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Abstract

The R package crossrun computes the joint distribution of the number of crossings and the

longest run in a sequence of independent Bernoulli observations. The main intended appli-

cation is statistical process control where the joint distribution may be used for systematic

investigation, and possibly refinement, of existing rules for distinguishing between signal

and noise. While the crossrun vignette is written to assist in practical use, this article gives a

hands-on explanation of why the procedures works. The article also includes a discussion of

limitations of the present version of crossrun together with an outline of ongoing work to

meet these limitations. There is more to come, and it is necessary to grasp the basic ideas

behind the procedure implemented both to understand these planned extensions, and how

presently implemented rules in statistical process control, based on the number of crossings

and the longest run, may be refined.

Introduction

The setting is defined by a number of independent observations from a Bernoulli distribution

with the same success probability. In statistical process control, our main intended application,

this may be the useful observations in a runchart, recording values above and below the

median from previous data, disregarding any observations equal to the median [1]. The focus

of the R package crossrun [2,3] is the joint distribution of number of crossings, C, and the

length of the longest run, L, in random data sequences. A run is a sequence of successes or fail-

ures, delimited by a different observation or the start or end of the entire sequence. A crossing

is two adjacent different observations.

Fig 1 illustrates runs and crossings in a run chart with 20 random observations. Observa-

tions above and below the median represent successes and failures respectively.

The longest run consists of observations 3–7 above the median. The length of the longest

run is L = 5. The number of crossings of the median is C = 10.

While the number of crossings follows a binomial distribution in the symmetric case (suc-

cess probability 0.5), no closed form distribution is known for the longest run. The distribution

of the longest run has been investigated in a number of articles, including Schilling [4], and
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Fazekas et al [5] that in fact gives recursion formulas, and approximations have been given.

However, what is needed in applications is the joint distribution of these two variables, for

which we are not aware of exact results. Our primary aim is to present an iterative procedure

for computing this distribution, in principle for an arbitrary number of observations.

The iterative procedure, setting

In n independent Bernoulli observations with success probability p and failure probability

q = 1—p, values are denoted by 1 (success with probability p) or 0. A crossing consists of two

consecutive different values, and a run of length l consists of l successive observations, delim-

ited by a crossing or the first or last observation. The possible values of the number C of cross-

ings are c = 0, . . ., n-1, and the possible values for the length L of the longest run are l = 1, . . .,

n. The joint probabilities of L and C for given n are denoted by Pn(L = l,C = c).
The iterative procedure involves conditioning on the first observation denoted by S, with

values 1 for success (probability p) and 0 for failure (probability q). The iterative procedure

computes the conditional probabilities

PnðL ¼ l;C ¼ cjS ¼ 1Þ;PnðL ¼ l;C ¼ cjS ¼ 0Þ

Fig 1. A run chart with n = 20 data points.

https://doi.org/10.1371/journal.pone.0223233.g001
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This conditioning on the first observation is an essential part of the procedure. One way to

see that this is reasonable is to consider the case when p is close to 1. Then most observations

are successes, most runs are success runs and the conditional joint distribution of runs and

crossings is quite different dependent on the first observation. It is sufficient to be able to com-

pute these conditional distributions, because the unconditional joint distribution is

PnðL ¼ l;C ¼ cÞ ¼ PnðL ¼ l;C ¼ cjS ¼ 1Þ � pþ PnðL ¼ l;C ¼ cjS ¼ 0Þ � q

For the iterative procedure to work it is also necessary to take another variable into account,

the first crossing. More precisely, we denote the end position of the first crossing by F, with

values F = 2, . . ., n. An additional value F = 1 denotes, by convention, the case of no crossing.

The joint probabilities for C and L conditional on S are partitioned by further conditioning on

F as detailed below.

It is important to underline that the conditioning variables S and F are not parameters of

the distribution but useful constructions that help break down the iterative procedure in man-

ageable parts.

This article first describes the setting for the iterative computation procedure and its initial

stage. Next, we introduce conditioning on the starting position and partitioning on the posi-

tion of the first crossing. Finally, the joint distribution of the number of crossings and the lon-

gest run conditional on these variables is given. The computation procedure is different in two

cases that are subsequently described.

