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Abstract

Mutational signatures refer to patterns in the occurrence of somatic mutations that might be

uniquely ascribed to particular mutational process. Tumour mutation catalogues can reveal

mutational signatures but are often consistent with the mutation spectra produced by a vari-

ety of mutagens. To date, after the analysis of tens of thousands of exomes and genomes

from about 40 different cancer types, tens of mutational signatures characterized by a

unique probability profile across the 96 trinucleotide-based mutation types have been identi-

fied, validated and catalogued. At the same time, several concurrent methods have been

developed for either the quantification of the contribution of catalogued signatures in a given

cancer sequence or the identification of new signatures from a sample of cancer sequences.

A review of existing computational tools has been recently published to guide researchers

and practitioners through their mutational signature analyses, but other tools have been

introduced since its publication and, a systematic evaluation and comparison of the perfor-

mance of such tools is still lacking. In order to fill this gap, we have carried out an empirical

evaluation of the main packages available to date, using both real and simulated data.

Among other results, our empirical study shows that the identification of signatures is more

difficult for cancers characterized by multiple signatures each having a small contribution.

This work suggests that detection methods based on probabilistic models, especially EMu

and bayesNMF, have in general better performance than NMF-based methods.

Introduction

Cancers contain mutant cells that originate from a DNA modification in a single normal cell

that is then propagated through cell divisions and that accumulates with further DNA modifi-

cations finally leading to abnormal, cancerous cells [1]. Such changes that include Single
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Nucleotide Variants (SNVs), insertions or deletions, Copy Number Variation (CNVs) and

chromosomal aberrations, have been termed as "somatic mutations" to distinguish them with

those inherited and transmitted from parents (germline mutations). With the development

and the improvement of sequencing technologies collectively referred to asHigh-Throughput
Sequencing (HTS) and the availability of cancer exome and genome data from most human

cancers, much has been learnt about these mutations and the set of genes (oncogenes and

tumour suppressor genes) that operate in human cancers. Beyond the relatively small number

of “driver” mutations, those that confer a large selective advantage for tumour development

and progression, the vast majority of mutations confer weaker selective advantage or are truly

neutral in that they do not affect cancer cells’ survival. Together, passenger and driver muta-

tions constitute a record of all cumulative DNA damage and repair activities occurred during

the cellular lineage of the cancer cell [2].

Among all types of somatic mutations, a particular focus has been placed on single base

substitutions that have been classified in six types according to the mutated pyrimidine base

(C or T) in a strand-symmetric model of mutation. Such 6 substitutions (C>A, C>G, C>T,

T>A, T>C and T>G) may be further classified in different types when considering the

sequence pattern in which they are located (sequence context). For practical reasons, the

sequence context is typically defined using the 5’ and 3’ bases proximal to the mutated base,

that results in substitutions being classified in 96 types (6�4�4). In this paper we adopt this con-

vention and use “mutations” to refer to these 96 types of contextualized substitutions.

It has been hypothesised that specific patterns of mutations are the results of the action of

particular underlying mutational process. To identify such patterns, computational models,

such as matrix decomposition algorithms or probabilistic models, have been developed. The

first of such methods was published in 2013 by Alexandrov and colleagues [2,3], and, as for

most of all the other models that followed, is based on the idea that a mutational signature can

be seen as a probability distribution of the 96 types of mutations. Mutational signatures con-

tribute to the total mutational burden of a cancer genome, commonly referred to as mutational

“catalogue” or “spectrum” in the recent computational biology literature.

Such original methodological framework, applied to tens of thousands of genomes and

exomes from 40 different cancers types from large data repositories such as TCGA (The Can-

cer Genome Atlas), has led to the identification of 30 mutational signatures characterized by a

unique probability profile across the 96 mutation types. These validated mutational signatures

are listed in a repertory on the COSMIC (Catalogue Of Somatic Mutations In Cancer) website

[3] and have been widely used as references. More recently, Alexandrov et al. have introduced

an updated set of signatures identified from an even larger collection of both exome and

whole-genome sequences (including the sequences from the PCAWG project) using two dif-

ferent methods (a new version of the original framework and a Bayesian alternative) [4]. The

new repertory includes 49 new mutational signatures based on single base substitutions as in

COSMIC, and also mutational signatures built in the context of other types of mutations such

as double base substitutions (11 signatures), clustered based substitutions (4 signatures) and

small insertions and deletions (17 signatures).

After the introduction of the original framework, several other mathematical methods and

computational tools have been proposed to detect mutational signatures and estimate their

contribution to a given catalogue. These methods can be grouped in two categories with differ-

ent goals. The first class of methods aims to discover novel signatures while the second class

aims to detect the known and validated mutational signatures in the mutational catalogue of a

given sample. The approaches used in the first class are referred to as “de novo” (or “signature

extraction”) while those in the second class as “refitting” (or “signature fitting”). All methods
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have been implemented in open source tools, mainly R packages, but some of them are avail-

able through command line, the Galaxy project or a web interface.

Signatures identified with de novo methods can be compared to reference signatures (for

instance those listed in COSMIC) through measures such as cosine [5] or bootstrapped cosine

similarity [6], which is a distance metric between two non-zero vectors. In this step of the anal-

ysis, extracted signatures are matched to the most similar reference signature, provided that

their similarity is greater than a fixed threshold.

Recently, Baez-Ortega and Gori published a paper that discussed the mathematical models

and computational techniques for mutational signature analysis [7]. However, to our knowl-

edge no systematic evaluation of the performance of the existing methods has been conducted

and the issue of the choice of an appropriate cosine similarity threshold when matching a

newly extracted signature to the most similar counterpart in a reference set has not been

addressed yet.

We use simulated and real-world cancer sequences in order to evaluate and compare for

the first time the methods available to date, and assess their ability to accurately detect the

underlying mutational signatures in mutational catalogues.

Mathematical definition of mutational catalogues, spectra and

signatures

In this section we briefly review the mathematical framework and notations based on the origi-

nal model developed by Alexandrov and colleagues [2]. The data structure that is used as input

by most current methods is themutational catalogue, or spectrum, of a genome (or exome),

with the counts for each of the 96 different mutation features, or types. In most approaches, the

notion of mutation type refers to base substitutions within the trinucleotide context described

above.

The mutational catalogue of a genome (or exome) g is defined as the vector ðm1
g ; . . . ;mKg Þ

T
,

where eachmkg is the number of mutations of type k found in the genome and K, the number

of possible mutation types, is equal to 96, and the superscript T denotes the transpose of a

matrix so that vectors are thought as column vectors. Note that in this setting, information

about mutation locations in the sequence is lost. The catalogue is built by comparing the

sequence to a reference sequence in order to detect mutations and then by simply counting the

occurrences of each type. The reference sequence can either be a standard reference (e.g. the

assembly GRCh38) or a sequence from a “normal” tissue from the same individual (e.g. DNA

from blood or from normal tissue surrounding tumours when available). For the purposes of

the present work we will use the generic term “samples” for both genomes and exomes as the

concepts and models used may be applied to both.

