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Abstract

Objectives

To (i) investigate alterations in homotopic functional connectivity (hfc) in concussed patients

relative to healthy controls (HC) and to (ii) interrogate whether hfc in concussed patients nor-

malized during the recovery process. The relationship between symptom recovery and

change in hfc was assessed using post-hoc analyses.

Methods

This study included 15 concussed patients (mean age = 39.1, SD = 10.1; sex: 13 females, 2

males) and 15 HC (mean age = 39.1, SD = 11.7; sex: 13 females, 2 males). Hfc patterns

were interrogated using resting-state magnetic resonance imaging (rs-MRI) for 29 a priori

selected pain-processing regions. Concussed patients underwent imaging at two time-

points; at 1-month post-concussion (mean time following concussion: 28 days, SD = 9.5)

and again at 5-months post-concussion (mean time following concussion: 121 days, SD =

13). At both time-points, symptoms associated with concussion were assessed using the

Sports Concussion Assessment Tool (SCAT-3).

Results

Concussed patients had significantly weaker hfc in the following six regions 1-month post-

concussion compared to HC: middle cingulate, posterior insula, middle occipital, spinal tri-

geminal nucleus, precentral and the pulvinar. There were no regions of significantly stronger

hfc in concussed patients relative to HC. Longitudinally, patients showed significant symp-

tom recovery 5-months post-concussion and had significant strengthening of hfc patterns in

seven homotopic ROIs: middle cingulate, posterior insula, middle occipital, secondary

somatosensory area, spinal trigeminal nucleus, precentral, and the pulvinar. Post-hoc anal-

yses indicated a significant negative correlation between somatosensory functional connec-

tivity strengthening and symptom severity.
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Conclusion

At 1-month post-concussion, patients had significantly weaker hfc in a number of pain-pro-

cessing regions relative to HC. However, over a period of 5-months, region-pair connectivity

showed significant recovery and normalization. Those patients with more successful symp-

tom recovery at 5-months post-concussion had more functional somatosensory strengthen-

ing, suggesting an association between functional strengthening and post-concussion

symptom recovery.

Introduction

The prevalence of concussion in the United States exceeds two million people each year, which

is a staggering statistic [1]. Concussions are associated with physical, cognitive and emotional

sequela. Although these symptoms often resolve over a period of days to weeks, for a signifi-

cant proportion of patients these symptoms can continue for months or longer [2]. Despite

this prevalence of symptoms following concussion, routine diagnostic imaging using magnetic

resonance imaging (MRI) or computed tomography (CT) is not sensitive to detect abnormali-

ties related to the concussion injury or indicative of the severity of symptoms associated with a

concussion [3, 4]. Research imaging techniques such as resting-state functional magnetic reso-

nance imaging (rs-fMRI) have shown promising results in detecting functional connectivity

changes in patients with concussion in a variety of functional networks [5–8], yet the relation-

ship between brain- and symptom recovery following concussion is not clear.

A number of studies have shown strong functional connectivity between equivalent right

and left hemisphere regions (homotopic regions), which is thought to underlie stable anatomi-

cal connections necessary for efficient information transfer between homotopic brain regions

in healthy cohorts [9] [10]. A disruption of homotopic functional connectivity (hfc) has been

reported for neurologic disorders including concussion and chronic pain syndromes [11–15].

For example, Sours et al. [16] reported reduced hfc in the dorsolateral prefrontal cortex in

patients with high symptom load at one-month post-concussion relative to healthy controls.

However, whether disrupted hfc patterns could normalize during concussion recovery is insuf-

ficiently investigated.

This study aimed at interrogating hfc in concussed patients relative to healthy controls

(HC) in a priori selected brain areas associated with pain processing.

Specifically, we interrogated changes in hfc using serial imaging at one-month and at

5-months post-concussion and assessed whether longitudinal changes in hfc related to symp-

tom recovery patterns using post-hoc analyses.

