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Abstract

Human Parainfluenza viruses (HPIV) type 1 and 3 are important causes of respiratory tract

infections in young children globally. HPIV infections do not confer complete protective

immunity so reinfections occur throughout life. Since no effective vaccine is available for the

two virus subtypes, comprehensive understanding of HPIV-1 and HPIV-3 genetic and epi-

demic features is important for diagnosis, prevention, and treatment of HPIV-1 and HPIV-3

infections. Relatively few whole genome sequences are available for both HPIV-1 and

HPIV-3 viruses, so our study sought to provide whole genome sequences from multiple

countries to further the understanding of the global diversity of HPIV at a whole-genome

level. We collected HPIV-1 and HPIV-3 samples and isolates from Argentina, Australia,

France, Mexico, South Africa, Switzerland, and USA from the years 2003–2011 and

sequenced the genomes of 40 HPIV-1 and 75 HPIV-3 viruses with Sanger and next-genera-

tion sequencing with the Ion Torrent, Illumina, and 454 platforms. Phylogenetic analysis

showed that the HPIV-1 genome is evolving at an estimated rate of 4.97 × 10−4 mutations/

site/year (95% highest posterior density 4.55 × 10−4 to 5.38 × 10−4) and the HPIV-3 genome

is evolving at a similar rate (3.59 × 10−4 mutations/site/year, 95% highest posterior density
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3.26 × 10−4 to 3.94 × 10−4). There were multiple genetically distinct lineages of both HPIV-1

and 3 circulating on a global scale. Further surveillance and whole-genome sequencing are

greatly needed to better understand the spatial dynamics of these important respiratory

viruses in humans.

Introduction

Human Parainfluenza viruses (HPIV) belong to the Paramyxovirus family and are important

causes of respiratory tract infections in young children, elderly individuals, and the immuno-

compromised globally. Serologic evidence shows that most children over five years of age have

been infected by HPIV [1]. There are four types of HPIV with HPIV-1 and 3 belonging to the

Human respirovirus 1 and 3 species of the Respirovirus genus and HPIV-2 and 4 belonging to

the Human rubulavirus 2 and 4 species of the Rubulavirus genus. HPIV-1 and 3 cause more ill-

ness than the other two types and are therefore more studied. These two types have been

reported to have distinct clinical and epidemiologic features. HPIV-1 is the most common

pathogen associated with croup while HPIV-3 ranks only behind respiratory syncytial viruses

(RSV) as a cause of bronchiolitis and viral pneumonia among infants and young children [2–

4]. In children less than 5 years of age it has been estimated that HPIV-1 causes 0.3–1.6 hospi-

talizations per 1000 children and HPIV-3 causes 0.5–2.6 hospitalizations per 1000 children in

the United States [3–5]. Both HPIV-1 and 3 also cause serious lower respiratory tract disease

and death in the immunocompromised and elderly. HPIV-1 infections have been epidemic in

the fall of odd-numbered years since 1973 and HPIV-3 infections are usually widespread in

the United States during late spring and summer [3,6]. HPIV infections do not confer com-

plete protective immunity and individuals get recurrent infections throughout their life. No

effective vaccine is yet available for these viruses and further studies are needed to better

understand the disease burden of these viruses [2]. A better understanding of HPIV-1 and 3

genome diversity, evolution, and epidemiological features is key for the development of

improved diagnostics tools, prevention strategies, and treatments for HPIV-1 and 3 infections.

However, major progress in this field has been hampered in part by the limited amount of

HPIV-1 and 3 whole genome sequence data available to the scientific community in public

repositories. To contribute to filling this gap in knowledge, our study sought to carry out a

large-scale whole genome sequencing and analysis of HPIV-1 and 3 strains collected from

multiple countries and years. HPIV-1 and 3 samples were collected from Argentina, Australia,

France, Mexico, South Africa, Switzerland, and the USA during the period 2003–2011 and

genome sequenced using a combination of Sanger and Next-Generation Sequencing (NGS)

technologies (Ion Torrent, Illumina, and 454 platforms). Here, we present the results of a com-

parative analysis of 40 HPIV-1 and 75 HPIV-3 novel genome sequences, in combination with

additional HPIV sequences available in Genbank. Our findings provide further insights into

HPIV1 and HPIV3 worldwide genome diversity and evolution.