The basic idea underlying all computational models proposed is that the mutational cata-

logue of a sample results from the combination of all the mutational processes operative during

lifetime, and therefore it can be seen as the weighted superposition of simpler mutational sig-
natures, each uniquely corresponding to a specific process. The weight is larger if the process

has a larger role in the final catalogue of mutations: for example, mutagens that last longer, are

more intense, generate poorly repaired DNA lesions, mutate more genes, or also act as selec-

tion pressures favouring mutant cells. Here we adopt the term “signature” as it is the most

commonly used in the recent computational cancer biology literature, although this term

could be misleading as it implies unique backward identification with a mutagen or a cancer

type that in some cases might not be possible.

Formally, the signature of a mutational process n is a vector pn ¼ ðp1
n; . . . ; pKn Þ

T
, where each

pkn represents the probability that the mutational process will induce a mutation of type k. In
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other words, pkn is the expected relative frequency of type kmutations in genomes exposed to

n. Note that
PK
k¼1
pkn ¼ 1 and 0 � pkn � 1 for all k.

The intensity of the exposure to a mutational process n in a sample g is measured by the

number of mutations eng in g that are due to n. For this reason, eng is referred to as the “expo-

sure” of g to n. It is important to note that the term “exposure” does not refer here to the expo-

sure to a mutagen per se, because it also includes the likelihood that an unrepaired DNA lesion

will cause a mutation. The expected number of mutations of type k due to the process n in

sample g is therefore pkne
n
g . If sample g has been exposed to Nmutational processes, then the

total number of mutations of type k is

mkg ¼
PN

n¼1
pkne

n
g þ �

k
g ; ð1Þ

where �kg is an error term reflecting sampling variability and non-systematic errors in sequenc-

ing or subsequent analysis.

Matrix notation is effectively used when dealing with several samples and signatures. In this

situation, the collection of G samples is represented by the K×Gmatrix, with catalogues in col-

umns:

M ¼

m1
1
m1

2
. . . m1

G

..

. ..
. ..

.

mK
1
mK

2
. . . mKG

0

B
B
B
@

1

C
C
C
A
;

the N signatures are represented by the K×Nmatrix

P ¼

p1
1
p1

2
. . . p1

N

..

. ..
. ..

.

pK
1
pK

2
. . . pKN

0

B
B
@

1

C
C
A;

and the exposures by the N×Gmatrix

E ¼

e1
1
e1

2
. . . e1G

..

. ..
. ..

.

eN
1
eN

2
. . . eNG

0

B
B
B
@

1

C
C
C
A
:

Eq (1) then becomes

M � P � E

where we omitted the error term.

de novo extraction vs. refitting

de novo signature extraction methods aim at estimating P and E givenM. Non-negative matrix

factorization (NMF) is an appealing solution to this unsupervised learning problem, because,

by definition, all involved matrices are non-negative [8]. NMF identifies two matrices P and E
that minimize the distance betweenM and P×E. In particular, NMF finds an approximated

solution to the non-convex optimization problem

argminP�0;E�0 jjM � P � E jj
2

F; ð2Þ
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where the Frobenius matrix norm of the error term is considered. NMF requires the number

of signatures N, an unknown parameter, to be predefined. An approach for selecting this

parameter consists in obtaining a factorization ofM for several of its values and then choosing

the best N with respect to some performance measure such as the reconstruction error or the

overall reproducibility. NMF is at the core of the Wellcome Trust Sanger Institute (WTSI)

Mutational Signature Framework, the first published method for signature extraction [2]. An

alternative to numerical approaches based on NMF is given by statistical modelling and algo-

rithms. With these latter approaches, the number of mutations of a given type can be modelled

by a Poisson distribution

mkg � P
XN

n¼1

pkn e
n
g

 !

where mutational processes are assumed to be mutually independent. This latter independence

hypothesis simplifies the mathematics but does not necessarily hold in practice, where muta-

tion processes are likely to interfere with each other (e.g. distinct defective DNA repair pro-

cesses). In order to estimate E and P, it has been proposed to consider E as latent data and P as

a matrix of unknown parameters and to apply an expectation-maximization algorithm [9] or

use Bayesian approaches [10–12]. One important advantage of statistical approaches is the

availability of model selection techniques for the choice of N. We refer to the recent review [7]

for a comprehensive overview of the mathematical and computational aspects of existing

methods, including alternative techniques not mentioned above.

The refitting approaches consider that the signatures P are known and the goal is to esti-

mate E givenM and P. Refitting can be done for individual mutational catalogues (i.e. individ-

ual samples) and, from a linear algebra perspective, can be seen as the problem of projecting a

catalogue living in the K-dimensional vector space (the space spanned by all mutation types)

onto its subset of all linear combinations of the given mutational signatures having non-nega-

tive coefficients (the cone spanned by the given signatures).

A current practice consists in first performing a de novo extraction of signatures followed

by a comparison of the newly identified signatures with the reference signatures (e.g. COSMIC

signatures) by means of a similarity score, typically cosine similarity ranging from 0

(completely different) to 1 (identical) [6,10]. Finally, a “novel” signature is considered to reflect

a specific reference signature if the similarity is larger than a fixed cut-off. If similarity is

observed with more than one reference signature, the one with the largest value of similarity is

chosen, see S1 Fig. This assignment step crucially depends on the choice of the cut-off h that

has been so far inconsistent in the literature with some studies using a value of 0.75 [11]

whereas others 0.80 [12,13]. Another difficulty is that different signatures might have very

close cosine similarity, as it happens also between COSMIC signatures, see S2 Fig, so that a

unique assignment is not always possible. This shows that mutational signatures are a useful

mathematical construct that, however, might have biological ambiguous meaning.

Overview of the available tools

A similar number of de novo and refitting methods exist and all of them are available as open

source tools, mainly as R packages, or web interfaces (Table 1). The typical input of the tools is

a file including the mutation counts but some tools derive the mutation counts from ad-hoc

input files that may include for each individual a list of mutated bases, their position within the

genome and the corresponding bases from a reference genome. The typical format of such

input files is MAF, VCF or less common formats such as MPF and MFVF. For biologists or

those who are not familiar with programming, a set of tools were also developed and provided
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Table 1. Available tools for the detection of mutational signatures.