Methods

Participants

This study was approved by the Mayo Clinic Institutional Review Board. All research partici-

pants over the age of 18 provided informed written consent, prior to study participation. For

participants under the age of 18 (n = 1) written consent by the parents and written assent by

the participant was obtained prior to study participation. Data from concussed participants

included in this study have not been included in other publications. Enrollment criteria

included male and female participants ages 16–55. Individuals with concussion were excluded

if they had a history of moderate or severe traumatic brain injury. Healthy controls were
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excluded if they had a history of neurologic disorders including concussion. Concussed

patients were recruited from The Department of Emergency Medicine using an operational

database that includes all patients seen in the department. The reference database includes

demographic information as well as chief complaint, diagnosis, and a record of any central

nervous system imaging performed. Healthy controls were recruited within the community.

Questionnaires

All subjects were screened for TBI using the validated Ohio State TBI Identification method

questionnaire [17]. Symptoms of depression were assessed using the Beck Depression Inven-

tory [18]. Symptoms associated with concussion were assessed using the Sports Concussion

Assessment Tool (SCAT-3) [19], a self-report questionnaire assessing sensory, cognitive, and

emotional symptoms following concussion.

Image acquisition

Imaging was conducted on a single Skyra Siemens (Erlangen, Germany) 3 Tesla whole-body mag-

netic resonance imaging scanner using a 20-channel head/neck coil. All imaging was conducted

during a time period of 18 months in 2017–2018. No scanner or imaging sequence updates were

performed during this time period. Imaging parameters included the followed series:

3D T1-weighted sagittal MP-RAGE (TE = 3.03ms, TR = 2400ms, flip angle = 8˚), 128 slices,

slice thickness = 1.25mm, 1x1x1.3mm3 voxels, 256mm2 field of view (FOV), matrix

size = 256x256.

Axial T2-weighted imaging were acquired with the following parameters: TE = 84ms,

TR = 6800ms, flip angle = 150˚, 38 slices with 1x1x4 mm3 voxels, slice thickness = 4mm,

256mm2 FOV, matrix size = 256x256.

Blood oxygenation level dependent (BOLD) resting-state sequence with TE = 27 ms,

TR = 2500 ms, and 4x4x4 mm3 voxels, and 256x256 mm FOV.

All structural T1 and T2 imaging scans were reviewed by a board certified neuroradiologist

to rule-out gross anatomical abnormalities.

One concussion patient was excluded from further analysis due to abnormal findings on

MRI.

Resting-state collection and data pre- and post-processing. Ten minutes of blood oxy-

genation level dependent (BOLD) resting-state imaging data were collected for each partici-

pant. Prior to scanning, all participants were instructed to keep their eyes closed but to remain

awake, to relax, and to try to clear their minds. All imaging was preprocessed using SPM 8

(Wellcome Department of Cognitive Neurology, Institute of Neurology, London, UK) and the

SPM toolbox DPARSF V3.1 advanced edition [20] and interfaced with MATLAB version 11.0

(MathWorks, Natick, MA, USA). All data were processed on a single Macintosh computer

(OS X Lion 10.7. software) to avoid postprocessing irregularities that can arise when using

more than one workstation.

Standard preprocessing methods included the following: slice-time and motion correction,

re-alignment to the first volume, removal of skull and non-brain tissue, spatial smoothing to 4

mm full width and at half maximum (FWHM, Gaussian filter) [21]. To enable signal averaging

across all participants, the resting-state images of each participant were first aligned to their

own T1-weighted scan and then transformed to the standardized Montreal Neurological Insti-

tute (MNI) 305 template. Data were bandpass filtered to between 0.01 to 0.1 Hz to capture

low-frequency components of the signal [22]. Signals of no interest (white matter signal, cere-

brospinal fluid signal, and global mean signal) were regressed from the data to eliminate noise

artifacts due to motion, cardiac, and respiratory rhythms [23]. Variance due to head motion
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was regressed using a framewise displacement model (FD: threshold for bad time points = 0.5;

scrubbing time points before bad time points = 1; scrubbing time points after bad time

points = 2) [24]. In addition, prior to including participants in the final analysis, all scans were

checked for motion using the DPARSF head motion output file, allowing for data from partici-

pants that i) exceeded maximal translation over 2mm or ii) exceeded rotation over 2 degrees

in any direction. to be excluded [20].

