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Abstract

Fluctuation range and frequency are two important components of water level fluctuation,

but their effects on wetland plants have not been evaluated separately. We subjected eight

wetland species to a control treatment with static water level and fluctuation treatments with

different ranges or frequencies to examine their effects on plant growth. Acorus calamus,

Butomus umbellatus and Iris wilsonii showed high survival rates in all treatments with vari-

ous fluctuation ranges and frequencies. Their survival rates were higher at the medium fluc-

tuation frequency than at the low and high frequencies, suggesting beneficial effects of the

medium frequency. In the experiment comparing the fluctuation ranges, A. calamus and I.

wilsonii could maintain the capacity for asexual propagation and accumulate higher biomass

compared with the control plants, while biomass of the other six species dramatically

decreased. In the experiment comparing fluctuation frequency, species with relatively high

survival rates (� 50%) maintained or increased the capacity of asexual propagation, and A.

calamus and I. wilsonii allocated relatively more biomass to roots, which may enhance plant

growth and survival. In contrast, these species did not show increased biomass allocation to

shoots in response to both fluctuation range and frequency, presumably because shoots

are prone to mechanical damage caused by streaming floodwater. Taken together, biomass

accumulation in roots rather than in shoots and the ability to asexually propagate are impor-

tant for the survival of these species during water fluctuation.

Introduction

Water level fluctuation is a major component of hydrological regimes, which is a common and

crucial process encountered by wetland plants [1–2]. Frequent submergence and de-submer-

gence during water fluctuation result in great variations in the availability of light, O2 and CO2

for plants [3–5]. Also, wave disturbance during water level fluctuation can impose mechanical

damage to wetland plants [6–9]. Furthermore, water level fluctuation can lead to sediment
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resuspension and strongly decrease concentrations of soil nutrients in wetlands [10–11]. As a

result, water fluctuation has strong impacts on plant growth and distribution [12–13]. Former

studies have shown that moderate levels of water fluctuation could promote seed germination

and seedling establishment, while intensive fluctuation could greatly restrict plant growth and

distribution [14].

Water level fluctuation has two important components: fluctuation range and frequency

[15–16]. The range of fluctuation refers to the difference between the lowest and the highest

water level during a fluctuation cycle, and the frequency of fluctuation is defined by the num-

ber of fluctuation cycles (e.g. a cycle going from the lowest to the highest water level and then

to the lowest again) within a certain period. Global climate change is predicted to increase the

frequency of extreme precipitation events in most temperate regions [17]. Consequently,

hydrological interactions between water body and the surrounding regions may be altered sig-

nificantly, leading to the occurrence of more frequent water fluctuation affecting greater areas

of wetlands [9, 18–20]. To develop strategies for wetland management in the face of such cli-

mate scenario, it is necessary to assess the effects of different ranges and frequencies of water

level fluctuation on growth of wetland plants.

Plants subjected to larger fluctuation range experience lower O2 and light intensity, but

higher CO2 and hydrostatic pressure [21–22]. Till now, many studies have focused on response

of wetland plants to constant water depth, but not to different fluctuation ranges [23–26]. A

few studies on plant response to fluctuation range have shown that wetland species are sensi-

tive to large fluctuation range but may be able to adapt, to some extent, to smaller and moder-

ate fluctuation ranges to gain more biomass in certain cases [13, 15, 22]. Still, phenotypic

plasticity in response to fluctuation range has been relatively less studied [22, 27].

Higher fluctuation frequency means faster changes between submergence and de-submer-

gence conditions, shortening each period of aerobic conditions [8, 16]. Plant species, which

are slow in responding to changing environments, could not resume photosynthesis and thus

growth within a short period [6, 28]. By contrast, plant species, which quickly respond to water

level changes, often develop fragile shoots by promoting stem elongation and aerenchyma for-

mation [29–30]. These fragile tissues, however, can be easily damaged by streaming water dur-

ing water fluctuation [6–9]. Thus, resource and biomass investment in shoot may be more

risky than the same investment in roots during water fluctuation. Our recent study has shown

that recurrent submergence and de-submergence events during water fluctuation both impose

negative effects on biomass accumulation of a flood-tolerant species, with severer effects seen

at higher frequency [31]. Therefore, the capacity to maintain or even increase biomass accu-

mulation may be important for plants to survive high-frequency water fluctuations. However,

it is still not clear whether plant tolerance to high-frequency fluctuation is related to the ability

to maintain biomass accumulation. Another question is related to biomass allocation: whether

plants allocate more biomass to shoots, roots or reproduction for their survival.