Software Available platform/

model

Input files Additional features

de novo approaches

WTSI [2] MATLAB/ NMF - Original framework

- An improved version has been recently

implemented in SigProfiler

EMu [9]

https://github.com/andrej-fischer/EMu

Command line/EM

algorithm

- Mutation counts file

- With respect to other tools, the

counts file is transposed (the rows

correspond to the samples)

- Opportunity matrix

- Selection of the optimal number of

signatures

SomaticSignatures [15]

https://bioconductor.org/packages/release/bioc/

html/SomaticSignatures.html

R/NMF and PCA Variant Call Format - Group-wise comparisons

- Genomic visualization

- Hierarchical clustering

pmsignature [16]

https://github.com/friend1ws/pmsignature

R/mixed-membership

model

- Mutation Position Format

-Mutation Feature Vector Format

- Reduction of complexity

- Mutation types defined by one or two

flanking bases

- Selection of the optimal number of

signatures

- Transcriptional strand bias

- Background signature

bayesNMF [4,17–19]

https://github.com/jburos/bayesNMF

https://software.broadinstitute.org/cancer/cga/

msp

R/Bayesian NMF Mutation counts file - Selection of the optimal number of

signatures

- Data pre-treatment with the function get.

lego96.hyper reduces the influence of

hypermutated catalogues

signeR [14]

https://bioconductor.org/packages/release/bioc/

html/signeR.html

R/Bayesian NMF Variant Call Format - Opportunity matrix

- Selection of the optimal number of

signatures

- Group-wise comparison (differential

analysis)

mutSignatures [20]

https://cran.r-project.org/web/packages/

mutSignatures/index.html

R/NMF Mutation counts file - R-based implementation of [2]

maftools [5]

https://bioconductor.org/packages/release/bioc/

html/maftools.html

R-Bioconductor /NMF - Mutation Annotation

- Format

- Genomic visualization

- Cosine similarity

- Selection of the optimal number of

signatures

- Group-wise comparisons (differential

analysis)

- APOBEC enrichment analysis

Helmsman [21]

https://github.com/carjed/helmsman

Python/ NMF and PCA - Variant Call Format

- Mutation Annotation Format

- Able to run in parallel and designed for large

datasets

- Connection to external packages (in R)

- may generate mutational catalogues from

sequence data

SignatureAnalyzer [4]

https://www.synapse.org/#!Synapse:syn11801492

R/ Bayesian NMF Mutation counts file - Automatic selection of the optimal number

of signatures

- Sparse signature profiles and contributions

SigProfiler [2,4]

https://fr.mathworks.com/matlabcentral/

fileexchange/38724-sigprofiler

Matlab/ NMF Mutation counts file - Further development of the original

framework

- Two steps: 1) extraction of a minimal set of

signatures, 2) estimation of their

contributions to individual samples

SparseSignatues [22]

https://bioconductor.org/packages/release/bioc/

html/SparseSignatures.html

R/ NMF with Lasso-

penalized cost function

Mutation counts file - Integration of DNA replication error

signature

- Sparse signature matrix

- Number of signatures estimated with cross-

validations

- Scalable to large datasets

(Continued)
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with user-friendly interfaces (see also Table 1). Some tools include additional features such as

the possibility to search for specific patterns of mutations (e.g. APOBEC-related mutations

[5]) and differential analysis [14].

Table 1. (Continued)

Software Available platform/

model

Input files Additional features

Refitting approaches

deconstructSigs [23]

https://github.com/raerose01/deconstructSigs

R/linear regression Mutation counts file - Opportunity matrix

Qpsig [24]

https://f1000researchdata.s3.amazonaws.com/

supplementary/8918/0d25c07c-16ba-4b14-91e7-

71749dcbbdd5.pdf

R/quadratic programming Mutation counts file

SignatureEstimation [25]

https://www.ncbi.nlm.nih.gov/CBBresearch/

Przytycka/index.cgi\#signatureestimation

R/quadratic programming

and simulated alienation

Mutation counts file

MutationalPatterns [26]

http://bioconductor.org/packages/release/bioc/

html/MutationalPatterns.html

R/Non-Negative Least

Squares

Mutation counts file - Also de novo identification

- Cosine similarity comparison

- Strand bias analyses

- Enrichment and depletion

YAPSA [27]

http://bioconductor.org/packages/release/bioc/

html/YAPSA.html

R/Linear Combination

Decomposition

Mutation counts file - Cut-off for normalized exposure

- Enrichment and depletion

decompTumor2Sig [28]

https://github.com/rmpiro/decompTumor2Sig

R/quadratic programming - Variant Call Format

- Mutation Position Format—

Mutation Feature Vector Format

- Converts a set of “Alexandrov’s signatures”

[10] to “Shiraishi’s signatures” [16]

- Decomposes a mutational catalogue in

“Shiraishi’s signatures”

MutationalCone [See S1 File] R/cone projection Mutation counts file - Fast in comparison to others refitting tools

Sigfit [29]

https://github.com/kgori/sigfit

R/ Bayesian NMF Mutation counts file - Provides a new model for combining de

novo and refitting approaches

- Possible application to indel or

rearrangement count data

- Also implements EMu [9] model and allows

conversion to genome-or exome- relative

signatures

Pipelines and web-interfaces

Mutspec [30]

https://toolshed.g2.bx.psu.edu/repository/view_

repository?id=f5c1f75e9fb33f8e

Galaxy pipeline/NMF Variant Call Format - de novo identification

- Includes MS analysis in mouse cancer

MutaGene [31]

https://www.ncbi.nlm.nih.gov/research/

mutagene/

Web-interface TCGA and ICGC data - Refitting and de novo identification

- Clustering of samples according to

mutational profiles

- Identification of potential driver’s mutations

mSignatureDB [6]

http://tardis.cgu.edu.tw/msignaturedb/

Web-interface - Variant Call Format

- Mutation Annotation Format

- TSV

- Refitting and de novo identification

- Bootstrapped cosine similarity

- Comparison with either hg19 or hg38

Mutalisk [32]

http://mutalisk.org

Web-interface Variant Call Format - Refitting and de novo identification

- Transcriptional strand bias

- Localization of kaetegis

- Histones modifications

- Cosine similarity comparison

MuSiCa [33]

http://bioinfo.ciberehd.org:3838/MuSiCa/?

Web-interface - Variant Call Format

- Mutation Annotation Format

- TSV

- Excel

- Refitting and de novo identification

- Cosine similarity

- Samples classification

https://doi.org/10.1371/journal.pone.0221235.t001
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de novo approaches

Most tools that have been developed to identify mutational signatures were based on decom-

position algorithms including NMF or a Bayesian version of NMF [14,17]. The original

method developed by Alexandrov et al. was based on NMF and was implemented in MATLAB

[2] and is available also as an R package developed independently [20]. An updated and elabo-

rated version named SigProfiler, was proposed recently for extracting a minimal set of signa-

tures and estimating their contribution to individual samples [4]. The latter article also

discusses an alternative method based on Bayesian NMF, called SignatureAnalyzer, that led to

the identification of 49 reference signatures. Another tool that utilises NMF is maftools that is

one of the few de novo tools that allows systematic comparison with the 30 validated signatures

in COSMIC by computing cosine similarity and assigning the identified signatures to the

COSMIC one with the highest cosine similarity [5].