Materials and methods

Ethics statement

Samples from the Virology Laboratory of CEMIC, University of Geneva Hospitals, National

Reference Center for Measles and Paramyxoviridae, and University of Adelaide—Institute of

Medical & Veterinary Science Adelaide were collected for routine viral diagnostic testing and
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de-identified prior to shipment to the Medical College of Wisconsin. Samples from the Auton-

omous University of San Luis Potosı́ were collected with written informed consent as approved

by the Research and Ethics Committee. Characterization of strains by sequencing was

approved and monitored by the human ethics committee, University of Pretoria (25/2006),

and ethical approval for surveillance and virus characterization at National Institute for Com-

municable Diseases was obtained from the Human Research Ethics Committee (Medical),

University of the Witwatersrand, Johannesburg. At Children’s Hospital of Wisconsin and

Froedtert Hospital samples were collected with written informed consent as approved by the

Children’s Hospital of Wisconsin Human Research Review Board. For samples collected from

minors written informed consent was obtained from their parent or guardian on their behalf.

Some samples had been de-identified and where tested under a protocol approved by the Chil-

dren’s Hospital of Wisconsin Human Research Review Board.

Sample collection and HPIV identification from various locations

Samples were collected retrospectively as part of a larger paramyxovirus sequencing project

which also included RSV and human metapneumovirus. The RSV sequencing part of the proj-

ect was published previously [7]. There was some overlap in locations that provided RSV and

HPIV samples. Even though collection details for some of these locations has already been

published previously, they are repeated here for clarity.

The Autonomous University of San Luis Potosı́ (San Luis Potosı́, Mexico). Respiratory

samples were collected from pediatric subjects as part of research projects carried out to ana-

lyze the epidemiology of viral respiratory infections and as part of a hospital-based infection

control program [8–11]. The research projects were approved by the corresponding Research

and Ethics Committees. Samples were obtained by nasal wash or pharyngeal swab, and they

were processed as described in Noyola et al. (2004) [8]. Viral testing was carried out directly

on respiratory samples. HPIV identification was performed with a direct fluorescent antibody

assay using the Respiratory DFA viral screening and identification kit (Light Diagnostics, Che-

micon International, Temecula, CA, subsequently Light Diagnostics, Millipore Corporation,

Temecula, CA) which detects seven respiratory viruses including adenovirus, influenza A,

influenza B, HPIV-1, HPIV-2, HPIV-3, and RSV. After viral detection, respiratory samples

were stored at -70˚C until they were shipped on dry ice for sequence analysis.

Virology laboratory of CEMIC (Buenos Aires, Argentina). Respiratory samples from

hospitalized pediatric patients less than 1 year of age were submitted for routine viral diagnos-

tics. Nasopharyngeal aspirates or swabs were obtained in a transport media (Hanks plus 2%

FCS, penicillin, streptomycin, and amphotericin B). Samples were processed for antigen detec-

tion on pelleted cells by indirect immunofluorescence with monoclonal antibodies against

RSV, adenovirus, influenza A and B and parainfluenza (EMD Millipore, Billerica, MA, USA)

[12,13]. A fluorescein labeled anti-mouse IgG was used (Sigma-Aldrich Corp., St. Louis, MO,

USA). Readings were performed with a C. Zeiss microscope provided with epifluorescent

equipment and a mercury lamp. An aliquot of the sample was preserved in liquid nitrogen.

University of Adelaide—Institute of Medical & Veterinary Science (Adelaide, Austra-

lia). Nasal pharyngeal aspirates from pediatric patients less than 15 years of age were submit-

ted for routine viral diagnostics and tested within eight hours of collection for seven viruses

(adenovirus, influenza A and B, HPIV 1, 2, and 3 and RSV) and Mycoplasma pneumoniae [14].