Here we examined the effects of fluctuation range and frequency on growth and biomass

allocation of eight wetland species in controlled experiments. These plants were subjected to a

control treatment with static water level and fluctuation treatments with three different levels

of fluctuation ranges or frequencies. Theoretical and empirical studies have shown that the

intermediate level of disturbance is beneficial to plant growth compared with the low and the

high levels [14, 16, 22]. We therefore hypothesized (1) that plants perform better at the

medium level than at the low and the high levels of fluctuation range and frequency, and (2)

that species with higher survival rates allocate relatively more biomass to maintain root growth

and reproduction than to shoot elongation.

Fluctuation range and frequency effects
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Material and methods

Plant species

Eight wetland plant species, which were neither endangered nor protected, were selected for

the experiments: Acorus calamus L., Butomus umbellatus L., Iris wilsonii C. H. Wright,

Lythrum salicaria L., Polygonum hydropiper L., Pontederia cordata L., Sagittaria trifolia L. and

Typha minima Funck ex Hoppe (S1 Table). They are widely distributed in wetlands of China

and largely affected by water fluctuation [8, 32]. For each species, seedlings of uniform size and

similar developmental stages (S1 Table) were bought from Hongyun Aquatic Flower Base in

Tianjin, China. The plants were cultivated at the ecological field station of Miyun Reservoir

Experimental Base or Cuihu Lake Experimental Base in Beijing, China.

Experimental design

Response to different fluctuation ranges (Exp. 1). Seedlings were transferred to plastic

pots (12.5 cm bottom diameter, 17 cm upper diameter and 18 cm deep) filled with local soil

from Miyun Reservoir Experimental Base. After recovery for two weeks (8 June 2013), 24

plants from each species were randomly subjected to four treatments, with six replicates each.

Thus, there were in total 192 plants for the eight species. The six replicates were separately

placed in six tanks (155 cm diameter and 167 cm deep) as six blocks. According to our previ-

ous studies [16], four fluctuation ranges were: (i) control (C)–no fluctuation, constantly sub-

merged in static water at 75 cm water depth (the vertical depth from soil surface to water

surface), (ii) small range (SR)–water depth changing between 50 and 100 cm, (iii) medium

range (MR)–between 25 and 125 cm, (iv) large range (LR)–between 0 and 150 cm (Fig 1A). As

with the changes in fluctuation range, two successive fluctuation cycles were conducted during

an 80-d experiment. The pots were suspended in the tanks by using ropes that were tied to a

steel frame mounted on top of each tank. The water level fluctuation was applied by changing

the vertical position of pots in the tank: releasing the rope increased the flooding depth

whereas pulling up the rope decreased the flooding depth. The water depth was changed little

by little every five days, mimicking gradual changes in water level.

Response to different fluctuation frequencies (Exp. 2). On 19 June 2013, the Experiment

II was started using a similar setup at Cuihu Lake Experimental Base, including eight

species × four fluctuation frequencies × six replicates. According to our previous studies [8],

four fluctuation frequencies were: (i) control (C)–no fluctuation, constantly submerged at 75

cm water depth, (ii) low frequency (LF)–water level fluctuating between 0 and 150 cm twice

during the 80-d experiment (40 days per cycle), (iii) medium frequency (MF)–the same fluctu-

ation range but four times (20 days per cycle), and (iv) high frequency (HF)–the same fluctua-

tion range but eight times (10 days per cycle; Fig 1B). The flooding water used in both

experiments was the tap water which was added during the experiment to compensate for

water loss due to evaporation.