Other tools such as SomaticSignatures [15] or the recent Helmsman [21] allows the identifi-

cation of mutational signatures through Principal Component Analysis (PCA) in addition to

NMF. For the sake of our formal comparison of the tools performance, we have tested Soma-

ticSignatures only with the NMF implementation because with PCA the factors are orthogonal

and the values inside the matrix can potentially be null or negatives, which is a deviation from

the paradigm postulating that catalogues are the superposition of positively weighted signa-

tures. We note, however, that PCA could be a promising way to explore complex situations in

which mutational processes interfere with each other (e.g. relatively error free repair processes

competing with error prone repair processes). Developed in the Python language, Helmsman

allows the rapid and efficient analysis of mutational signatures directly from large sequencing

datasets with thousands of samples and millions of variants.

A promising recent method called SparseSignatures [22] proposes an improvement of the

traditional NMF algorithm based on two innovations, namely the default incorporation of a

background signature due to DNA replication errors and the enforcement of sparsity in identi-

fied signatures through a Lasso penalty. This latter feature allows the identification of signa-

tures with well-differentiated profiles, thus reducing the risk of overfitting.

In addition to decomposition methods, an approach based on the Expectation Maximiza-

tion (EM) algorithm has been proposed to infer the number of mutational processes operative

in a mutational catalogue and their individual signatures. This approach is implemented in the

EMu tool [9], where the underlying probabilistic model assumes that input samples are inde-

pendent and the number of mutational signatures is estimated using the Bayesian Information

Criterion (BIC).

Another tool that uses a probabilistic model named mixed-membership model is pmsigna-

ture [16]. This tool utilises a flexible approach that at the same time reduces the number of esti-

mated parameters and allows to modify key contextual parameters such as the number of

flanking bases.

The latter feature may be particularly useful as the standard and most commonly used

methods based on trinucleotides may not be the most adequate to detect specific mutational

processes that lead to larger-scale substitution patterns. Evaluating the impact of limiting to tri-

nucleotides or estimating the gain in performance associated with the extension of the context

sequence to two flanking bases, is difficult and beyond the scope of our work. However, it is

worth noting that trinucleotide-based methods have been able to identify several signatures

associated with defective DNA mismatch repair and microsatellite instability (i.e. signatures 6,

14, 15, 20, 21, 26 and 44 of COSMIC v3) [4]. It is important to note that for the purpose of our

comparison with the other tools, we set to one the number of flanking bases, and therefore to

96 mutation types.
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EMu, signeR and pmsignature (and the refitting tool deconstructSigs) have been designed

to take into account the distribution of triplets in a reference exome or genome for example

from a sequence of normal tissue in the same individual. This is done by “normalizing” the

input mutational catalogues with respect to the distribution of triplets in the reference exome

or genome using an “opportunity matrix”.

Refitting with known mutational signatures

In addition to the identification of novel mutational signatures, we are often interested in eval-

uating whether a signature observed in an individual tumour is one of an established set of sig-

natures (e.g. the COSMIC signatures). This task is performed by “refitting tools” that aim to

search for the “best” combination of established signatures that explains the observed muta-

tional catalogue by projecting the latter (i.e. mapping) into the multidimensional space of all

non-negative linear combinations of the N established signatures.

The deconstructSigs [23] tool searches for the best linear combination of the established sig-

natures through an iterative process based on multiple linear regression aimed at minimizing

the distance between the linear combination of the signatures and the mutational catalogue.

All the other tools minimise the distance through equivalent approaches based on quadratic

programming [24,25,28], non-negative least square [26] linear combination decomposition

[27] and simulated annealing [25].

A faster implementation. We propose an alternative implementation of the decomposi-

tion performed in [26,27] based on a simple geometric framework. Finding the linear decom-

position of the input catalogueM on a set of given signatures minimizing the distance can be

seen as the problem of projectingM on the geometric cone whose edges are the reference sig-

natures. We propose to solve this problem by applying the very efficient R package called cone-

proj [34]. More details about our algorithm, which we called MutationalCone, together with

the R code implementing it, can be found in the S1 File.

Combining de novo and refitting procedures

Sigfit [29] is a recently introduced R package for Bayesian inference based on two alternative

probabilistic models. The first of such models is a statistical formulation of classic NMF where

signatures are the parameters of independent multinomial distributions and catalogues are

sampled according to a mixture of such distributions with weights given by the exposures,

while the second model is a Bayesian version of the EMu model. An interesting innovation of

Sigfit is that it allows the fitting of given signatures and the extraction of undefined signatures

in the same Bayesian process. As argued by the authors, this unique feature might be helpful in

cases where the small sample of catalogues makes it difficult to try to identify new signatures

or when the aim is to study the heterogeneity between the primary tumour and metastasis in

terms of the signatures they show.

In this work we empirically evaluate the methods that have been already presented in a peer

review published paper and for which an implementation in R is available. To this aim, we

adopt the COSMIC set as reference for the analysis of simulated and real mutational catalogues

because we evaluate tools that were developed at the time when COSMIC was the only avail-

able database of reference.
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Data and experimental settings

Real cancer data from TCGA

In order to evaluate the performance of the available algorithms on real data, we used the

exome sequences in The Cancer Genome Atlas (TCGA) repository (https://cancergenome.nih.

gov/) for four cancer types: breast cancer, lung adenocarcinoma, B-cell lymphoma, and

melanoma.

Mutation Annotation Format (MAF) files with the whole-exome somatic mutation datasets

from these cohorts were downloaded from the portal gdc.cancer.gov on 6 March 2018. Data

were annotated with MuSE [35] and the latest human reference genome (GRCh38). Muta-

tional catalogues from these cohorts were obtained by counting the number of different muta-

tion types using maftools [5]. The distribution of the number of mutations for each sample

and separately for each cancer type is depicted in Fig 1.

According to the COSMIC website, 13 and 7 signatures have been found for breast cancer

and lung adenocarcinoma respectively, 6 for B-cell lymphomas and 5 for melanoma.

Simulated data

The first key assumption of our model of simulated mutational catalogues is that the number

of mutations in a sample g that are induced by process n follows a zero-inflated Poisson (ZIP)

distribution. According to this two-component mixture model, eng is either 0 with probability π
or is sampled according to a Poisson distribution PðlÞ with total probability 1−π. Such a

model depends on two parameters: the expectation λ of the Poisson component, and the prob-

ability π of extra “structural” zeros. The ZIP model allows for frequent zeroes and is therefore

more suitable for modelling a heterogeneous situation where some samples are not exposed to

a given mutational process (eng ¼ 0) while some others are (eng > 0). Realistically, the mutation

counts due to process n in each of the G samples, en
1
; . . . ; enG, are assumed to be independent

and identically distributed according to a ZIP model where the expectation of the Poisson

component is specific to n:

eng � ZIPðln; pÞ; for all n ¼ 1; . . . ;N:

Note that the expected number of mutations in sample g due to process n is (1−π)λn. This

flexibility given by process-specific average counts is the second important characteristic of

our model and reflects the possibility that the mutagenic actions of different processes are

intrinsically different with respect to their intensity. Obviously, it would have been possible to

do one step further and allow for parameters λn,g specific to both processes and samples, thus

representing the realistic situation in which the exposures of different samples to the same pro-

cess have different duration or intensity (e.g. smokers/non-smokers). However, this would

have resulted in too many parameters to tune, thus making it difficult to interpret the results

of our simulation study. For the same reason we considered one fixed value of π.

