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Abstract

Spatiotemporal patterns of play can be extracted from competitive environments to design

representative training tasks and underlying processes that sustain performance outcomes.

To support this statement, the aims of this study were: (i) describe the collective behavioural

patterns that relies upon the use of player positioning in interaction with teammates, oppo-

nents and ball positioning; (ii) and define the underlying structure among the variables

through application of a factorial analysis. The sample comprised a total of 1,413 ball pos-

session sequences, obtained from twelve elite football matches from one team (the team

ended the season in the top-5 position). The dynamic position of the players (from both com-

peting teams), as well as the ball, were captured and transformed to two-dimensional coor-

dinates. Data included the ball possession sequences from six matches played against top

opponents (TOP, the three teams classified in the first 3 places at the end of the season)

and six matches against bottom opponents (BOTTOM, the three teams classified in the last

3 at the end of the season). The variables calculated for each ball possession were the fol-

lowing: ball position; team space in possession; game space (comprising the outfield play-

ers of both teams); position and space at the end of ball possession. Statistical comparisons

were carried with magnitude-based decisions and null-hypothesis analysis and factor analy-

sis to define the underlying structure among variables according to the considered contexts.

Results showed that playing against TOP opponents, there was ~38 meters game length

per ~43 meters game width with 12% of coefficient of variation (%). Ball possessions lasted

for ~28 seconds and tended to end at ~83m of pitch length. Against BOTTOM opponents, a

decrease in the game length with an increase in game width and in the deepest location was

observed in comparison with playing against TOP opponents. The duration of ball posses-

sion increased considerable (~37 seconds), and the ball speed entropy was higher, sug-

gesting lower levels of regularity in comparison with TOP opponents. The BOTTOM teams

revealed a small EPS. The Principal Component Analysis showed a strong association of

the ball speed, entropy of the ball speed and the coefficient of variation (%) of the ball
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speed. The EPS of the team in possession was well correlated with the game space, espe-

cially the game width facing TOP opponents. Against BOTTOM opponents, there was a

strong association of ball possession duration, game width, distance covered by the ball,

and length/width ratio of the ball movement. The overall approach carried out in this study

may serve as the starting point to elaborate normative models of positioning behaviours

measures to support the coaches’ operating decisions.

Introduction

One of the biggest challenges in team sports is to validate performance indicators that contrib-

ute to optimize the coaching process and competition outcome [1]. Within the traditional

methods of performance analysis in team sports, the notational analysis has been used to

obtain indicators of discrete actions and/or events by using advanced statistical procedures [2,

3]. This approach allows to understand the static complexity of performance, to produce a

valid and reliable description of individual and team behaviours and to describe teams’ perfor-

mance by correlating a wide range of variables [4, 5]. Also, the players’ physical and physiologi-

cal competitive demands [6] and their comparison with training have been incessantly

investigated over the last years, allowing to identify different match profiles according to the

distances covered at different speed thresholds [7–9]. The identification of such profiles

brought relevant aspects to plan the physical loads from short to mid-term planning guidelines

and also to minimize the fatigue and the risk of injuries [10, 11].

However, as such variables and methods describe the match results, they are limited in

underpinning behaviours that lead to understand or even predict the outcomes. In line with

these concerns, the players’ position data has recently emerged as one of the key determinants

of team sports performance [12–15]. Such analysis allows to capture the players’ and teams’

spatiotemporal dynamics at different levels of analysis (from individuals to teams) with the

integration of the contextual circumstances. Accordingly, several new instruments, proce-

dures, processing techniques, and new visuals may be incorporated into the performance anal-

ysis scope to complement the static complexity analysis and attend the new dimension of

questions related to the dynamic complexity.

In fact, the training process in modern association football is a multifactorial process that

requires high complementary among physiological, technical and tactical workload prescrip-

tions. To accomplish these goals, contextual information, such as field location, team strategy

and opponent behaviour, that sustain players and teams’ tactical behaviour should be inte-

grated in the analysis of physical loads [16–18]. That is, players’ physical demands over compe-

tition are constrained by their positioning dynamics [1, 19] that sustain the individual and

collective tactical behaviour [20]. Tactical behaviour of players and teams are regulated by spa-

tial-temporal informational constraints within the teams’ collaborative principles, that conse-

quently, affect match physical demands. In this line of reasoning, previous ideas and methods

from dynamical systems have been used to integrate different dimensions of analysis [21–24]

and to explain how system working parts are connected and how they continuously adapt over

time [1, 25]. The main idea is that the players and teams’ behaviours should be considered as a

whole, where systems with many dynamically interacting elements are capable of wide-ranging

patterns of behaviour [22]. In this regard, substantial advances have been made to increase the

processing techniques aiming to assess regularities in players and teams’ positioning derived

data [26, 27]. The entropy computations serve this purpose by allowing to measure the
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probability that the configuration of one segment of data in a time series will allow to predict

the configuration of another segment of the time series a certain distance apart [28]. This tech-

nique has been used to identify if players’ positioning dynamics express a predictable pattern

which may provide insights about the local information sources that are being used in their

match decisions [26, 29–31]. Also, recent research has developed metrics to identify the deter-

minants of collective behaviour that may optimise the players’ ability to attune their decisions

within teammates during mutual tasks [12, 15]. For instance, the entropy of players’ distance

to the centroid was suggested to be an order parameter that represents the use of local informa-

tion in the decision making and team-related behaviours [26, 29]. Other metrics from the

match-level of analysis, such as teams’ length and width, have been used to provide informa-

tion regarding space occupation [32, 33].