Growth measurements

On day 80, all plants were taken out of the flooding tanks. Height and ramet number of each

plant were measured. Height of a plant was defined as the length of the longest stem of the

plant. After 10-d recovery following de-submergence (day 90), if leaves were still turgid and

green and new leaves or buds grew out, the plant was considered alive [33]. The surviving

plants were harvested on day 90, divided into roots and shoots and dried at 75˚C for 72 h to

determine dry weight.

Fluctuation range and frequency effects
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Fig 1. Settings of different water fluctuation ranges and frequencies. The treatments were: C–water depth was maintained constantly at 75 cm; SR–water depth

changing between 50 and 100 cm twice (two cycles); MR–water depth changing between 25 and 125 cm twice; LR–water depth changing between 0 and 150 cm twice;

LF–water depth changing between 0 and 150 cm twice; MF–water depth changing between 0 and 150 cm four times; HF–water depth changing between 0 and 150 cm

eight times, during the 80-d experiment.

https://doi.org/10.1371/journal.pone.0220231.g001

Table 1. The survival rate (%) of eight wetland species subjected to water level fluctuation with different ranges (A) and frequencies (B).

(A) Fluctuation range (B) Fluctuation frequency

Species C SR MR LR C LF MF HF

A. calamus 100 100 100 100 83 83 100 83

B. umbellatus 100 80 100 100 100 50 100 50

I. wilsonii 80 100 100 100 50 67 100 50

L. salicaria 20 40 40 20 100 83 50 0

P. cordata 60 60 20 0 100 100 50 83

P. hydropiper 40 20 20 40 100 17 17 17

S. trifolia 60 60 60 60 67 83 83 0

T. minima 60 20 0 0 17 0 0 0

Treatment codes: C–control (static water level); SR, MR and LR for small, medium and large range of water level fluctuation, respectively; LF, MF and HF for low,

medium and high frequency of water level fluctuation, respectively.

https://doi.org/10.1371/journal.pone.0220231.t001

Table 2. Effects of fluctuation range (A) and frequency (B), respectively, on total biomass, shoot biomass and root biomass of the eight riparian species.

(A) Fluctuation range (B) Fluctuation frequency

Species DF Total Shoot Root DF Total Shoot Root

A. calamus 3,16 7.4
��

6.5
��

3.4
�

3,20 4.5
�

2.2ns 9.9
��

B. umbellatus 3,15 68.0
���

68.4
���

11.3
���

3,17 1.6ns 0.9 ns 4.3
�

I. wilsonii 3,18 4.8
�

3.9
�

3.2ns 3,15 40.0
���

18.9
���

38.8
���

L. salicaria - - - - 2,13 1.7ns 1.4ns 1.9ns

P. cordata 1,4 71.5
��

68.7
��

73.9
��

3,18 8.1
��

5.2
�

8.7
��

P. hydropiper - - - - - - - -

S. trifolia 3,11 23.2
���

22.5
���

24.0
���

2,13 15.6
��

76.1
���

4.7
�

T. minima - - - - - - - -

F values and significance levels (���P < 0.001, ��P < 0.01, �P< 0.05 and nsP� 0.05) of one-way ANOVA are given. DF: degrees of freedom; -: data are not available due

to low number of surviving plants.

https://doi.org/10.1371/journal.pone.0220231.t002
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Data analyses

One-way ANOVA followed by Duncan test was used to test differences between treatments

for each experiment. During the experiment, one replicate of the treatment of fluctuation

range was damaged due to heavy rainfall; the related data were not used in the analyses. Before

the analyses, all data were checked for homogeneity of variance. The effects were considered to

be significant if P< 0.05. All analyses were performed by using SPSS 16.0 (SPSS, Chicago, IL,

USA).