The parameter λn depends on both the average total number r of mutations in a sample and

the relative contribution of n. We therefore imposed the parameterization λn(1−π) = qnr,
where qn is the average proportion of mutations due to the process n.

When taking a unique value of r, this model produces realistic simulations even though it

underrepresents extreme catalogues with very large or small total numbers of mutations (see

Part C of S3 Fig). While considering a specific value of r for each sample, or group of samples,

would definitely make it possible to obtain a more realistic distribution of simulated catalogues

(see Part B of S3 Fig), such multidimensional parameter would complicate unnecessarily our

empirical assessment of mutational signature detection methods by introducing too many
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specifications. We therefore decided to consider a unique r for each set of simulations. This

formulation allowed us to study empirically the performance of a given signature detection

method as a function of the average number of mutations r while fixing the average proportion

of mutations due to each mutational process qn, according to different profiles that mimic real

cancer catalogues. Interestingly, the ZIP model appeared to be more appropriate to represent

mutational catalogues than the pure Poisson model used in previous publications [9,14] (see

Part D of S3 Fig).

We adopted the following simulation protocol:

1. We chose N signatures from the COSMIC database, thus obtaining the matrix P.

2. For each sample g and process n we sampled eng from a ZIP distribution with parameters

λn = qnr/(1−π) and π and obtained E. Here qn,r and π are fixed parameters to set.

3. We computed the product P×E. In order to obtain the final simulated catalogueM, we

added some noise to the latter matrix by takingmkg � PððP � EÞkgÞ.

We generated four alternative sets of simulated catalogues, referred to as Profiles 1, 2, 3 and

4, each set mimicking a particular cancer: breast cancer, lung adenocarcinoma, B-cell lym-

phoma and melanoma. In order to do so, for each tumour type, we applied MutationalCone to

the corresponding TCGA datasets and we calculated the mean contribution across all samples

of each signature known to contribute to the specific cancer type qn. Signatures with qn = 0 do

not contribute to the final catalogue and were not in the matrix P. S4 Fig depicts the resulting

four sets of configurations (q1,. . .,qN) used for the simulations. Profiles 3 and 4 are character-

ised by one dominant signature, Profiles 2 by two signatures with similar large contributions

and Profile 1 by several signatures with small effects. We fixed the relative frequency of struc-

tural zero contributions to the catalogues to π = 0.6 in all simulations. We chose this value

because it leads to a small number of hypermutated catalogues, as it is often encountered in

practice. Finally, we varied the number of r from as little as 10 to as much as 100,000 muta-

tions. This allowed us to study the performance of methods on a large spectrum of catalogues:

Fig 1. Barplot with the number of mutations in each sample in four TCGA cohorts. Each bar represents a sample, with the number of mutations shown in the y-axis.

https://doi.org/10.1371/journal.pone.0221235.g001

Review and empirical comparison of mutational signatures tools

PLOS ONE | https://doi.org/10.1371/journal.pone.0221235 September 12, 2019 11 / 28

https://doi.org/10.1371/journal.pone.0221235.g001
https://doi.org/10.1371/journal.pone.0221235


from a limited number of mutations as in exomes, to a very large number, as in whole cancer

genome sequences.

For each of the four tumour types and for each value of r, we simulated a catalogue matrix

with G samples. Fig 2 shows examples with G = 30 for three values of r.

Methods for measuring the performance of algorithms

All methods for identifying signatures find solutions to the minimization problem (2). A

straightforward way to measure the accuracy of the reconstructed catalogue is, therefore, to

calculate the Frobenius norm of the reconstruction error

jjM � M̂ jj 2F ¼
XG

g¼1

XN

n¼1

ðmkg � m̂
k
gÞ

2
;

where M̂ ¼ P̂ � Ê is the matrix of catalogues reconstructed from the estimated signature and

exposure matrices. Some of the algorithms involve stochastic steps such as resampling and/or

random draws of initial parameters. For these algorithms, one simple way to assess the robust-

ness of the estimates is to look at the variability of the reconstruction error when the same cata-

logues are analysed several times with the same algorithm.

With regards to bayesNMF, it is known that the performance of its principal function

might be poor in presence of hypermutated catalogues that mask the detection of signals from

less mutated catalogues [17]. For this reason, we pre-treated the catalogues to be analysed by

this tool and replaced hypermutated catalogues by synthetic non-hypermutated catalogues to

maintain the original mutational distribution catalogues using the standalone get.lego96.hyper

function that can be found in the bayesNMF script.

In order to make decisions about whether an extracted signature is the same as validated

signatures (e.g. COSMIC signatures) a cut-off for cosine similarity needs to be defined. We

decided to apply six different cut-offs and consider as “new” all identified mutational signa-

tures for which the maximal cosine similarity is lower than the cut-off value.

Specificity and sensitivity for de novo extraction and assignment. In most applications,

signature extraction is done in two steps: first, signatures are found using a de novo extraction

tool and then for the extracted signatures a cosine similarity with each of the COSMIC signatures

is calculated. In order to measure the performance of both these steps combined, we used simu-

lated catalogues and computed false and true positive rates and false and true negative rates. In a

simulated catalogue, the set of true signatures p1,. . .,pN that do contribute to the catalogue are

known, thus allowing the comparison of the latter to the estimated signatures p̂i1 ; . . . ; p̂iN . Note

that, for the sake of simplicity, we explicitly look for the same number of signatures that we used

to simulate the catalogues, not addressing questions about model selection performance.

Estimated signatures that belong to the set of “true signatures” are considered as true posi-

tives, while all “true signatures” that are not extracted count as false negatives. False positives

are all estimated signatures that do not have a match in the set of “true signatures”. This can

happen for two reasons: the estimated signature is assigned to a COSMIC signature not used

to build the catalogue, or it is not sufficiently similar to any COSMIC signature. This last situa-

tion usually takes place when setting a very high cosine similarity threshold h. In this case, sig-

natures that have maximal cosine similarity lower than the cutoff, will be termed as “new”.

Finally, true negatives are all COSMIC signatures not used for the simulation, nor estimated.

From these four measures, we compute specificity (number of true negatives divided by the

total number of negatives) and sensitivity (number of true positives divided by the total num-

ber of positives).
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Fig 2. Sample of simulated catalogues. Catalogues are simulated according to the model described in the text. Tuning parameters are the average number of mutations,

here r = 102,104 and 105, and the cancer type-specific average contribution of each signature (also see S4 Fig). Coloured bars indicate the contribution of each signature

to the total mutational load of each sequence.

https://doi.org/10.1371/journal.pone.0221235.g002
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In our empirical study, for each simulation setting described in the Simulated data sec-

tion (that is for each profile given by a choice of proportions (q1,. . .,qN) and for a choice of

total number of mutations r) we built 50 replicates, each made of a matrix of G samples.