The identification of individual and collective patterns of play according to game environ-

ment and teams’ collaborative principles over competition allow coaches to improve the pro-

cess of planning, designing and executing training tasks. In fact, match analysis allows to

extract relevant and transferable information from the competition to practice. Based on the

information derived from competition, the training tasks should ensure a representative

design, i.e., training is intended to represent the competitive context so practitioners can expe-

rience the similar perceptual-motor relations landscape, and exploit the inherently adaptive

nature of their perceptual systems in their interactions with environments [34–36]. The main

goal is to improve the transfer between technical, physical and individual and collective tactical

behaviours from training to competition by sampling the informational constraints that play-

ers use to perform under the competitive environment [37]. Therefore, variables such as space

of play, time, numerical relations, distance to the goal or even ball trajectory might play an

important role in assisting the fundamentals of coaching.

Therefore, the aim of this study was to extract spatial-temporal patterns of play that charac-

terize a team match demands when considering the effects of the quality of opposition. To ful-

fill this main goal, the approach was carried on a twofold step: (i) describe the collective

behavioural patterns that relies upon players’ positioning in interaction with teammates, oppo-

nents and ball position; (ii) and define the underlying structure of the derived variables

through application of a factorial analysis. It was hypothesized that accounting for the quality

of opponents might reveal important variations in team behaviour as a function of ball posses-

sion. This information is key for tactical planning and would enhance the transferability of

match demands to training tasks. Also, this approach may serve as the basis to elaborate nor-

mative models of positioning behaviour measures to support coaches’ decisions.

Materials and methods

Sample and data collection

The sample of this study comprised a total of 1,413 ball possession sequences, obtained from

twelve elite football matches from English Premier League. The dynamic position of the players

(from both competing teams), as well as the ball, was captured and transformed to two-dimen-

sional coordinates using the TRACAB Optical Image Tracking System at 25 Hz. The system

uses super-HD cameras and patented image processing technology to deliver live tracking of all

moving objects with a maximum delay of just three frames (https://chyronhego.com/) and its

used continuously in several leagues (English Premier League, German Bundesliga and Spanish

La Liga) and also provided data for several studies [38, 39]. Data included the ball possession

sequences from the six matches of one team when playing against top opponents (TOP, the

three top teams classified in the top-3 at the end of the season) and six matches against bottom

opponents (BOTTOM, the three bottom teams classified in the bottom-3 at the end of the
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season). The team ended the season in the top-5 position. The study protocol was approved and

followed the guidelines stated by the Ethics Committee of the of University of Trás-os-Montes

and Alto Douro, based at Vila Real (Portugal) and conformed to the recommendations of the

Declaration of Helsinki.

Processing and variables

The considered number of ball possessions was selected, processed and analysed based on the

following inclusion criteria: (i) minimum possession duration of 8 s (for nonlinear computa-

tions purposes described in the next paragraph); (ii) all possessions without set pieces. The ball

possessions for each team started when a player performed an action with the ball (following

an action from an opponent’s player or a game interruption) and ended when the ball was lost

or when the ball went out of the pitch after a shot. For each ball possession sequence, several

variables were calculated based on: ball position; team space in possession; game space (com-

prising the outfield players of both teams); position and space at the end of ball possession. Fig

1 depicts all processed variables, abbreviations, and the corresponding illustrations in a real

match frame animation. Complementary, the attached supplement video shows an animation

produced with underlying dynamics of each variable.

The absolute mean values and the coefficient of variation (CV%) were calculated for each

variable. The normalized approximate entropy (ApEn), a measure of regularity derived from

the original ApEn [27], was calculated for the speed of the ball in each possession sequences.

These methods allow the comparison between ball possessions sequences with time series with

different lengths. ApEn technique was used to assess regularity or predictability of the ball

speed time series where input values for computations were 2.0 to the vector length (m) and

0.2 standard deviations to the tolerance factor (r) [40]. The outcome range between 0 and 2

Fig 1. Positional tactical variables represented in a real match frame animation.

https://doi.org/10.1371/journal.pone.0221368.g001
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(arbitrary units) and lower values represented more repeatable, regular, predictable and less

chaotic sequences of data points [28, 41]. Also, and according to previous calculation recom-

mendations [40], to increase the reliability of normalized ApEn computation, only ball posses-

sions larger than eight seconds (8 seconds × 25 Hz = 200 frames) were considered for further

analysis. From a processing approach, ApEn expresses the probability that the configuration of

one segment of data in a time series will allow the prediction of the configuration of another

segment of the time series a certain distance apart [42]. It permits to identify if the ball dis-

placement trajectories express a regular and predictable pattern which may, in turn, provide

information about dynamical behaviors [23, 43].