Functional connectivity (FC) was explored for twenty-nine a priori selected homotopic

regions-of-interest (ROIs) which were selected based on published literature suggesting that

the brain regions a) have atypical functional connectivity or functional activation in prior

pain-related studies (including migraine) or b) are typically implicated in pain processing [25–

28]. Region names and x, y, and z coordinates are shown in Table 1 and were determined

using the Montreal Neurological Institute (MNI) atlas. ROIs were plotted on a brain template

using BrainNet Viewer (www.nitrc.org), see Fig 1.

Table 1. Twenty-nine left and right-hemisphere regions of interest (ROIs) and corresponding brain coordinates.

DLPFC = dorso-lateral prefrontal cortex; VMPFC = ventromedial prefrontal cortex; Inf Lat = inferior lateral;

Sup = superior; TPJ = temporo-parietal junction. All x,y,z coordinates are labeled in Montreal Neurological Institute

(MNI) space and were explored using an 8-mm sphere. (+/-) indicate right (+) and left (-) hemisphere ROIs. Region

names in bolded prints show strengthened functional connectivity in patients over time (1-month to 5-months post-

concussion).

ROI Region Name X Y Z
1 Anterior Insula (+/-) 38 19 -3

2 Anterior Cingulate (+/-) 6 28 24

3 Middle Cingulate (+/-) 10 -7 46

4 Posterior Insula (+/-) 40 -14 1

5 Posterior Cingulate (+/-) 8 -48 39

6 Thalamus (+/-) 8 -21 7

7 Primary Somatosensory (+/-) 46 -24 47

8 DLPFC (Sup Frontal) (+/-) 40 39 24

9 Inf Lat Parietal (+/-) 57 -48 30

10 VMPFC (Lat Orbitofrontal) (+/-) 6 36 -14

11 Secondary Somatosensory (+/-) 52 -28 21

12 Somatomotor (+/-) 6 1 68

13 Temporal Pole (+/-) 41 10 -32

14 Amygdala (+/-) 22 -1 -22

15 Middle Temporal (+/-) 60 -26 -5

16 Caudate (+/-) 14 13 11

17 Middle Occipital (+/-) 34 -72 6

18 Cuneus (+/-) 13 -93 9

19 Hypothalamus (+/-) 6 -6 -12

20 Lingual Gyrus (+/-) 19 -64 -11

21 Spinal Trigeminal Nucleus (+/-) 6 -39 -45

22 Precuneus (+/-) 6 -58 46

23 Parieto-Occipital (+/-) 51 -64 18

24 Supramarginal Gyrus (TPJ) (+/-) 44 -42 24

25 Precentral (Primary Motor) (+/-) 44 -4 40

26 Middle Frontal (+/-) 35 6 52

27 Pulvinar (+/-) 20 -34 3

28 Fusiform Gyrus (+/-) 51 -59 -9

29 Sup Parietal Lobule (+/-) 40 -52 49

https://doi.org/10.1371/journal.pone.0221892.t001
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Standard post-processing methods included the following: Eight-millimeter spheres were

drawn around each of the 29 ROIs, and time courses over each seed region were extracted, and

correlation coefficients were converted to a normal distribution via computation of Fisher r-z

transformation maps. Connectivity matrixes for 29 homotopic (left and right hemisphere)

ROIs are shown in Fig 2.