After the exposition of the iterative procedure follows a brief comment on the simpler sym-

metric case, and the precision of the procedure is discussed. The resulting joint distribution is

described in a simple case, and procedures for checking are briefly commented. Next follows

sections on generalizations and applications and on limitations of the procedures in crossrun

together with a brief description of ongoing work to address these limitations. Finally, a Con-

clusions section summarizes the article. Two appendices are included, one giving details on

the "times" representation in which the joint distributions are actually stored, as described in

the section on precision, and one on the code for the main function crossrunbin and for the

analyses in this article.

The conditional probabilities with one observation

First, we present the starting point of the iterative procedure, the conditional probabilities in

the rather redundant case with only one observation. If n = 1, then 0 is the only possible value

of C and 1 the only possible value of L, therefore P1(C = 0,L = 1|S = 1) = P1(C = 0,L = 1|S = 0) =

1.

In this case the joint distribution of (C,L) is degenerate and takes the value (0,1) with proba-

bility one. Moving to more than one observation, the next step is presenting the conditional

distribution of the end position F of the first crossing, conditional on the starting position S.

The distribution of the first crossing conditional on the starting position

If the first value is 1 (success), no crossing means that all the remaining n-1 values are also 1,

therefore Pn(F = 1|S = 1) = pn−1. Similarly, Pn(F = 1|S = 0) = qn−1. Next, if f = 2, . . ., n and the

first value is a success, F = f means that the sequence starts with a success, then f-2 more suc-

cesses and then one failure. Therefore,

PnðF ¼ f jS ¼ 1Þ ¼ pf � 2 � q; PnðF ¼ f jS ¼ 0Þ ¼ qf � 2 � p; f ¼ 2; . . . ; n

where the last formula is based on a similar argument conditional on S = 0. In the following,

arguments will in many cases be given for S = 1 only, and similar results for S = 0 will be stated
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with no explicit arguments. By symmetry, these results will simply involve replacing p by q. In

the next step the formulas in this section will be used for partitioning the joint conditional

probabilities for C and L given S, by the position F of the first crossing.

Partitioning by the position of the first crossing

Partitioning on F we have

PnðL ¼ l;C ¼ cjS ¼ 1Þ ¼
Xn

f¼1

PnðL ¼ l;C ¼ cjS ¼ 1; F ¼ f Þ � PnðF ¼ f jS ¼ 1Þ

where, as shown in the previous section,

PnðF ¼ f jS ¼ 1Þ ¼ pf � 2q if f � 2 and PnðF ¼ 1jS ¼ 1Þ ¼ pn� 1

The formulas for Pn(L =l,C = c|S = 0) are the same, just interchanging p and q. This implies

that the joint probabilities of C and L conditional on S may be computed if it is possible to

compute all the joint probabilities of C and L conditional on S and F. This is the next step.

Joint distribution conditional on starting position and first crossing

First, if there is no crossing (F = 1) the entire sequence constitutes one single run, therefore

PnðC ¼ 0; L ¼ 1jS ¼ 1; F ¼ 1Þ ¼ PnðC ¼ 0; L ¼ 1jS ¼ 0; F ¼ 1Þ ¼ 1

and all other conditional probabilities are 0. Thus, the matrices of joint probabilities of C and

L conditional on F = 1 together with each value of S, are matrices with all components equal to

0, except for a 1 in the upper right corner.

If crossings do occur (f = 2, . . ., n), the conditional probabilities

PnðC ¼ c; L ¼ ljS ¼ 1; F ¼ f Þ; PnðC ¼ c; L ¼ ljS ¼ 0; F ¼ f Þ

are more complicated. The key to computing these probabilities is to recognize that, except for

the initial run of f-1 observations, the remaining observations constitute n-(f-1) = n+1-f identi-

cal and independent Bernoulli observations with success probability p, they represent the same

setting as for all n observations, just a shorter sequence. Further, these n+1-f observations are

also conditional on a fixed value of their first observation, only that this fixed value is the oppo-

site as in the entire sequence. This is because the last n+1-f observations start with the observa-

tion after the first crossing.