Data analysis

The variables extracted from each ball possession sequence were analysed according to the quality

of the opponent (TOP or BOTTOM). The descriptive outcomes were graphically represented

using split-violin plots and absolute values were presented in tables. Statistical comparisons were

carried with both magnitude-based decisions and null-hypothesis analysis. For the MBI, and prior

to the comparisons, all processed variables were log-transformed to reduce the non-uniformity of

error. Within, non-clinical inferences were assessed via differences in group means, expressed in

percentage with 95% confidence limits (CL). The threshold for a change to be considered practi-

cally important (the smallest worthwhile difference) was 0.2 times the standardisation estimated

from between-subject standard deviation. The following magnitudes of clear effects were consid-

ered:<0.5%, most unlikely; 0.5–5%, very unlikely; 5–25%, unlikely; 25 to 75%, possibly; 75% to

95% likely; 95% to 99%, very likely; and>99% most likely large [44, 45]. Also, the comparisons

were assessed via standardized mean differences and respective 95% confidence intervals. Thresh-

olds for effect sizes statistics were 0.2, trivial; 0.6, small; 1.2, moderate; 2.0, large; and>2.0, very

large [46]. For null-hypothesis analysis, and after the assumption of normality and homogeneity

of the data, an independent t-test was conducted to evaluate the differences in variables for each

comparison context and statistical significance was set at p< .05.

A factor analysis was performed to define the underlying structure among variables according

to the considered contexts (playing against TOP and BOTTOM opponents). The principal com-

ponents analysis method (PCA), with the Varimax rotation, was preferred since it is the most

appropriate when data reduction is paramount. The Bartlett’s test of sphericity was computed to

provide the statistical significance that the correlation matrix has significant correlations among at

least some of the variables. The measure of sampling adequacy was also developed with Kaiser-

Meyer-Olkin (KMO) and computed to evaluate the appropriateness of applying factor analysis,

considering that values above .50 for the entire matrix or an individual variable indicate appropri-

ateness. The number of factors to be retained was based on eigenvalues (greater than 1.0) and that

explained higher than 60% of percentage of variance. Afterward, although factor loadings of ±.30

to ±.40 are minimally acceptable, values greater than ±.60 were considered for practical signifi-

cance (for all processing decisions please see Hair and colleagues [47]. MBI were carried using a

specific spreadsheet to compare two group means [48]. The independent t-test and the PCA com-

putations were conducted using the Statistical Package for the Social Sciences software (IBM

Corp. Released 2016. IBM SPSS Statistics for Macintosh, Version 24.0. Armonk, NY: IBM Corp).

The graphical representations were processed using R [49] with open-source R-packages for per-

forming the split-violins [50] and the 3D rotated plots [51].

Results

Figs 2, 3 and 4 depict the distribution of the computed variables based on ball position, teams

space occupation and position, and space at the end of ball possession, respectively. Table 1
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Fig 2. Split-violin plots showing the distribution of the computed variables based on ball position. These split-violin plots

combine box plot indicating first and third quartiles and vertical lines 10th and 90th percentiles. Blue colour represents the data

sets of the team while green is assigned to the opponents.

https://doi.org/10.1371/journal.pone.0221368.g002
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and Table 2 show the descriptive and inferential analysis between the matches played against

BOTTOM and TOP opponents, respectively. As a complement, Fig 5 presents the standard-

ized (Cohen’s d) differences. Table 3 and Table 4 present the component factor loadings, com-

ponent statistics, Bartlett’s test of sphericity and Kaiser-Meyer-Olkin (KMO) measure of

sampling adequacy of the factor analysis (principal component methods) for considered vari-

ables in the games against TOP and BOTTOM opponents, respectively. Finally, Fig 6 shows

the component factors of the factor analysis in 3D space according to the quality of the

opponents.

The changes in position-derived variables showed different trends according to the quality

of the opponents. When facing TOP opponents, trivial to small differences were observed in

all the considered variables. The ball speed and ApEn were likely lower (p< .01, small effect)

in TOP opponents while higher values were observed to CV% and length/width ratio (p<

.001, small effect). The team space occupation and position show likely small higher values in

EPS (p< .001) when the team was in possession (Team = 984.95±212.22 m2 vs TOP = 908.8

±242.02 m2) with lower CV% (p< .001, small effect). The team’s possessions tended to end

closer to the opponents’ goal (nearly trivial effect, p = .003, Team = 83.2±13.0 m vs. TOP oppo-

nents = 80.2±13.9 m).

When analysing matches against BOTTOM opponents, the variables changed substantially

(differences from small to nearly large according to Cohen’s d effects). The ball possessions of

Fig 3. Split-violin plots showing the distribution of the computed variables based on teams’ space occupation.