Results

Survival rate

At the end of the range experiment (Exp. 1), A. calamus, B. umbellatus, I. wilsonii and S. trifolia
had relatively high survival rates (� 60%; Table 1A) while the survival rates of other four spe-

cies were lower in most cases. Two species, P. cordata and T. minima, did not survive LR and/

or MR treatment. At the end of the frequency experiment (Exp. 2), the four species, which had

high survival rates in the Exp. 1 (A. calamus, B. umbellatus, I. wilsonii and S. trifolia), plus L.

salicaria and P. cordata had relatively high survival rates (� 50%), although L. salicaria and S.

trifolia seemed to suffer in HF (Table 1B). Compared to the control, the survival rate of P.

hydropiper sharply decreased in the flooding treatments at all frequencies. Of all species exam-

ined, A. calamus was the best and T. minima the poorest survivor in both Exp. 1 and Exp. 2

(Table 1).

Growth responses

Fluctuation range significantly affected shoot biomass, root biomass and total biomass of A.

calamus, B. unbellatus, I. wilsonii, P. cordata and S. trifolia, except for the root biomass of I. wil-
sonii (Table 2A). Biomass of A. calamus was significantly higher in LR than in the control (Fig

2A–2C). Likewise, biomass of I. wilsonii was higher in MR and LR than in the control (Fig

2G–2I). In contrast, biomass of B. unbellatus, P. cordata and S. trifolia decreased remarkably

by water fluctuation at all ranges (Fig 2). Not enough plants of L. salicaria, P. hydropipier and

T. minima survived for the biomass measurements on day 80.

Fluctuation frequency significantly affected root biomass and total biomass of A. calamus,
root biomass of B. umbellatus, and shoot biomass, root biomass and total biomass of I. wilsonii,
P. cordata and S. trifolia (Table 2B). Total biomass and root biomass of A. calamus were signif-

icantly higher in the treatments with water fluctuation at all frequencies than in the control,

and its shoot biomass was also higher in LF than in the control (Fig 3A–3C). Total biomass

and shoot biomass of I. wilsonii were higher in MF and HF than in the control, and its root

biomass was also higher in HF than in the control (Fig 3G–3I). Total biomass and shoot bio-

mass of B. umbellatus and L. salicaria were not significantly affected by fluctuation frequency,

except for L. salicaria in HF (Fig 3D, 3E, 3J and 3K). However, fluctuation at different frequen-

cies markedly decreased biomass of P. cordata and S. trifolia (Fig 3M–3R). As in Exp. 1, bio-

mass data of P. hydropiper and T. minima were not available for Exp. 2 due to the low survival

rates of these plants.

Fig 2. Total biomass, shoot biomass and root biomass of eight common riparian plants after 80-d treatments with different ranges of water

level fluctuation. For each species, means of treatments with different letters are significantly different at P = 0.05. Data are mean values ± s.e.

https://doi.org/10.1371/journal.pone.0220231.g002

Fluctuation range and frequency effects
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Biomass allocation

Fluctuation range significantly affected ramet number of A. calamus and B. unbellatus, and

plant height and ramet number of S. trifolia (Table 3A). Ramet number of A. calamus was sig-

nificantly higher in MR and LR than in the control (Fig 4B). However, ramet numbers of B.

umbellatus and S. trifolia were lower in fluctuation at all ranges than in the control (Fig 4E and

4N). Fluctuation at all ranges significantly decreased plant height of S. trifolia compared to the

control (Fig 4M).

Fluctuation frequency significantly affected plant height of B. umbellatus, L. salicaria, P. cor-
data and S. trifolia, and root-to-shoot ratio (R/S) of A. calamus, I. wilsonii and S. trifolia
(Table 3B). Compared to the control, fluctuation at all frequencies significantly decreased

plant height of B. umbellatus, P. cordata and S. trifolia (Fig 5D, 5M and 5P). The HF treatment

increased ramet number of A. calamus and I. wilsonii (Fig 5B and 5H). Fluctuation at all fre-

quencies significantly increased R/S of A. calamus while HF and MF increased R/S of I. wilso-
nii and S. trifolia, respectively (Fig 5C, 5I and 5R).