We now have to distinguish between two cases. In case 1, the f-1 observations in the initial

run, before the first crossing, are at least as many as the last n+1-f ones. In case 2, the initial

run is shorter:

Case 1: f-1� n+1-f

Case 2: f-1< n+1-f

The two cases are illustrated in Fig 2 below. In both cases the observations (red) from the

end of the first crossing constitute a runchart of its own, only shorter and starting on the oppo-

site side. In Case 1 (top), the initial run of f-1 = 14 observations is longest, l = f-1 = 14. The

number of crossings in the last n+1-f = 10 observations is between 0 and 9, and the total num-

ber of crossings is one more, 1� c� 10. In Case2 (bottom) the initial run of f-1 = 8 observa-

tions may or may not be longest, l� 8. It is a longest run precisely if no run within the last n

+1-f = 16 (red) observations is longer than 8. If all observations in the last 16 observations are

below the median, l = 16, thus for the whole sequence 8� l� 16. The number of crossings in

the last part (red, 16 observations) is between 0 and 16–1 = 15, and the number of crossings in

Joint distribution for crossings and longest run. The R package crossrun
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the whole sequence is one more, 1˚� c� 16. What is shown here in an example is the core of

the general argument that follows.

Top: f = 15, the initial run is necessarily longest. Bottom: f = 9, the initial run may or may

not be longest.

Case 1, at least as many observations before the first crossing as thereafter

This is the simplest case. Here, the first f-1 observations constitute a run of length f-1, and no

run in the last n+1-f observations may be longer than that. Therefore, the longest run is f-1,

and the non-zero probabilities Pn(C = c,L = l|S = 1,F = f) are confined to the vertical strip l = f-

1. And, in fact, to only a part of this strip. First, there is at least one crossing, from time f-1 to f.

Also, any further crossings are within the last observations, and may be any number between 0

and (n+1-f)– 1. The total number of crossings may therefore be any number between 1 and n

+1-f, which means that the non-zero probabilities Pn(C = c,L = l|S = 1,F = f) are confined to the

strip l = f-1, 1� c� n+1-f.

The non-zero probabilities Pn(C = c,L = l|S = 1,F = f), l = f−1,1�c�n+1−f are somehow

determined by what happens within the last n+1-f observations. More specifically, the last n

+1-f observations constitute a sequence of the same type as the original n observations, only

shorter, and with the starting observation fixed on the opposite side of the central line. To put

Fig 2. Two runcharts with n = 24 data points, both starting above the median.

https://doi.org/10.1371/journal.pone.0223233.g002
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it into a formula,

PnðC ¼ c; L ¼ f � 1jS ¼ 1; F ¼ f Þ ¼ Pnþ1� f ðC ¼ c � 1jS ¼ 0Þ

where C = c-1 is because the crossing from f-1 to f is just before the last n+1-f observations.

Similarly,

PnðC ¼ c; L ¼ f � 1jS ¼ 0; F ¼ f Þ ¼ Pnþ1� f ðC ¼ c � 1jS ¼ 1Þ

The probabilities on the right-hand side of these formulas are for a lower number of obser-

vations and are therefore already computed in the iterative procedure.

Note that the n+1-f observations after the initial run start on opposite side of the centre

line. Therefore, it is necessary to compute conditional probabilities conditional on starting val-

ues both above and below the centre line in the iterative procedure, they cannot be computed

separately. The computations are a bit more complicated in the second case, when the initial

run is the shorter part, but the main idea is the same.

Case 2, fewer observations before the first crossing than thereafter

As in case 1, the total number of crossings is between 1 and n+1-f. As to the longest run L, it

cannot be shorter than f-1 or longer than n+1-f, and it is necessary to distinguish between val-

ues l = f-1 and l�.f. A longest run f-1 in the entire sequence means that all runs in the last n

+1-f observations have length l� f-1. Therefore

PnðC ¼ c; L ¼ f � 1jS ¼ 1; F ¼ f Þ ¼ Pnþ1� f ðC ¼ c � 1; L � f � 1jS ¼ 0Þ

(and similarly conditional on S = 0). For longer runs in which f� l� n+1-f, the longest run

has to be within the last n+1-f observations and we have

PnðC ¼ c; L ¼ ljS ¼ 1; F ¼ f Þ ¼ Pnþ1� f ðC ¼ c � 1; L ¼ ljS ¼ 0Þ

(and similarly conditional on S = 0). All these conditional probabilities, based on a shorter

sequence, have already been computed in an iterative computation procedure.