These split-violin plots combine box plot indicating first and third quartiles and vertical lines 10th and 90th

percentiles. Blue colour represents the data sets of the team while green is assigned to the opponents.

https://doi.org/10.1371/journal.pone.0221368.g003

Fig 4. Split-violin plots showing the distribution of the computed variables based on position and space at the end of ball

possession. These split-violin plots combine box plot indicating first and third quartiles and vertical lines 10th and 90th

percentiles. Blue colour represents the data sets of the team while green is assigned to the opponents.

https://doi.org/10.1371/journal.pone.0221368.g004
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the team were higher in duration (higher 13.9%; ±8.0%, p = .009, small effect) and higher in

both distance covered and ball speed (p< .001, moderate effect) compared to the ball posses-

sions of the BOTTOM teams. This trend was followed by moderate lower ball speed’s variability

(lower 20.8%; ±5.6%, p< .001) and a moderate higher ball speed’s ApEn during the possession

(29.6%; ±7.1%, p< .001). The variables related to team space occupation and position presented

moderate higher values in the effective playing space of the team (Team = 1058.6±188.3 m2 vs

BOTTOM = 862.9±223.6 m2) with a moderate lower CV% (lower 31.2%; ±9.1%, p< .001).

Table 1. Descriptive (mean±SD) and inferential analysis for the considered variables in the games against TOP opponents.

Variables Team

(n = 373)

TOP opponent

(n = 369)

mean differences

(%); ±95CL

Practical inferences t-test p

Ball possession (duration, s) 28.87±18.36 31.88±22.52 7.4; ±8.3 likely trivial 2.00 .046

Ball (distance covered, m) 169.69±108.8 164.84±114.71 -4.2; ±6.9 very likely trivial -0.59 .555

Ball (speed, km/h) 22.65±6.82 20.51±7.05 -10.8; ±4.0 likely - -4.21 < .001

Ball (speed, coefficient of variation %) 92.13±31.11 102.46±38.65 9.7; ±4.6 likely + 4.02 < .001

Ball (speed irregularity, ApEn) 0.35±0.18 0.31±0.19 -17.0; ±7.5 likely - -2.89 .004

Ball (length/width ratio) 1.67±1.20 2.08±1.45 25.9; ±9.1 very likely + 4.19 < .001

EPS (m2) 984.95±212.22 908.8±242.02 -9.0; ±2.9 very likely - -4.56 < .001

EPS (coefficient of variation %) 16.82±9.01 20.99±11.17 22.4; ±8.2 very likely + 5.60 < .001

Game length (m) 37.94±5.25 38.74±4.79 2.3; ±1.6 possibly + 2.18 .030

Game length (coefficient of variation %) 11.31±5.44 11.66±5.86 2.9; ±6.5 very likely trivial 0.84 .403

Game width (m) 43.94±5.89 42.13±5.87 -4.2; ±1.6 likely - -4.20 < .001

Game width (coefficient of variation %) 10.81±4.45 11.19±5.31 1.0; ±5.9 very likely trivial 1.04 .299

Deepest location (m) 83.24±13.95 80.22±13.92 -3.7; ±2.1 possibly - -2.96 .003

Offensive available space (m2) 1517.78±1013.78 1718.93±996.81 23.5; ±14.5 possibly + 2.73 .007

N.º of opponents in offensive available space 1.42±1.30 1.40±1.22 -0.3; ±7.3 very likely trivial -0.17 .863

Note. Values in bold represent significant differences at p< .05. Abbreviations: CL = confidence limits; EPS = effective playing space;— = decrease; + = increase.

https://doi.org/10.1371/journal.pone.0221368.t001

Table 2. Descriptive (mean±SD) and inferential analysis for the considered variables in the games against BOTTOM opponents.

Variables Team

(n = 343)

BOTTOM opponent

(n = 328)

mean differences

(%); ±95CL

Practical inferences t-test p

Ball possession (duration, s) 36.79±28.34 31.09±21.57 -13.9; ±8.0 possibly - -2.61 0.009

Ball (distance covered, m) 227.45±154.2 154.74±117.93 -31.7; ±6.3 most likely - -6.11 < .001

Ball (speed, km/h) 23.57±5.86 19.67±7.85 -20.7; ±4.4 most likely - -6.54 < .001

Ball (speed, coefficient of variation %) 87.67±25.04 110.16±43.98 20.8; ±5.6 most likely + 7.32 < .001

Ball (speed regularity, ApEn) 0.34±0.17 0.27±0.19 -29.6; ±7.1 most likely - -4.52 < .001

Ball (length/width ratio) 1.46±0.90 2.07±1.48 32.0; ±10.7 most likely + 5.85 < .001

EPS (m2) 1058.62±188.27 864.21±222.94 -19.9; ±2.7 most likely - -10.93 < .001

EPS (coefficient of variation %) 17.03±8.30 22.74±10.37 31.2; ±9.1 most likely + 7.05 < .001

Game length (m) 36.70±4.52 38.42±4.36 4.8; ±1.7 very likely + 4.48 < .001

Game length (coefficient of variation %) 12.28±5.28 11.22±5.28 -10.3; ±6.2 possibly - -2.31 .022