Then we extracted signatures from all replicates with a given tool. Importantly, we set the

expected number of signatures to be the same as the number of signatures used in the simu-

lation, thus not addressing the problem of model selection. Then we compared the extracted

signatures to the COSMIC signatures using a cosine similarity threshold h. Finally, we com-

puted specificity and sensitivity and obtained Monte-Carlo estimates based on the means

over all replicates.

Bias of refitting procedures. Refitting algorithms assume that the matrix of signatures is

known, and return the exposure estimates êng , i.e. estimates of the contribution of each signa-

ture eng . A simple way to assess the performance of the refitting method is then to look at the

bias of such estimates, by comparing them to the true exposures. In order to do so, we simu-

lated 50 replicates each consisting of one lung adenocarcinoma-mimicking catalogue g (Profile

3) with an average number of mutations set to r = 104. Then, for each process n, we obtained

Monte-Carlo estimates of the bias E½̂eng � � e
n
g by averaging the differences êng � e

n
g over all repli-

cates. A global measure of performance that considers all exposure estimates is given by the

mean squared error (MSE), that is the expected value of the loss function
P30

n¼1
ðêng � e

n
g Þ

2
. We

obtained Monte-Carlo estimates of the mean squared error by averaging the loss function val-

ues across all 50 replicates and calculate asymptotic confidence intervals.

Analyses were performed using R 3.5.1 on a Linux Ubuntu (14.04) machine with 32 GB

RAM and Intel Xeon E5-2630 v4 CPUs @ 2.2 GHz x 16.

Comparisons of algorithm performance

Performance of de novo tools

Fig 3 shows the distribution of the reconstruction error when a given computational tool is

applied several times to the same real trinucleotide matrix. Reconstruction errors show limited

variability due to stochastic steps in the algorithms and no variability whatsoever for maftools.

All methods under evaluation are roughly equivalent in terms of their ability to properly

reconstruct the initial matrix of mutational catalogues. This is not surprising, given that all

methods are meant to solve the optimization problem in (2).

In general, the error value appears to depend on the cancer dataset. This is expected because

the fours datasets differ with regards to the number of samples, their total number of muta-

tions and the number of operating mutational signatures, making the decomposition more or

less difficult.

In order to study the robustness to the presence of outliers, we also estimated the recon-

struction error of each method (not only bayesNMF) after pre-treating all datasets with the

function get.lego96.hyper. The results reported in S5 Fig show that the performance of each

method improves after pre-treating the samples, especially for Melanoma and Breast cancer

datasets that are characterised by a few samples with an extremely high number of mutations.

For the Melanoma dataset, the gain in performance is considerable for bayesNMF and

maftools.

We used realistic simulations to evaluate the performance of each method for de novo

extraction followed by a classification step in which the extracted signatures are assigned to the

most similar COSMIC signature.

Figs 4 and 5, respectively show the specificity and sensitivity of such two-stage procedure as

functions of the number of samples G in each catalogue and the cosine similarity cut-off h,
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while Figs 6 and 7 show the specificity and sensitivity as functions of the number of mutations

in each catalogue and h.

Fig 3. Reconstruction errors and their variability due to stochastic steps in the algorithms. Each program under evaluation is applied 50 times on the same matrix of

real catalogues shown in Fig 1; boxplots represent the distribution of the squared Frobenius distance between the original catalogue and its reconstruction. Boxplots look

like flat segments because of the scale of the y-axis. The bayesNMF errors are obtained after pre-treating the data to reduce the effects of hypermutated catalogues with

the standalone bayesNMF function get.lego96.hyper.

https://doi.org/10.1371/journal.pone.0221235.g003
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We do not see very large differences in the tools’ specificity with respect to the number of

samples (Fig 4). For Profiles 2, 3 and 4 the specificity of all methods is close to 1 even for small

sample sizes, while for Profile 1, that is characterised by small contributions from several signa-

tures (see S4 Fig), the specificity is close to 1 starting from 50 samples. The sensitivity of most

of the algorithms increases with the sample size (Fig 5) and this trend is more evident for Pro-

file 1. Methods based on NMF (maftools, SomaticSignatures, mutSignatures) have lower sensi-

tivity, while methods based on probabilistic models perform better, with the notable exception

of signeR. Most of the differences between tools are observed for Profile 4, with some methods

Fig 4. Simulation study: Specificity of extraction methods and mapping on COSMIC signatures as the number of analysed catalogues and the cosine cut-off h
vary. Specificity is estimated from 50 replicates each made of G genomes. The average number of mutations in each catalogue is r = 10,000. The model used to simulate

realistic replicates according to the four Profiles and the estimation methods are described in the section Data and experimental settings.

https://doi.org/10.1371/journal.pone.0221235.g004
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(EMu, bayesNMF, pmisignature) having a sensitivity close to 1 and the others having lower

and more variable sensitivities.

Specificity increases with the average number of mutations (Fig 6). For Profiles 2,3 and 4 it

is close to 1 starting from as low as 1000 mutations, while for Profile 1 it is only for at least

10,000 mutations that we observe a specificity close to 1 for most of the methods, with the

notable exception of bayesNMF that performs well even for lower numbers of mutations. Sen-

sitivity increases with the average number of mutations with a large variability according to

the cancer profile and method (Fig 7). Sensitivity is high for cancer profiles characterised by

one predominant signature (Profiles 3 and 4) or two strong signatures (Profile 2) but may

Fig 5. Simulation study: Sensitivity of extraction methods and mapping on COSMIC signatures as the number of analysed catalogues and the cosine cut-off h
vary. Sensitivity is estimated from 50 replicates each made of G genomes. The average number of mutations in each catalogue is r = 10,000. The model used to simulate

realistic replicates according to the four Profiles and the estimation methods are described in the section Data and experimental settings.

https://doi.org/10.1371/journal.pone.0221235.g005
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become relatively low for datasets characterized by small contributions by several signatures

(Profiles 1). This indicates that signatures that act together with other signatures and have

small effects may be more difficult to identify.

Specificity and sensitivity slightly deteriorate for higher cut-off values. This is expected

because by setting a higher cut-off, the number of found signatures that are not similar enough

to COSMIC signatures increases. Because these estimated signatures are considered as novel,

they are false positives (that is found signatures not used for simulations), leading to a greater

number of false positives and therefore to a lower specificity. Moreover, if the cut-off is too

stringent, the number of false negatives will be high because some signatures used for the

Fig 6. Simulation study: Specificity of extraction methods and mapping on COSMIC signatures as the average number of mutations and the cosine cut-off h vary.

Specificity is estimated from 50 replicates each made of G = 30 catalogues. The model used to simulate realistic replicates according to the four Profiles and the

estimation methods are described in the section Data and experimental settings.

https://doi.org/10.1371/journal.pone.0221235.g006
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simulations are correctly found but do not score a high enough cosine similarity and therefore

count as false negatives. This will make the resulting sensitivity low.