Simplifications in the symmetric case

For p = 0.5 there is a symmetry between crossings up or down, and between success and failure

runs. Therefore, conditioning on the first observation is not necessary, although it is still neces-

sary to partition on the first crossing F. Also, by an induction argument following the iterative

procedure, all these probabilities are integer multiples of 0.5n−1 and, in fact, represent a parti-

tion of the binomial coefficients in the distribution of C, by the values l = 1, . . ., n of L.

Precision considerations

To enhance precision, computations have been performed in the R package Rmpfr [6], an

R interface to the GNU MPFR library [7]. Preliminary investigations pointed to precision

problems above values about 50 for sequence length n without this increased precision, but no

such problems up to n = 100 when using Rmpfr. To further enhance precision, probabilities

are represented in the times representation, they have been multiplied by mn-1 where m is a

multiplier with default value 2. Thereby very small numbers are avoided, at least to some

extent, and the numbers computed are integers in the symmetric case. The joint probabilities,

using the times representation, in the symmetric case for n = 16 are shown in Table 1 below in

this representation:

Joint distribution for crossings and longest run. The R package crossrun
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The corresponding joint probabilities are obtained by dividing these integers by 2n−1 =

215 = 32768, for instance P16(C = 5,L = 6) = 741/32768 = 0.023. The highest joint probability is

P16(C = 7,L = 4) = 2716/32768 = 0.083. It is also seen that a high proportion of the joint proba-

bilities consists of zeroes, and except for some very small numbers the joint probabilities are

concentrated within a narrow sloping band, as also commented in the crossrun vignette, these

are fairly general phenomena. For comparison the joint distribution for n = 16 is also shown

in Table 2 below for p = 0.6, a case where observations tend to stay above the midline. These

Table 1. Joint distribution in the symmetric case, n = 16. Times representation.

l = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 0

2 0 0 0 0 0 6 15 21 18 15 12 9 6 3 0 0

3 0 0 0 1 34 90 106 84 60 40 24 12 4 0 0 0

4 0 0 0 65 300 370 280 175 100 50 20 5 0 0 0 0

5 0 0 21 525 960 741 420 210 90 30 6 0 0 0 0 0

6 0 0 266 1652 1617 882 392 147 42 7 0 0 0 0 0 0

7 0 1 1106 2716 1652 672 224 56 8 0 0 0 0 0 0 0

8 0 36 2268 2646 1080 324 72 9 0 0 0 0 0 0 0 0

9 0 210 2640 1605 450 90 10 0 0 0 0 0 0 0 0 0

10 0 462 1815 605 110 11 0 0 0 0 0 0 0 0 0 0

11 0 495 726 132 12 0 0 0 0 0 0 0 0 0 0 0

12 0 286 156 13 0 0 0 0 0 0 0 0 0 0 0 0

13 0 91 14 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0223233.t001

Table 2. Joint distribution for p = 0.6, n = 16. Times representation.

p = 0.6 l = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c = 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.3

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 1.6 1.9 2.6 3.8 5.6 8.3 12.4 0.0

2 0.0 0.0 0.0 0.0 0.0 7.5 22.8 41.2 39.3 37.5 35.3 31.9 26.2 16.5 0.0 0.0

3 0.0 0.0 0.0 0.7 28.0 88.6 130.0 121.0 102.2 82.8 61.6 38.9 16.6 0.0 0.0 0.0

4 0.0 0.0 0.0 63.4 337.8 485.0 423.3 302.3 202.2 120.6 58.5 18.0 0.0 0.0 0.0 0.0

5 0.0 0.0 15.9 451.3 947.6 845.0 550.2 323.0 166.1 67.6 16.7 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 234.2 1619.3 1784.1 1098.1 557.9 245.0 83.5 16.8 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.7 900.4 2439.2 1660.7 764.3 295.9 87.9 15.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 28.7 1977.6 2518.8 1138.4 386.4 99.8 14.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 160.0 2159.1 1427.7 444.0 101.6 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 369.8 1535.6 553.4 111.8 12.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11 0.0 379.0 582.9 114.6 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12 0.0 223.9 127.4 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 0.0 68.2 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 0.0 11.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Probabilities are multiplied by 2n−1 = 32768 (times representation) and shown with one decimal. Even in the times representation the probabilities are not represented

with integers in non-symmetric cases.