Fig 1. Axial (left) and sagittal (right) brain maps indicateng the approximate location of 29 homotopic (left and right hemisphere) regions of interest (ROIs) on a

template brain. A = anterior; P = posterior; ROIs in red indicate homotopic region-pairs with significantly strengthened functional connectivity using serial

measurements of functional connectivity at two time-points; 1-month post-concussion to 5-months post-concussion. Those region-pairs that showed significant

strengthening (following FDR correction for multiple comparisons per ROI) included the following: 1 = anterior insula; 3 = middle cingulate, 4 = posterior

cingulate, 11 = secondary somatosensory, 21 = spinal trigeminal nucleus, 25 = precentral, 27 = pulvinar. ROIs are plotted using BrainNet Viewer (www.nitrc.org).

https://doi.org/10.1371/journal.pone.0221892.g001

Fig 2. Connectivity matrixes for 29 homotopic (left and right hemisphere) regions of interest (ROIs) for healthy controls, patients 1-month post-

concussion and patients 5-month post-concussion. Hot colors (yellow to red colors) indicate positive functional connectivity patterns. Cold colors

light blue to dark blue) indicate negative functional connectivity patterns.

https://doi.org/10.1371/journal.pone.0221892.g002
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Functional connectivity was modeled using our previously published Gaussian Graphical

Model (GGM) [29]. The GGM took as input the regional time course data of each ROI and

estimated an inverse covariance (IC) matrix amongst the ROIs. This method allows estimation

of all partial correlations simultaneously and thus avoids the computational burden of comput-

ing partial correlations between each of the many pairs of ROIs, consecutively. Within the

GGM, a LASSO penalty was integrated for balancing model complexity to a relatively small

sample size [30]. The partial correlation (which is inferred from connectivity network directly)

for each pair of 29 pre-selected ROIs reflects the connectivity strength between ROIs after fac-

toring out the impact of other ROIs on the correlation.

After the functional network of each subject was built using the aforementioned method,

we focused on examining the connectivity strength between the same ROIs on the left and

right hemispheres, referred to as “homotopic regions”. For each homotopic region-pair, a

FDR-correction and bootstrapping method was used to correct for multiple test comparisons

per ROI [31, 32].

Differences in hfc between concussed patients at 1-month post-concussion and HC.

We calculated the median strength for 15 HC for each of the 29 homotopic ROIs and for 15

concussed patients. A two-sample t-test was performed to assess differences in hfc between

concussed patients at 1-month post-concussion and HC.

Longitudinal changes in hfc at 1-month compared to 5-months post-concussion. A

mixed effect model (MEM) [33] was used to identify longitudinal changes in hfc in concussion

patients. Change in connectivity strength over time (1-month compared to 5-months post-con-

cussion) was used as the response variable in the MEM. Another MEM was fit to link connectivity

change over time with symptom severity. Demographic differences between HC and concussed

patients were interrogated using two-sample t-tests or Fisher Exact tests, as appropriate.

Results

Eighteen patients with concussion were initially enrolled and scanned at 1-month post-con-

cussion. One concussion patient was excluded from the study due to positive findings on MRI.

Two patients had health-related complications unrelated to injury that prevented imaging at

5-months post-concussion and were subsequently excluded from this analysis, thus leaving a

total of 15 concussion patients and 15 HC in the final analysis. Concussed patients were well

balanced to HC for age and sex and there was no significant difference between groups for age

(concussed patients: mean age = 39.1, SD = 10.1; HC: mean age = 39.1, SD = 11.7; p-value =

0.84) or sex (concussed patients = 13 females/2 males; HC = 13females/2 males; p-value =

1.00). HC without history of concussion were imaged during their normal state of health. Con-

cussed patients underwent imaging at two time-points; 1-month post-concussion (mean time

following concussion = 28 days, SD = 9.5) and 5-months post-concussion (mean time follow-

ing concussion = 121 days, SD = 13.0). See Table 2. At both time-points, symptoms associated

with concussion were assessed using the Symptom Evaluation component of the Sports Con-

cussion Assessment Tool (SCAT-3), a comprehensive assessment of symptoms commonly

used to evaluate sports injuries [34] and a validated self-report questionnaire assessing sensory,

cognitive, and emotional pain-related symptoms following concussion [19]. At 1-month post-

concussion, patients had a mean symptom severity score of 42.4 (SD = 27.86) and at 5-months

follow-up, patients had a mean symptom severity score of 21.6 (SD = 19.9) thus indicating par-

tial symptom recovery over time (p = 0.0017). As a comparison, the HC cohort had a symptom

severity score of 2.7 (SD = 6.6).