Game width (m) 47.75±6.04 42.74±5.8 -10.6; ±1.7 most likely - -9.75 < .001

Game width (coefficient of variation %) 11.90±5.52 11.49±5.06 -3.7; ±6.5 likely trivial -0.90 .371

Deepest location (m) 86.97±12.34 77.3±13.97 -11.6; ±2.1 most likely - -8.50 < .001

Offensive available space (m2) 1238.24±856.02 1960.55±1074.61 79.5; ±23.6 most likely + 8.63 < .001

N.º of opponents in offensive available space 1.38±1.34 1.73±1.16 4.8; ±3.4 likely + 3.26 0.001

Note. Values in bold represent significant differences at p< .05. Abbreviations: CL = confidence limits; EPS = effective playing space;— = lower; + = higher.

https://doi.org/10.1371/journal.pone.0221368.t002
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Fig 5. Standardized (Cohen’s d) differences computed variables according to the quality of the opponents. Error bars indicate uncertainty in true mean

changes with 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0221368.g005
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When the team was in possession, the game length was lower than their opponents (Team =

36.70±4.52 m, BOTTOM = 38.42±4.36 m, p< .001, small effect), however, the game width was

10.6%; ±1.7% higher (Team = 47.75±6.04 m, BOTTOM = 42.74±5.8 m, p< .001, moderate

effect). The possessions tended to end closer to the opponents’ goal when team played against

BOTTOM opponents (Team = 86.9±12.3 m vs. BOTTOM = 77.2±13.9 m) than against TOP

opponents (nearly trivial effect, Team = 83.2±13.0 m vs. TOP opponents = 80.2±13.9 m, p<

.001, moderate effect). The number of opponents in the offensive available space was lower than

BOTTOM opponents (i.e. higher number of defenders in the offensive area).

The principal components model accounted for 72.2% of the total variance for the team

and 74.2% to the TOP opponents, with five component factors extracted for each. For the

team, the first component (21.9%) consisted of ball speed (loading = .900), ball speed CV%

(-.871) and ball speed ApEn (.783); while the second component (19.0%) was related to the

deepest location (.903) and the offensive available space (.904); and the third component

(11.5%) associated EPS (.877) and game width (.880). For TOP teams the first component

(22.6%) consisted of the deepest location (.938), offensive available space (-.938) and the num-

ber of opponents in offensive available space (-.723); the second component (21.2%) associated

ball speed (.904), ball speed CV% (-.887) and ball speed ApEn (.807); and the third component

highlighted the relation of the EPS coefficient (.829), game length (.626), and game width

(.735) (see Table 3 and Fig 6, upper panel, for complementary information).

Table 3. Component factor loadings, component statistics, Bartlett’s test of sphericity and Kaiser-Meyer-Olkin measure of sampling adequacy of the factor analysis

(principal component methods) for considered variables in the games against TOP opponents.

Variables Component factors (Team) Component factors (TOP)

1 2 3 4 5 1 2 3 4 5

Ball possession (duration, s) -.427 .282 .367 .556 -.373 .315 -.443 .580 .188 -.429

Ball (distance covered, m) -.054 .371 .437 .569 -.366 .359 -.018 .580 .313 -.453

Ball (speed, km/h) .900� .148 .071 .005 .146 .087 .904� -.055 .137 .103

Ball (speed, coefficient of variation %) -.871� -.170 .021 .078 -.038 -.043 -.887� .161 -.098 .046

Ball (speed regularity, ApEn) .783� .021 .056 -.037 -.204 .049 .807� -.069 .080 -.108

Ball (length/width ratio) -.123 .029 -.186 -.061 .745� -.008 -.277 -.026 -.309 .590

EPS (m2) .057 .097 .877� -.052 .323 .177 .118 .002 .896� .192

EPS (coefficient of variation %) -.053 -.221 -.127 .783� .184 -.063 -.019 .829� -.118 .061

Game length (m) .112 -.028 .191 .005 .826� .138 .129 .085 .317 .785�

Game length (coefficient of variation %) -.108 .406 .135 .413 .266 .216 -.113 .626� -.199 .250

Game width (m) .053 .016 .880� .031 -.236 -.047 .147 .002 .861� -.174

Game width (coefficient of variation %) .030 .005 -.019 .771� -.158 -.023 -.122 .735� .171 -.093

Deepest location (m) .165 .903� .107 .034 -.042 .938� .049 .090 .020 -.029

Offensive available space (m2) -.188 -.904� -.134 -.022 .045 -.940� -.047 -.095 -.040 .016

N.º of opponents in offensive available space -.023 -.559 .057 .059 -.013 -.723� -.056 .004 -.055 -.092

Eigenvalues

Total 3.290 2.854 1.721 1.520 1.447 3.386 3.178 1.873 1.361 1.326

% of variance 21.9 19.0 11.5 10.1 9.6 22.6 21.2 12.5 9.1 8.8

Cumulative % 21.9 41.0 52.4 62.6 72.2 22.6 43.8 56.2 65.3 74.2

Bartlett’s test of sphericity

χ2 3952.0 3797.0

p < .001 < .001

Kaiser-Meyer-Olkin measure of sampling adequacy .57 .63

Note: (�) Bold represent loadings greater than ±.60.