https://doi.org/10.1371/journal.pone.0223233.t002
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probabilities are still shown in the "times" representation, they are multiplied by 2n−1 = 32768,

and are shown with one decimal digit:

Generalization and applications

The iterative procedure has been generalized to time series where the success probability may

vary, as long as the observations are assumed to be independent. This is implemented in a

function crossrunchange. Here, the success probability is replaced by a sequence of probabili-

ties, one for each observation.

The joint distributions for the number of crossings and the longest run may be used to

investigate, and possible refine, the Anhoej rules in statistical process control ([8], Table 1).

The Anhoej rules employ two tests for non-random variation in data over time:

Shift rule: unusually long runs of consecutive data points on the same side of the centre

line. This rule is triggered if there are one or more runs longer than log2(n)+3 rounded to the

nearest integer, where n = the number of data points not on the median.

Crossings rule: the curve crosses the centre line unusually few times. This rule is triggered if

there are fewer crossings than the lower 5th percentile from the cumulative binomial distribu-

tion function with a success probability of 0.5 and n-1 trials.

While these rules have shown to be useful, as seen when preparing our recent article [9] they

do not have quite monotone sensitivities and specificities. For such work access to the exact

joint distributions has decisive advantages compared to simulations. We are at present working

on calculation of exact values of sensitivities and specificities of the Anhoej rules, and also on a

modification of the rules with less variation in sensitivities and specificities. Preliminary investi-

gations indicate that this modification may improve the practical usefulness of the Anhoej rules.

To illustrate the use of the joint distributions of C and L we present in Table 3 below the

specificities of the Anhoej rules for sequence lengths between 10 and 100 in the following table.

The sequence lengths are represented as tens in columns and ones in rows. For instance,

the specificity is 0.897 for sequence length 45 = 40+5 and 0.936 for sequence length 46. The

specificities may also be estimated by extensive and complicated simulations as used in [9], but

with lower precision.

Limitations and planned extensions

There are at present two main limitations. First, in applications in statistical process control

when observations are categorized as above or below a midline, the iterative procedure

Table 3. Specificities of the Anhoej rules.

Specificities of the Anhoej rules

Sequence lengths represented as tens (columns) + ones (rows)

10 20 30 40 50 60 70 80 90 100

0 0.955 0.929 0.936 0.921 0.927 0.926 0.908 0.907 0.891 0.929

1 0.951 0.933 0.920 0.910 0.935 0.915 0.914 0.898 0.931

2 0.957 0.917 0.929 0.915 0.923 0.922 0.904 0.904 0.922

3 0.963 0.952 0.935 0.903 0.931 0.911 0.911 0.894 0.929

4 0.939 0.934 0.922 0.910 0.918 0.919 0.916 0.901 0.920

5 0.949 0.944 0.929 0.897 0.927 0.924 0.908 0.906 0.927

6 0.953 0.950 0.915 0.936 0.933 0.915 0.913 0.898 0.933

7 0.935 0.936 0.922 0.943 0.923 0.921 0.904 0.903 0.925

8 0.941 0.943 0.908 0.932 0.929 0.911 0.910 0.894 0.931

9 0.921 0.928 0.916 0.939 0.919 0.918 0.901 0.900 0.922

https://doi.org/10.1371/journal.pone.0223233.t003
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presupposes that the midline is determined from previous data, usually the median. If the mid-

line is the median in the same data set the procedure does not apply since subsequent observa-

tions are no longer fully independent. Work is, however, underway to tackle this case. Briefly,

the median divides the useful observations (observations not on the median, see [8] for details)

into two parts of equal size. The useful observations are then necessarily an even number, say

n = 2m, the useful observations above the median is a subset of size m, and all such subsets are