Fig 8 shows the running time when tools are applied to real lung datasets with a varying

number of samples. While all methods show a fast-growing running time with increasing

number of samples, SomaticSignatures and maftools are much faster than the others for more

than 100 samples, making it possible to analyse large number of samples in few seconds. For

example, for two hundred samples, the slowest method (signeR), the running time is 913.72s

while for the fastest (maftools), the value is 5.97s.

Fig 7. Simulation study: Sensitivity of extraction methods and mapping on COSMIC signatures as the average number of mutations and the cosine cut-off h vary.

Sensitivity is estimated from 50 replicates each made of G = 30 catalogues. The model used to simulate realistic replicates according to the four Profiles and the

estimation methods are described in the section Data and experimental settings.

https://doi.org/10.1371/journal.pone.0221235.g007
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Performance of refitting tools

Fig 9 shows the distribution of the differences between the estimated and true contribution of

all n signatures e1g ; . . . ; e30
g for the different refitting methods under evaluation. Sample cata-

logues were simulated mimicking Lung cancer profiles (Profile 3), with signatures 1,2,4,5,6, 13

and 17 actually contributing as shown in S4 Fig. All methods give almost identical results.

By comparison with the true exposure profile given in S4 Fig, it is clear that all refitting

methods provide good estimates of the contributions of all but signatures 4,5 and, 17 and to a

lesser extent signature 6. Moreover, all methods correctly estimate a zero contribution for sig-

natures 3 and 16 even though these are very similar to signature 5, see S2 Fig.

Interestingly, we note that signatures 2 and 13 (both attributed to APOBEC activity) are in

general well identified by all methods. This finding is in line with previous claims about the

stability of these two signatures.

In terms of running time, deconstructSigs and SignatureEstimation based on simulated

annealing are more than two orders of magnitude slower than the other methods (Fig 10). All

other methods run in a fraction of second. As expected, the running time increases linearly

with the number of samples. MutationalCone, our custom implementation of the solution to

the optimization problem solved by YAPSA and MutationalPatterns outperforms all other

methods. The second fastest method is SignatureEstimation based on Quadratic Programing.

As example, for two hundred samples, the execution time of deconstrucSigs is 86.148s and for

MutationalCone is 0.028s.

Discussion

In this work we complement and expand a recent review of the available methods to identify

mutational signatures [7] by empirically comparing their performance, using both real world

TCGA data and simulated data. To our knowledge, this is the first formal comparison of both

de novo discovery and refitting of mutational signatures. The research about mutational signa-

tures is very active and in rapid development, with preprints about new methods regularly

Fig 8. Running times of refitting tools. Methods were applied to subsets of the TCGA Lung cohort of different sizes. The y-axis is in logarithmic scale.

https://doi.org/10.1371/journal.pone.0221235.g008
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published on bioRxiv.org; in this work we thoroughly assessed and formally compared meth-

ods that have already been published in peer reviewed journals, and we briefly described other

more recent methods. The results of this work can lead to a better understanding of the

strengths and limitations of each method as well as to the identification of the key parameters

influencing their performance, namely the number of mutations and the “complexity” of the

contributing signatures.

Since the publication of the first work about mutational signatures in 2013 [2], multiple

algorithms have been developed, leading to similar but not identical results, a source of con-

cern for researchers interested in this type of analysis. Conceptually, this is not surprising:

mutational signatures are naturally defined in terms of non-negative matrix factorization, a

well-known ill-posed problem (a unique solution does not exist). Although this limitation has

cast doubts on the biological validity of mutational signatures, this has been somehow vali-

dated using experimental and computational approaches by Zou et al. [36]. Similarly, the term

“signature” itself is somehow controversial as it implies a unique correspondence with muta-

gens, while in this context signatures are mathematically defined as basic signals each contrib-

uting to the final sequence mutational burden. Sufficiently detailed tumour catalogues and

mutagen spectra might yield patterns that are unique to a tumour type or mutagen, and there-

fore become “true” signatures that allow backward inference from the tumour to the mutagen.

Mutational signatures data in combination with epidemiological information may provide

useful insights to identify the causes of cancer [37,38]. The utility of the current models of sub-

stitution mutational signatures is also shown in a recent experimental work based on a human

induced pluripotent stem cell (iPSC) line that provides evidence for the possibility to identify

the agents responsible for some specific mutational signatures [39]. In such work, Kucab and

Fig 9. Simulation study: Bias of the estimates of each signature contribution for several refitting methods. For

each signature, the bias estimates are obtained by averaging the exposure estimates across 50 samples. Mean square

errors, together with 95% confidence intervals, are reported on the top of each plot. Simulations were done according

to the model described in the Data and experimental settings section.

https://doi.org/10.1371/journal.pone.0221235.g009

Fig 10. Running times of refitting tools. Methods were applied to subsets of the TCGA Lung cohort of different sizes. The y-axis is in logarithmic scale.

https://doi.org/10.1371/journal.pone.0221235.g010
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colleagues compared iPSCs treated and untreated with 79 known or suspected environmental

carcinogens and identified specific substitution mutational signatures for around half of such

carcinogens. Some of such signatures were similar to those identified in human tumour DNA.

An original aspect of this paper is the empirical performance study and in particular the

probabilistic model of mutational catalogues used to generate simulations. This model is based

on the zero-inflated Poisson distribution that allows for sparse contribution of signatures and

thus makes it possible to build mutation count data that are more realistic than the pure Pois-

son model previously considered [9,14]. As argued in the Simulated data section, our model

underrepresents the few samples with extremely large total mutation counts. Because cata-

logues of this type might hamper the detection of signals from less mutated samples in the

same dataset [7], it is likely that our results slightly overestimate the methods performance in

the presence of hypermutated samples. However, our main objective was the comparison of

the different methods, and this is not affected by this systematic bias. In our model, a larger

number of hypermutated catalogues could be obtained by lowering the value of π, the parame-

ter that controls the relative frequency of structural zeroes in the zero-inflated Poisson model.

As discussed, it would have been possible to consider even more realistic models, however

these would have led to results that depend on too many parameters thus making the interpre-

tation harder. For instance, the zero inflated negative binomial model is a more flexible model

and looks a promising method to build realistic synthetic samples, including hypermutated

ones. We leave this interesting perspective to future work. Alternative models that were

recently proposed are based on the negative binomial distribution [22] and on the Dirichlet

distributions for the exposures and signatures and the multinomial distribution for the cata-

logues [29]. We suggest that developers should assess their new methods on simulations based

on realistic models such as ours or the latter. The advantage of simulations over real data is

that the underlying model generating the synthetic data is known and can be compared to the

estimation provided by the method being evaluated. For this reason, we decided not to simu-

late catalogues from real data using the bootstrap: this would have produced almost real sam-

ples but without the possibility to evaluate the performance of methods according to different

parametric scenarios. We strongly believe that the mutational signature research could benefit

from the development of public realistic datasets that can be used to benchmark old and new

detection tools.