https://doi.org/10.1371/journal.pone.0221368.t003
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In the analysis of the team against BOTTOM opponents, the principal component model

accounted for 71.9% and 72.7% of the total variance, respectively. For the team, the first com-

ponent (22.5%) consisted of the duration of possession (.687), the distance covered by the ball

(.752), length/width ratio of the ball displacement (-.642) and game width (.834); the second

component (16.9%) associated ball speed (-.902), ball speed CV% (.863), and ball speed ApEn

(-.671); and the third component (12.9%) consisted of the deepest location (.937), offensive

available space (-.928) and the number of opponents in offensive available space (-.639). For

BOTTOM teams, the first component (23.4%) consisted of ball speed (.915), ball speed CV%

(-.893) and ball speed ApEn (.814); the second component (19.3) highlighted the association of

the deepest location (.938), offensive available space (-.932), and the number of opponents in

offensive available space (-.736); and the third component (13.1) related the EPS (.859), and

game width (.651) (see Table 4 and Fig 6, lower panel, for complementary information).

Discussion

The aim of this study was twofold: (i) to describe the collective behavioural patterns that relies

upon players’ positioning in interaction with teammates, opponents and ball position; (ii) and

to define the underlying structure of the derived variables using factorial analysis. As was

hypothesized, the quality of opponents promoted substantial variations in team tactical behav-

iour. The descriptive analysis may provide key information to plan, design and execute

Table 4. Component factor loadings, component statistics, Bartlett’s test of sphericity and Kaiser-Meyer-Olkin measure of sampling adequacy of the factor analysis

(principal component methods) for considered variables in the games against BOTTOM opponents.

Variables Component factors (Team) Component factors (BOTTOM)

1 2 3 4 5 1 2 3 4 5

Ball possession (duration, s) .687� .418 .273 .323 -.042 -.350 .180 .014 .801� .293

Ball (distance covered, m) .752� .164 .312 .323 -.020 .111 .166 .154 .823� .273

Ball (speed, km/h) .060 -.902� .085 .083 .139 .915� .084 .132 -.032 -.026

Ball (speed, coefficient of variation %) -.072 .863� -.065 -.014 -.108 -.893� -.120 -.159 .011 .019

Ball (speed regularity, ApEn) -.119 -.671� -.014 -.146 -.177 .814� .017 .081 -.014 -.114

Ball (length/width ratio) -.642� .360 .086 .006 .216 -.425 .099 -.163 -.455 .151

EPS (m2) .515 -.082 .013 -.281 .659� .185 .222 .859� .174 .027

EPS (coefficient of variation %) -.079 .079 -.082 .785� .107 .035 -.055 -.099 .023 .810�

Game length (m) -.410 -.126 -.028 .008 .797� .068 .086 .617 -.551 .123

Game length (coefficient of variation %) .154 .250 .241 .362 .433 -.097 .276 -.400 .142 .443

Game width (m) .834� -.048 .012 -.344 .107 .297 -.068 .651� .403 -.153

Game width (coefficient of variation %) .049 -.072 .062 .753� -.153 -.207 -.023 .149 .178 .743�

Deepest location (m) .168 -.044 .937� .063 -.070 .051 .938� .070 .072 -.024

Offensive available space (m2) -.189 .066 -.928� -.069 .073 -.034 -.932� -.102 -.104 -.027

N.˚ of opponents in offensive available space .108 .011 -.639� .088 -.198 -.069 -.736� .021 .009 -.004

Eigenvalues

Total 3.379 2.536 1.939 1.578 1.361 3.512 2.890 1.963 1.329 1.215

% of variance 22.5 16.9 12.9 10.5 9.1 23.4 19.3 13.1 8.9 8.1

Cumulative % 22.5 39.4 52.4 62.9 71.9 23.4 42.7 55.8 64.6 72.7

Bartlett’s test of sphericity

χ2 3170.5 2414.2

p < .001 < .001

Kaiser-Meyer-Olkin measure of sampling adequacy .56 .62

Note: (�) Bold represent loadings greater than ±.60.

https://doi.org/10.1371/journal.pone.0221368.t004
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representative tasks during the training process. In addition, the PCA revealed the determi-

nants of collective tactical behaviour that coaches should consider when designing representa-

tive training tasks.

Improving performance requires that coaches use a multifactorial training process that

integrates information from physical, technical and tactical game requirements [12, 52]. The

alignment on teammates’ performance with the collective strategic plan as well considering the

specificities of opponent team is fundamental to ensure the transfer between practice and com-

petition [34–36]. Consequently, the daily challenge for coaches’ intervention is to identify,

manipulate and monitor the variations in spatial-temporal information constraints within the

simulated scenarios [36]. Despite some very interesting approaches that highlight the impor-

tance of representativeness in youth players’ training [53, 54], it is still not clear how to gather

the information on the individual and collective responses and the different levels of contex-

tual unpredictability that the training process should embrace to reflect the competitive reality.