equally probable. To find the number of such subsets for each combination of the number of

crossing and the longest run is in fact tractable if it is generalized to all subsets, not necessarily

of size m = n/2, and an iterative procedure resembling the procedure implemented in the func-

tion crossrunbin has been developed. The procedure, due to the large number of such subsets,

is more demanding in terms of computation time and storage requirements, and it has so far

only been possible to use it up to n = 64. Specifically, using a PC with an Intel Core i5 processor

and 8 GB RAM computation times for n = 10, 20 and 40 were 3 seconds, 27 seconds and 9

minutes and storage requirements were 9 kB, 107 kB and 2MB, respectively. Preliminary

investigations seem to indicate that the difference from the case of a predetermined midline is

smaller for longer sequences. A function crossrunem has been written for this case and is

planned for inclusion in an update of the package crossrun.

Another important limitation is that the iterative procedure does not apply for autocor-

related time series. Here also, work is in progress in a simple autocorrelation model in

which the probabilities of "success" and "failure" in each observation may depend on the

previous observation only, and a function crossrunauto is planned for inclusion in a future

update. The practical value of this procedure is likely to be limited since decision rules

based on the number of crossings and the longest run are probably not particularly useful

for autocorrelated series, but at least the procedure may be used to investigate the extent of

the problem.

A third limitation is that the code has so far only been checked for small n. For applications

in statistical process control this should not be a problem, therefore details above, and in the

crossrun vignette, stop at n = 100. We have now extended the computations up to n = 200

both in the symmetric case and for probability 0.8, and the procedure seems to work well,

except that it was necessary to increase the mpfr precision parameter from the default value of

120 to 240 bits. Then the marginal distributions of C in the symmetric case agreed completely

with the binomial coefficients for all n up to 200. The sum of the joint distribution for proba-

bility 0.8, in the times representation, agreed with 2n−1, with discrepancies in the 11. decimal

or smaller. It was also checked, both in the symmetric case and for probability 0.8, that the

mean of C�L, an example of a demanding calculation, agreed well with simulation results for

n = 200. Details are included at the end of the article script. Still, as expected this points to

increasing precision demands for obtaining accurate joint distributions for longer sequences.

The procedures implemented in crossrun are therefore not likely to be practically feasible for

applications that require very long sequences.

Conclusions

The crossrun package includes functions for computing the probabilities of the joint distribu-

tion of longest run and number of crossings in random data series. To our knowledge, this dis-

tribution has not been studied before.

The ability to calculate exact probabilities for the joint distribution allows for the develop-

ment of better prediction limits for longest run and crossings in random data series. In turn,

this allows for better separation of signal and noise, i.e. random and non-random variation in

statistical process control and possibly also in other areas of application.
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Appendix 1: Details on the times representation

The times representation of the joint distribution is defined as

PtnðC ¼ c; L ¼ ljS ¼ 1Þ ¼ mn� 1 � PnðC ¼ c; L ¼ ljS ¼ 1Þ

where m is a multiplier normally set as m = 2. The case of conditioning on S = 0, starting

below the midline, is similar. Denoting the success probability as p and the failure probability

as q = 1-p the main decomposition for probabilities is

PnðC ¼ c; L ¼ ljS ¼ 1Þ ¼ pn� 1 � PnðC ¼ c; L ¼ ljS ¼ 1; F ¼ 1Þþ

Xn

f¼2

pf � 2 � q � PnðC ¼ c; L ¼ ljS ¼ 1; F ¼ f Þ

where the first term conditions on F = 1, by convention corresponding to no crossing, and

each of the remaining terms conditions on F = f, f = 2, . . ., n corresponding to the first crossing

from f-1 to f. The corresponding decomposition in the times representation may be written as

PtnðC ¼ c; L ¼ ljS ¼ 1Þ ¼

Xn

f¼2

ðpmÞf � 2
� qm �mn� f � PnðC ¼ c; L ¼ l j S ¼ 1; F ¼ f Þ

In the first term for no crossing the probability is simply 1 if C = 0, L = n, and 0 otherwise.