Patients had a mean BDI score of 11.5 (SD = 9.1) at 1-month post-concussion and a mean

score of 10.1 (SD = 7.8) at 5-months follow-up. Although there were significant differences in
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the raw scores of the BDI between the concussion cohort and the HC, according to the scoring

criteria the mean scores of both cohorts fell into the range of ‘minimal depression’.

Five patients had motor-vehicle related concussions, six patients suffered concussions due

to falls, and four patients suffered sports-related concussions. For patients with concussion,

four patients had no prior history of concussion, six patients had one prior concussion, two

patients had two prior concussions, two patients had 4–5 prior concussions and one patient

had 11 prior concussions. For those patients that had a history of multiple concussions, the

average time-frame between past and current concussion was 8 years. None of the patients

included in the study suffered from persistent post-traumatic symptoms due to a concussion

attained in the distant past.

Patients at 1-month post-concussion versus HC

Relative to HC, concussed patients had significantly weaker functional connectivity in six

homotopic ROIs including the: middle cingulate, posterior insula, middle occipital, spinal tri-

geminal nucleus, precentral (primary motor) and the pulvinar. There were no regions of sig-

nificantly stronger homotopic connectivity in patients at 1-month post-concussion relative to

HC, see Fig 3.

Concussed patients: At 5-months follow-up compared to 1-month post-

concussion

Significant longitudinal strengthening of functional connectivity patterns were found in seven

homotopic ROIs: middle cingulate, anterior and posterior insula, primary somatosensory area,

spinal trigeminal nucleus, precentral (primary motor) and the pulvinar. There were no homo-

topic regions where functional connectivity was significantly weakened at 5-months compared

to 1-month post-concussion.

Functional connectivity between the following homotopic regions showed no significant

strengthening or weakening in concussed patients (at either time-point) relative to HC: cau-

date, lingual gyrus, precuneus, parieto-occipital region, supramarginal gyrus, middle frontal,

fusiform, superior parietal, posterior cingulate, dorsolateral prefrontal cortex, inferior lateral

parietal, ventromedial prefrontal cortex, secondary somatosensory, somatomotor, temporal

pole, amygdala, middle temporal.

Table 2. Subject characteristics for concussed patients and healthy controls. HC = healthy controls; Concussion 1-month = average of 30 days post-concussion, Con-

cussion 5-months = average of 5-months post-concussion; f = female; m = male; BDI = Beck Depression Inventory; SCAT-3 = Sport concussion assessment tool 3;

SD = standard deviation; n/a = not applicable.

concussion (I-month)
n = 15

concussion

(5-months)
HC

n = 15

p-value
concussion

(5-months vs 1-month)

p-value

concussion (1-month vs
HC)

p-value
concussion

(5-months vs HC)
Age, mean (SD) 39.1 (10.1) n/a 39.1(11.7) n/a .99 n/a

Sex (f/m) 12/3 n/a 12/3 n/a 1.00 n/a
BDI

(SD)

11.5 (9.1) 10.1(7.8) 1.9 (3.2) 0.25 0.0012 0.0014

SCAT-3

Symptom severity
(SD)

42.4 (27.86) 21.6

(19.9)

2.7

(6.6)

0.0017 0.000069 0.0028

Number of days post-concussion 28 (9.5) 121 (13.0) n/a n/a n/a n/a

SCAT-3

Number of symptoms
(SD)

14.4 (5.7) 9.5 (7.0) 1.7 (3.3) 0.00091 0.00000017 0.00099

https://doi.org/10.1371/journal.pone.0221892.t002
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Correlation between longitudinal changes of hfc and symptom severity

Those ROIs that showed significant strengthening in concussed patients over time (1-month

to 5-months post-concussion were selected for further post-hoc testing to interrogate relation-

ships between region-pair strengthening and symptom reporting on the SCAT-3. For con-

cussed patients, there was a significant negative correlation between somatosensory functional

connectivity strengthening (1-month to 5-months post-concussion) and symptom severity at

5-months post-concussion (r = -0.33; p = 0.046).