Another innovative aspect of our work is the assessment of the performance of de novo

approaches. This is in general a slippery problem given the non-supervised learning nature of

NMF and concurrent methods. We addressed it by building confusion matrices after compar-

ing the “true” signatures used for simulations with the newly identified signatures in terms of

their cosine similarity.

Finally, we introduced MutationalCone, a new implementation of existing refitting tools

that is based on a very simple geometric model and proved to be faster than all other methods.

The R code implementing MutationalCone can be found in the S1 File.

The results of our study can be helpful to guide researchers through the planning of muta-

tional signature analysis. In particular, we show that the performance of de novo methods

depends on the complexity of the analysed sequences, the number of mutations and to a lesser

degree the number of samples analysed. It was somehow expected that the performance of the

methods for a cancer in which multiple, concomitant, signatures are present is poorer than for

a cancer with a single or predominant signature, particularly when the concomitant signatures

are similar and have a low contribution. However, we demonstrated that in the latter case it is

mainly sensitivity and not as much specificity that significantly decreases. An intuitive reason

for this result is that a signature with low impact is difficult to detect and therefore will be

wrongly considered as a “negative”; several such signatures will then imply a large number of
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false negatives, i.e. low sensitivity. Indeed, recent evidence shows that the majority of cancers

harbour a large number of mutational signatures [4] and therefore belong to the latter

scenario.

With regards to the mutation number, we observe that with the number of mutations that

could be found in some cancer exomes the performance is generally poor (i.e. low specificity

and sensitivity). This problem is likely to be mitigated if counts were normalized by the

expected number of each type’s trinucleotides in the analysed region under healthy condition,

that is if an opportunity matrix was provided. We do not address this important aspect in our

comparison study as only a few methods can incorporate opportunity matrices.

We showed that when comparing identified signatures with COSMIC signatures, the choice

of a cosine similarity cut-off has a relatively small impact on the overall performance. If the

aim is to identify novel signatures it would be preferable to choose a lower value (0.75 or less).

On the contrary, if the aim is to assess the presence of known signatures in mutational cata-

logues (cancer genomes or exomes), we recommend turning to refitting methods. For well-

studied cancers, refitting approaches are a faster and more powerful alternative to de novo

methods, even with just one input sample. As the COSMIC database has been built and vali-

dated by analysing tens of thousands of sequences of most cancer types, we recommend bor-

rowing strength from previous studies and using refitting tools when performing standard

analysis not aimed at the discovery of new signatures.

Our simulation study seems to indicate that de novo probabilistic methods EMu and

bayesNMF have an overall better performance as they achieve better sensitivity and specificity

with a fair running time. However, in order to assess the robustness of results, due to the vari-

ability of outcomes and the presence of hypermutated samples, we recommend to systemati-

cally perform a sensitivity analysis based on the application of one or more alternative

methods based on different algorithms.

Our analysis also reveals that if the dataset under consideration contains catalogues with a

very large number of mutations, all methods achieve better performance by replacing such

outliers with the bayesNMF pre-treatment function get.lego96.hyper. Interestingly, the muta-

tion profiles of the synthetic datasets simulated with the ZIP model resemble the profiles of

datasets after such pre-treatment, see S6 Fig.

Not all the de novo methods we evaluated offer the possibility to automatically choose the

number of signatures to be found. For instance, the popular SomaticSignatures only provides a

graphical visualisation of the residual sum of squares for several choices of the number of sig-

natures; the user can choose the optimal number by identifying the inflexion point. For this

reason, we did not address this crucial aspect in our empirical assessment. Similarly, we only

considered mutation types defined by the trinucleotide motifs, as currently only pmsignature

[16] can consider more than one flanking base on each side of the substitution.

A more recent set of 49 signatures have been estimated from a new large dataset including

thousands of additional sequences. The article introducing this new set has not been published

yet but the new set of signatures is available on the COSMIC website. In the future it will be

interesting to evaluate the performance of the different tools using the new set of signatures.

Supporting information

S1 Fig. Comparison of newly identified signatures with COSMIC signatures. Signatures a-g

were identified in a de novo extraction using the maftools R package from the TCGA Lung

Adenocarcinoma cohort of 563 cancer genomes. The novel signatures were then compared to

the 30 signatures validated in the COSMIC database in terms of cosine similarity. Each signa-

ture is then assigned to the most similar COSMIC signature provided that their cosine
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similarity is above a fixed threshold. For instance, signature f is matched to signature 5 at a

cut-off of 0.75 but is considered as a completely new signature if the cut-off is at 0.80. Also

note that a unique assignment can be controversial: for instance, signature g is similar both to

signatures 12 and 26.

(TIFF)

S2 Fig. Cosine similarity plot of COSMIC signatures. Some COSMIC signatures are very

similar to others. For instance, signature 8 is similar to signatures 3, 4 and 5.

(TIFF)

S3 Fig. Simulations of 563 lung adenocarcinoma catalogues according to different models.

Part a: Real catalogues from the TCGA lung adenocarcinoma cohort. Parts b and c: Cata-

logues sampled from the ZIP model described in the main text. The relative contribution qn of

each signature n is the mean of the relative contributions of n in all samples as estimated by

maftools. In part b simulated and real catalogues are in a 1 to 1 correspondence: for each simu-

lated sample g, the total number of mutations rg in the corresponding real catalogue is taken.

In part c all samples are simulated according to r = 306, the average total number of mutations

in the real data. The latter example illustrates the parametric model used for the simulation

study. Part d: Catalogues sampled according to the Poisson model eng � PðlnÞ; where λn is the

mean number of mutations due do to n in the real samples as estimated by maftools.

(TIFF)

S4 Fig. Choice of parameters qn in the simulations. Four different configurations (q1,. . .,q30)

were considered for simulating realistic data. Each configuration represents the average share

of mutations due to the different COSMIC signatures and was chosen to mimic real exposure

profiles for four cancer types: estimates were obtained from Breast Cancer (Profile 1), Lym-

phoma (Profile 2), Lung Adenocarcinoma (Profile 3) and Melanoma (Profile 4) TCGA

cohorts.

(TIFF)

S5 Fig. Reconstruction errors and their variability: Effect of pre-treating the samples to

moderate the effects of hypermutated catalogues. Each dataset was analysed with or without

data pre-treatment with the bayesNMF get.lego96.hyper function. The profiles of the pre-

treated catalogues are shown in S6 Fig.

(TIFF)

S6 Fig. Barplot with the number of mutations in each sample after pre-treatment to mod-

erate the effects of hypermutated catalogues. Datasets represented in Fig 1 were pre-treated

using the bayesNMF function get.lego96.hyper.

(TIFF)

S1 File. Mutational cone. Description of our original method for signature refitting and the

corresponding R script.

(DOCX)
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