Discussion

A. calamus, B. umbellatus, I. wilsonii and S. trifolia showed high survival rates when subjected

to water fluctuation with different ranges (Table 1A). As for fluctuation with different frequen-

cies, A. calamus, B. umbellatus, I. wilsonii and P. cordata had high survival rates (Table 1B).

The survival rates of the first four species were comparable after the 80-d treatments with dif-

ferent fluctuation ranges, while the survival rates of A. calamus, B. umbellatus and I. wilsonii
were higher at MF than at LF and HF. This confirms the first hypothesis that intermediate lev-

els of fluctuation frequency have beneficial effects on plant survival compared to constant sub-

mergence and low- or high-frequency fluctuation [14, 16, 22]. Our results are also consistent

with the former findings that moderate levels of water fluctuation promote seed germination

and seedling establishment of riparian plants, as well as growth of submerged macrophytes in

wetlands [11, 13–14, 22, 28].

Fig 3. Total biomass, shoot biomass and root biomass of eight common riparian plants after 80-d treatments with

different frequencies of water level fluctuation. For each species, means of treatments with different letters are

significantly different at P = 0.05. Data are mean values ± s.e.

https://doi.org/10.1371/journal.pone.0220231.g003

Table 3. Effects of fluctuation range (A) and frequency (B), respectively, on plant height (PH), ramet number (RN) and root to shoot ratio (R/S) of the eight ripar-

ian species.

(A) Fluctuation range (B) Fluctuation frequency

Species DF PH RN R/S DF PH RN R/S

A. calamus 3,19 1.4ns 4.9
�

1.1ns 3,20 0.9ns 2.5ns 5.1
�

B. umbellatus 3,18 2.0ns 10.3
��

1.3ns 3,17 14.0
���

1.3ns 2.6ns

I. wilsonii 3,18 2.1ns 0.1ns 1.4ns 3,15 2.1ns 1.9ns 3.5
�

L. salicaria - - - - 2,13 4.5
�

0.1ns 1.7ns

P. cordata 4 -0.2ns -0.9ns 1.0ns 3,18 10.2
��

2.1ns 2.2ns

P. hydropiper - - - - - - - -

S. trifolia 3,11 6.1
�

5.1
��

1.1ns 2,13 22.2
���

1.1ns 4.8
�

T. minima - - - - - - - -

F values and significance levels (���P < 0.001, ��P < 0.01, �P< 0.05 and nsP� 0.05) of one-way ANOVA are given. DF: degrees of freedom; -: data are not available due

to low number of surviving plants.

https://doi.org/10.1371/journal.pone.0220231.t003

Fluctuation range and frequency effects
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Acclimation to water level fluctuation is, however, not a common feature of wetland plants.

In the present study, L. salicaria, P. cordata, P. hydropiper and T. minima showed low survival

rates in the treatments with various fluctuation ranges (Table 1A). Compared to the other spe-

cies, L. salicaria and P. hydropiper may have relatively smaller carbohydrate storage [34–35],

which could be a reason for their poor survival rates. Besides, a low capacity to cope with low

O2, low light intensity and high hydrostatic pressure could be another reason [21–22]. In

response to fluctuation frequency, L. salicaria, P. hydropiper, S. trifolia and T. minima had low

survival rates (Table 1B). The high frequency leads to faster changes in aerobic and hypoxia

conditions [8, 16], which may be not long enough for these species to resume photosynthesis

and growth in the aerobic condition, therefore resulting in a high mortality.

In response to fluctuation range, only A. calamus and I. wilsonii could maintain comparable

or even higher growth and biomass accumulation than the control plants, while growth of the

other six species decreased, especially in MR and LR (Fig 2). Compared with SR, the LR treat-

ment involved deeper submergence, resulting in lower light intensity, slower gas diffusion and

higher water pressure [29, 36]. The greatly decreased light intensity and gas diffusion would

severely restrict photosynthesis and plant growth [37–38]. Water pressure could also be

another important factor that has limited plant growth in LR and MR [35], although the effect

of water pressure is still unclear. Additionally, significantly decreased ramet number found in

the fluctuation range experiment could also have led to reduced growth of B. umbellatus and S.

trifolia (Fig 4).