Discussion

The hfc of 29 ROIs was explored in HC and in concussed patients 1-month and again

5-months post-concussion. Relative to HC, at one-month post-concussion patients had signifi-

cantly weaker hfc in six out of 29 pain-related regions, including the following: middle occipi-

tal, spinal trigeminal nucleus, precentral, pulvinar, middle cingulate and posterior insula.

Serial imaging and concussion symptom evaluation 1-month and 5-months post-concussion

showed partial symptom recovery and normalization of hfc in the following seven regions:

Fig 3. Bar graphs showing the connectivity strength for 29 homotopic regions for healthy controls (HC), concussed patients

1-month post-concussion (time-point CI) and at 5-month post-concussion (time-point CII). P-values in red ink indicate significance

after bootstrapping [32].

https://doi.org/10.1371/journal.pone.0221892.g003
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spinal trigeminal nucleus, precentral, pulvinar, anterior and posterior insula, middle cingulate

and primary somatosensory cortex.

Although longitudinal imaging in the concussion cohort indicated a general trend toward

hfc normalization in these seven regions, the hfc of the posterior insula in concussion patients

was significantly stronger at the 5-month follow-up compared to 1-month post-concussion, and

compared to HC. The posterior insula is a region important for sensorimotor integration [35]

and has been shown to have altered volume and weaker functional connectivity in concussed

patients and in those with chronic pain syndromes including migraine [36–38]. Churchill et al.

reported a negative relationship between functional nodal connectivity of the right posterior

insula and symptom severity in patients that were imaged acutely following concussion (1–7

days post-injury). Stronger hfc in patients recovering from concussion-related symptoms relative

to HC is an interesting finding. Whether posterior insula hfc strengthening is indicative of an

adaptive or compensatory mechanism to pain [39] will warrant further investigation.

In concussed patients, there was a significant negative relationship between longitudinal

primary somatosensory hfc strengthening and symptom severity, thus indicating that patients

with better recovery at 5-months post-concussion had more stable somatosensory hfc. The

role of the primary somatosensory cortex in pain processing is well-established [40, 41]. For

example, Vakhtin et al. reported abnormal somatomotor connectivity in patients with blast-

induced concussions (< 3 months post-concussion) relative to HC [42] and Youssef and col-

leagues reported increased blood flow within the right somatosensory cortex and headache fre-

quency in patients with migraine [43].

Limitations

Due to sample size limitations, several subanalyses could not be explored as part of this study.

(1) As all patients experienced symptom recovery- we were not able to investigate differences

in functional connectivity patterns in patients with worsening symptoms versus successful

symptom recovery. (2) It was not feasible to investigate the effect of concussion mechanism

(motor vehicle accidents vs, sports-related, vs falls) or the number of previous concussions on

hfc patterns. Additionally, we did not interrogate whether specific symptoms (such as cogni-

tive, emotional or physical) were related to specific changes in homotopic region connectivity.

(3) An unequal male/female (20% male/80% female) ratio in the concussion cohort did not

allow for pursuing subanalyses related to sex-related differences between male and female con-

cussion-related brain changes and recovery processes. Future studies, using larger sample sizes

will be needed to evaluate recovery from concussion relative to specific concussion popula-

tions or symptom sub-domains. In an attempt to focus our analysis to specific ROIs related to

pain-processing it is likely that we missed important changes in hfc patterns of regions we left

unexplored.

Conclusion

Relative to HC, concussed patients showed weaker hfc in a number of pain-processing regions

at 1-month post-concussion and partial normalization of hfc five-months post-concussion.

Longitudinal imaging in concussed patients indicated greater primary somatosensory hfc

in patients with better symptom recovery. These findings may suggest that primary somato-

sensory hfc could be a potential biomarker for tracking recovery in patients with concussion.
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