Fig 6. Component factors of the factor analysis (principal component methods) in 3D space according to the quality of the opponents. Variables in blue are related

with 1st component, red with 2nd component and green with the 3rd component.

https://doi.org/10.1371/journal.pone.0221368.g006

Extracting spatial-temporal features that describe a team match demands

PLOS ONE | https://doi.org/10.1371/journal.pone.0221368 August 22, 2019 13 / 20

https://doi.org/10.1371/journal.pone.0221368.g006
https://doi.org/10.1371/journal.pone.0221368


In this sense, a deeper analysis of match outcomes might help to guide coaches in the planning,

designing and execution of more ecological training tasks. In other words, the practice should

promote the emergence of match specific behaviours and favour a high degree of transferabil-

ity of players’ behaviour from the training drills to competition [34].

Previous research explored the effect of teams’ performance level in spatial variables reveal-

ing that there is a higher use of the width of the pitch in detriment to the length, and that first

division teams display greater depth than second division teams [55]. Also, results suggested

that the playing space is influenced by the ball location. In fact, playing lengths tend to decrease

while widths tend to increase as the ball moves from the goal area to the midfield zones [56].

Accordingly, the rectangle comprising all the outfield players have been characterized by lower

values of length and higher values of width when the ball is in the central area of the pitch [57].

While these studies have added important information regarding space occupation, also,

important practical information may be picked to design playing area dimensions, if it is con-

sidered the dynamics between the opposing teams when accounting to the quality of opposi-

tion. In the present study, different playing spaces emerged when comparing the players

performance according to the opposition quality. For example, when facing TOP opponents,

the possessions used ~38 meters game length per ~43 meters game width with 12% coefficient

of variation (%). This information can be directly applied in the design of training tasks. When

the scope of the task is working on functional solutions near to the scoring area, the definition

of playing space constraints can be parametrized by these results. Additionally, the possessions

last ~28 seconds and at the end of the ball possession, the deepest location of the offensive

player was at ~83m of the pitch length. These behavioural features reflect the temporal adapta-

tions to new spatial structures and configurations generated by players’ sub-groups interac-

tions as match situations dynamically change [22, 23, 58, 59]. These results can be used as

spatiotemporal guidelines with higher transferability from match to training tasks because of

the high level of representativeness. Overall, the final aim is to potentiate the development of

players’ tactical awareness through the creation of training tasks based in contexts that stimu-

lates decision-making under strong time-pressure.

The length, width and surface area have been used before by exploring the effects of several

manipulations on the players’ performance during small-sided games [60–62]. The same met-

rics have been also analysed in match context according to the quality of the opposition, and

the results showed higher values for offensive situations when playing against weak teams [63].

In this study, we updated this information with complementary insights. Against BOTTOM

opponents, the deepest location increases, consequently making the scoring area smaller to the

team. The playing game space increased in width and decreased in length. In addition, the

duration of ball possession increased considerably (~37 seconds) and the ball speed ApEn was

higher, suggesting lower levels of regularity. The combination of these match features is associ-

ated with lower ratio of the length/width ball displacement, suggesting passing actions towards

the lateral direction. This might be the result of defensive compactness, that requires the use of

the pitch width to create space. In fact, previous research has shown that teams of lower quality

are likely to defend closer to their target to restraint space and time [63], which may led to

higher use of the pitch width by the offensive team to break the defensive stability and create

space for shooting opportunities. Practical applications of these results can be observed in Fig

7. The spatial references (game area, scoring area, etc.) represent real values and may be used

as baseline information to create task structural boundaries. Accordingly, coaches may use

complementary constraints (e.g. number of touches allowed to increase/decrease the ball

speed, floater players to give higher depth or width to the possession, the goal of the exercise to

manipulate the ball possession duration, etc.) to develop and practice team strategies and

boost task representatives.
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Previous research has shown that weaker teams are likely to adopt a more direct playing

style as pattern of play [64]. While this behaviour has been attributed to their lower ability to

maintain the ball possession, in turn, the results from this study may provide additional infor-

mation. Accordingly, from the perspective of the BOTTOM teams in possession, players face a

higher pressure since their EPS is small, even offensively (864.21±222.94 m2). This pressure

affected the deepest location that considerably decreased (~77 meters), creating an open space

in the defensive back (of the TOP opponents). This open space may afford the BOTTOM

teams to use a more direct playing style to explore. In fact, the increased ball length per width

ratio (~2 arbitrary units) seems to support this idea. Nevertheless, is important to highlight

some spatiotemporal boundary condition so that players’ can adequately reproduce during the

training the interaction dynamics that are mediated by match environmental information.