When challenged by different water fluctuation frequencies, A. calamus, B. umbellatus and

I. wilsonii could maintain or even increase biomass accumulation compared with the control

plants (Fig 3). Correspondingly, these species could maintain or significantly increase the

ramet number during the treatments with different fluctuation frequencies (Fig 5). Maintain-

ing or increasing the capacity for asexual propagation is important for survival of wetland

plants subjected to mechanical stress caused by streaming water and wind [39–40]. Asexual

propagation and biomass allocation to ramets could partly counterbalance the detrimental

effect of mechanical stress on sexual propagation [41]. Moreover, frequent water level fluctua-

tions significantly increased root biomass accumulation in A. calamus at all frequencies, I. wil-
sonii at HF and S. trifolia at MF (Figs 3 and 5). By promoting biomass accumulation in roots,

plants could more safely store carbohydrate, and at the same time build more stable anchorage

in conditions with frequent disturbances [39, 42]. Larger resource storage and better anchor-

age will be beneficial for the maintenance, recovery and growth of shoots and new ramets.

These species seem to have the ability to acclimate to conditions with recurrent submer-

gence, even at high frequencies. Such acclimation, called 0stress memory0 in other studies,

could increase plant tolerance to subsequent exposure to the same kind of stress [43–45].

Compared with a single stress event, some studies have shown that plants were able to induce

faster and stronger responses to the same stress when applied repeatedly [43, 46]. The wetland

species Alternanthera philoxeroides showed dynamic photosynthetic acclimation in response

to cyclic events of submergence and de-submergence, with down-regulation during submer-

gence and prompt up-regulation after de-submerged [31]. Moreover, an increasing number of

evidence have been provided to demonstrate growth, photosynthetic and/or metabolic accli-

mation to recurrent abiotic stress, such as drought [47], cold [48], high temperature [46] and

salinity [49].

Fig 4. Plant height, ramet number and root-to-shoot (R/S) ratio of eight common riparian plants after 80-d treatments with different

ranges of water level fluctuation. For each species, means of treatments with different letters are significantly different at P = 0.05. Data are mean

values ± s.e.

https://doi.org/10.1371/journal.pone.0220231.g004

Fluctuation range and frequency effects
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Validating our second hypothesis, species with high survival rates and growth capacity nei-

ther elongated shoot nor invested relatively more biomass in shoot growth during water level

fluctuation with all ranges and frequencies tested (Figs 4 and 5). Shoot growth plasticity such

as stem/petiole elongation is commonly observed in wetland plants in response to continuous

submergence, which is triggered by fast increase of endogenous ethylene concentration [34,

50–52]. However, we found that shoot elongation was greatly impeded in response to water

level fluctuation at different ranges and frequencies (Figs 4 and 5). Recurrent de-submergence

episodes during water fluctuation re-expose submerged plants to aerobic conditions. When

de-submerged, the entrapped ethylene in plant tissues could be quickly lost due to its high dif-

fusion coefficient in aerobic conditions [53]. The ethylene concentration might be difficult to

reach the threshold to trigger stem and petiole elongation. Furthermore, strong sunlight and

UV may also inhibit elongation growth of these organs upon exposure to aerobic conditions

[54–55]. Another merit of not elongating (fragile) shoot may be the low risk of mechanical

damage in floodwater when the shoot remains compact [39–40].

We conclude that the plant species with high survival rates (� 50%), such as A. calamus, B.

umbellatus and I. wilsonii, perform better at the medium level than at the low and high levels

of water fluctuation frequency. Accordingly, they can benefit from the intermediate frequency

of water fluctuation. While the species differed in biomass allocation in roots and ramets, they

similarly showed reduction of shoot elongation during water fluctuation at varying ranges and

frequencies. Therefore, the capacity for asexual propagation and biomass accumulation rather

than shoot elongation is important for survival of these plants during water fluctuation. These

findings could provide some hints to develop optimal strategies for management and restora-

tion of degraded or destroyed wetland ecosystems with frequent water fluctuation and

disturbance.
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