚C [55]. We increased water temperature from the previous study because

we expected shrimp to experience higher temperature during summer months in estuaries and

previous shrimp experiments by others were often conducted at higher temperature e.g. [75–

77]. Effect of temperature on toxicity of pesticides was observed in other studies, for example,

Russo, et al. [78] noted that, of many environmental parameters investigated, temperature was

the only parameter that magnified the effect of pesticide exposure on the crustacean Gam-
marus pulex in streams. Willming et al. [79] also reported that the 10 days LC50 for the crusta-

cean H. azteca exposed to the fungicide chlorothalonil was lower under the fluctuating

temperature regime compared with that under the constant temperature regime. We suggest

further studies to investigate the effects of temperature on the effects of insecticides in the

future study as the temperature in the subtropical estuaries (habitat for juvenile brown shrimp)

can change greatly among seasons.

Behavioral changes are useful biomarkers to evaluate sub-lethal exposure effects of contam-

ination [80]. Long-term behavioral changes can be detected even at low doses of pesticides,

and the behavior can reveal a great deal about the systems and processes influenced by pesti-

cides [81]. In the current study, shrimp in both experiments exhibited behavioral changes such

as restricted swimming and mobility, paralysis, and feeding delay, starting from the first day of

exposure even in treatments of low fipronil concentrations (0.005 and 0.01 μg/L) whereas

those in treatment of low imidacloprid concentration (0.5 μg/L) did not show any behavioral

changes until day 5 of the exposure. Similar behavioral changes were reported in studies that

tested the effect of fipronil, imidacloprid, and other pesticides on aquatic invertebrates. For

example, Overmyer et al. [26] observed abnormal behavior and muscle control in the aquatic

insect Simulium vittatum under all tested fipronil and imidacloprid concentrations. Similarly,

Stratman et al. [82] showed that the chironomid midge Cricotopus betis exposed to different

concentrations of fipronil exhibited abnormal behaviors such as movement restriction and

feeding reduction at all tested concentrations. Behavioral changes could be direct conse-

quences of pesticides on the central nervous system of organisms [83]. These changes may

have substantial ecological effects to the organisms by shifting them to unfavorable habitats or

even by making them more sensitive to predators, and eventually leading to indirect lethal

responses of pollutants at sub-lethal levels [69]. In particular, the major mortality of juvenile

brown shrimp is considered to be predations [66], and small effects on their behavior may

cause substantial reduction in their in situ mortality rate.

In both experiments, shrimp showed darker body color in treatments of higher concentra-

tions of insecticides compared with those in control, which had normal bright color as they

are in nature. The color also appears to be a concentration-dependent, and shrimp under

fipronil exposure were much darker than those under imidacloprid exposure. In other study,

Martinez et al. [84] reported that Pacific white shrimp Litopenaeus vannamei exposed to low
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concentrations of heavy metals such as copper were significantly redder than those in controls.

In shrimp and other crustaceans, many environmental factors are known to affect body color

by affecting pigment dispersion within the chromatophores [85], which are regulated by neu-

rosecreted hormones [86]. However, in our study, factors such as light intensity, background

color, and temperature which are known to have an effect on body color of shrimp were care-

fully controlled. Color changes under fipronil and imidacloprid insecticides were observed in

the exoskeleton and abdominal muscle of juvenile brown shrimp as shown in Fig 3. Body

color may be used as an indicator of the health of shrimp [84] and environment [87]; conse-

quently, we suggest that color change of penaeid shrimp needs more investigation because it

could be used as an indicator of long-term effects of sub-lethal exposure to environmental neu-

rotoxins such as fipronil, imidacloprid or other commonly used pesticides.

Conclusions

In summary, fipronil and imidacloprid had both lethal and sub-lethal effects on brown shrimp

at concentrations that have been reported in the natural environment. According to the 96-h

LC50 of fipronil, brown shrimp is one of the most sensitive invertebrate species to fipronil

exposure among all marine and freshwater species studied to date. Although brown shrimp

exhibited less lethal effects on imidacloprid than fipronil under the U.S. EPA benchmark con-

centrations, sub-lethal effects such as delayed moulting and reduced growth were significant.

Both types of effects are of serious concern because of the commercial and ecological impor-

tance of brown shrimp, their dependency on estuaries, and increased use of these pesticides in

coastal areas. We recommend continuous monitoring of both chemicals, and it may also be

necessary to reduce the use of these chemicals when brown shrimp are abundant in estuaries.
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