On integrating association mining with PCA, this study extends the application and under-

standing of match analysis by compression statistical mechanism. Previous studies have

Fig 7. A practical application example of the results when the team faced BOTTOM opponents. All the spatial references are real values. The dimension of the pitch

is 105 × 68 meters.

https://doi.org/10.1371/journal.pone.0221368.g007
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already explored this method which frequent patterns are analyzed for their interrelationship

in order to generate association in players’ performances [65–69]. Results related to notational

analysis suggested shots, shots on goal, playing time with ball possession and percentage of ball

possession as the most important variables to discriminate winning teams from drawing and

losing [68]. Additionally, winning teams have already been reported to exhibit different and

consistent profiles from drawing and losing teams, mainly discriminated by their ability to

recover the ball in zone 2 (close to middle line in the defensive half), and to organize the

offense using penetrative passes to the penalty area to increase the number of shots and, conse-

quently, goals [66]. The present study extends the PCA approach to the spatiotemporal vari-

ables, aiming to define its underlying structure in terms of emergent collective behaviour, as

well as to model how the quality of opposition affects these relations. The outcome can be used

as key information to understand how the manipulation of tasks will change the variables’

association. Also, it may be used by coaches to verify whether the essence of tactics or playing

style practiced in sessions is performed during competition. The matches played against TOP

opponents showed similar trends. The first three components explained more than 50% of the

data variance, showing that the increase of ball speed and ApEn of the ball speed were associ-

ated with ball speed CV%. The increase in the deepest location at the end of ball possession

generated less offensive available space, as expected, and the EPS of the team in possession was

well correlated with the game space, specially the game width. Bringing this information to the

training process, coaches can increase/decrease the effective playing space by changing the

pitch width any consequent changes in ball movement (number of touches allowed, for exam-

ple) will promote changes in ball speed variability (for magnitude, CV%, and structure, ApEn).

A recent study explored the soft-assembly of tactical patterns and the timescales of position-

ing-derived variables that define them during a soccer match, allowing understanding the mul-

tilevel organization of tactical behaviors as defined by the timescales of evolution of collective

patterns [65]. In fact, the authors showed how teams behave during a competition and how

these behavioral patterns change over the course of the match, influenced by the different con-

straints. However, there was still a gap to be filled about the boundary conditions that could be

applied to training tasks so the players’ ability to adapt to different context information would

be practiced in a rate of change which reflects competition.

The PCA analysis for the matches played against BOTTOM opponents provided further

relevant context information. In the team, the principal components showed a strong associa-

tion among ball related variables. The ball possession duration was strongly related to the

game width and distance covered by the ball, and negatively related with length/width ratio of

the ball movement. Moreover, these results are connected with the descriptive analysis, where

was shown that the team need to increase the width of the game in order to create open space.

In fact, stronger teams with higher skilled players seem to be able to sustain the ball possession

for longer time, develop longer passing sequences, thus producing more goals per possession

than shorter passing sequences [64].

Further research can include all levels of performance because the current study only

explored the impact of playing against top and bottom teams. Also, technical and physical per-

formance data can be considered in a more multidimensional and integrated approach, to

increase the understanding of how players base their game interactions and, thus, constitute a

solid criterion for fine-tuning the training process and performance modeling.

Conclusion

Spatiotemporal temporal patterns of play that sustain collective tactical behaviour of teams can

be extracted from matches to design highly representative training tasks and provide a better
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understanding of the underlying processes, contributing to performance outcomes. In line

with this statement, the ball-position derived variables added novel information to describe

the collective behaviour patterns and should be considered into analysis. As expected, the qual-

ity of opponents promotes a great variation in team behaviour as function of possession and is

presented as an important factor to be considered. When playing against TOP opponents, the

team possessions lasted for ~28 seconds, in a playing space of ~38 meters of length per ~43

meters of width and with the deepest location of the offensive player at ~83m of pitch length.

Against BOTTOM opponents, the deepest location increased, as well as the game width. These

results seem to emerge as the team attempts to explore the pitch lateral spaces to break the

defensive stability of the BOTTOM teams, leading to a decrease in the ratio of the length/

width ball displacement, and an increase in the duration of ball possession (~37 seconds).

From the perspective of BOTTOM teams in possession, players face a higher pressure, reflect-

ing a small EPS. Furthermore, this open space may afford the BOTTOM team to explore a

more direct playing space, which can be depicted from the increase in the ball length per width

ratio (2 a.u.). The PCA provided relevant complementary information to define the underlying

structure among the variables and showed a strong association with ball speed, ApEn and CV

% of the ball speed. The EPS of the team in possession was correlated with the game space,

especially the game width against TOP opponents. Against BOTTOM opponents, there was a

strong association with ball possession duration, game width, distance covered by the ball, and

length/width ratio of the ball movement. The overall approach carried in this study may serve

as baseline to elaborate normative models of positioning behaviours measurements to support

coaches’ operational decisions towards a holistic, representative and complex point of view

that help to design highly representative training tasks.

Supporting information

S1 Video. Video animation produced from the real calculated variables for better visuali-

zation of the underlying dynamics. The video ended when the ball goes out, however, to data

processing, the ball possession ended in the exact time frame when the player performed the

shot (represented in Fig 1).
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25. Hristovski R, Balagué N, Schöllhorn W. Basic notions in the science of complex systems and nonlinear
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