This term is the same in the times representation except for the initial factor in which pn−1 is

replaced by (pm)n−1. In the symmetric case both pm and qm are equal to 1, thus the initial fac-

tor is 1 and the term as a whole is actually simpler in the times representation in the symmetric

case.

In the remaining terms, for the first crossing from f-1 to f, there is first a factor that is simi-

lar to the corresponding factor in the original representation, except that p is replaced by pm

and q by qm. Again, this first factor is actually equal to 1 in the symmetric case. The rest of the

term is mn−f�Pn(C = c,L = l|S = 1,F = f). As shown previously, the probabilities Pn(C = c,L = l|
S = 1,F = f) are determined by the joint distribution Pn+1−f(C = c0,L = l0|S = 0) for the observa-

tions starting at the end of the first crossing. Here we condition on the opposite starting value

S = 0 since this last part of the sequence starts just where the first crossing has occurred. As to

the main part of the term Pn(C = c,L = l|S = 1,F = f) we more specifically have seen that it is

determined by the joint distribution Pn+1−f(C = c0,L = l0|S = 0) by simple operations in terms of

additions and reshuffling only. The corresponding joint distribution in the times representa-

tion is

Ptnþ1� f ðC ¼ c0; L ¼ l0jS ¼ 0Þ ¼ mðnþ1� f Þ� 1 � Pnþ1� f ðC ¼ c0; L ¼ l0jS ¼ 0Þ

where the leading factor m(n+1−f)−1 = mn−f is exactly the same as the leading factor in mn−f�Pn
(C = c,L = l|S = 1,F = f). Therefore, the term

mn� f � PnðC ¼ c; L ¼ ljS ¼ 1; F ¼ f Þ

is determined by the joint distribution

Ptnþ1� f ðC ¼ c0; L ¼ l0jS ¼ 0Þ

on the times scale by exactly the same additions and reshufflings as apply on the original prob-

ability scale.
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Appendix 2: R code for the iteration procedure

The iterative procedure is coded in the function crossrunbin, and is available by typing

library(crossrun)

?crossrunbin

within R, after having installed the package crossrun. R code for all analyses in this article is

available in the S1 File crossrunart.R. The R packages Rmpfr and crossrun should have been

installed before running these analyses.

Supporting information

S1 File. R script for all analyses in the article.

(R)

Author Contributions

Conceptualization: Tore Wentzel-Larsen, Jacob Anhøj.

Formal analysis: Tore Wentzel-Larsen, Jacob Anhøj.

Methodology: Tore Wentzel-Larsen, Jacob Anhøj.

Writing – original draft: Tore Wentzel-Larsen, Jacob Anhøj.

References
1. Anhøj J. Diagnostic Value of Run Chart Analysis: Using Likelihood Ratios to Compare Run Chart Rules

on Simulated Data Series. PLos ONE 2015. Mar 23; 10(3): e0121349. https://doi.org/10.1371/journal.

pone.0121349 PMID: 25799549

2. R Core Team (2014) R: A language and Environment for Statistical Computing. Version 3.6.0 or higher

[software]. 2019 Apr 26. Available from http://www.R-project.org/

3. Wentzel-Larsen T, Anhøj J. crossrun: Joint Distribution of Number of Crossings and Longest Run. Ver-

sion 0.1.0. [software]. 2018 Oct 10. Available from https://CRAN.R-project.org/package=crossrun

4. Schilling MF. The Surprising Predictability of Long Runs. Mathematics Magazine. 2012. Dec 22; 85 (2):

https://www.jstor.org/stable/10.4169/math.mag.85.2.141

5. Fazekas I, Karácsony Z, Libor Z. Longest runs in coin tossing. Comparison of recursive formulae,

asymptotic theorems, computer simulations. Acta Universitatis Sapientiae. Mathematica. 2010 Jan; 2

(2): 215–228. https://www.researchgate.net/publication/266954746_Longest_runs_in_coin_tossing_

Comparison_of_recursive_formulae_asymptotic_theorems_computer_simulations

6. Maechler M. Rmpfr: R MPFR—Multiple Precision Floating-Point Reliable. Version 0.7–1 or higher [soft-

ware]. 2018 Jul. https://CRAN.R-project.org/package=Rmpfr
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