The viruses and M. pneumoniae were identified directly from the samples by specific antibod-

ies using in-house developed enzyme immunoassays. Samples were also inoculated into

96-well microwell cell cultures, spun at 1000 × g for 1hr at 35˚C and incubated for 5–6 days at

37˚C prior to testing the inoculated cell culture fluids for viruses by enzyme immunoassay

Human parainfluenza virus 1 and 3 genome sequencing
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[15]. Following testing the remaining volumes were then stored at 4˚C for less than three days

and then stored at -70˚C long term. The samples used in this report were randomly selected

without any specific patient identifications.

Department of Medical Virology, University of Pretoria (Pretoria, South Africa) and

National Institute for Communicable Diseases (NICD) (Johannesburg, South Africa).

Respiratory samples from 2007–2010 were from pediatric and adult patients and submitted

either as part of outpatients enrolled in the NICD Viral Watch programme [16] or for routine

diagnosis from patients with lower respiratory tract infection, hospitalized in the Kalafong and

Steve Biko Academic hospitals. Testing in 2007 was performed at the Tshwane National Health

Laboratory Service laboratory, Department Medical Virology, University of Pretoria by direct

immunofluorescent assay followed by confirmation by RT-PCR, as described previously [17].

At NICD, samples from 2008–2009 were tested in shell vials and direct immunofluorescence

[18], from 2010 onwards samples were tested with RT-PCR [19]. Some viruses were amplified

in tissue culture for this study. Samples were stored at -80˚C.

National Reference Center for Measles and Paramyxoviridae, Caen University Hospital

(Caen, France). Respiratory samples from pediatric and adult patients were submitted for

routine diagnostics for 15 respiratory viruses (adenovirus, influenza A and B, HPIV 1, 2, 3,

and 4, RSV A and B, human metapneumovirus, human coronaviruses 229E, OC43, NL63 and

HKU1, and bocaviruses) and four intracellular bacteria including Mycoplasma pneumoniae.
These viral and bacterial targets were detected directly from the samples using the RespiFinder

assay (PathoFinder B.V., Maastricht, Netherlands). Samples were divided in aliquots and

stored frozen at -80˚C.

Laboratory of Virology, University of Geneva Hospitals (Geneva, Switzerland). Naso-

pharyngeal swabs and aspirates were collected from pediatric and adult patients for routine

viral diagnostics for a panel of respiratory viruses (adenovirus, influenza A and B, metapneu-

movirus, HPIV 1, 2, and 3, rhinovirus, enterovirus and RSV). HPIV were identified by a pub-

lished in house real-time RT-PCR assay [20]. Samples were stored at -80˚C.

The Midwest Respiratory Virus Program, Children’s Hospital of Wisconsin, and Dyna-

care Laboratories (Milwaukee, Wisconsin, USA). Nasopharyngeal swab samples were col-

lected from pediatric and adult patients with informed consent under an IRB protocol or

through routine clinical diagnosis and de-identified. HPIVs were identified by an in-house

real-time RT-PCR. Sample remnants were kept at -80˚C.

Samples from all locations were frozen at -70˚C or less and held frozen until shipped on dry

ice to the Midwest Respiratory Virus Program. Once received they were stored at -80˚C until

further processing.

Sequencing HPIV genomes

For samples sequenced using the Sanger technology, genome specific PCR primers tiling

across the entire genome were designed from the respective HPIV-1 and HPIV-3 consensus

sequences using an automated PCR primer design pipeline developed at the J. Craig Venter

Institute (JCVI) with an average amplicon length of 650 bp and an overlap of 150 bp [21].

Each primer had an M13 sequence tag at the 5’ end used for Sanger sequencing. They were

then pruned to a minimal set of 95 primers with at least three-fold amplicon coverage at every

base position of the consensus. The HPIV-1 primer sequences (S1 Text) were generated based

on a consensus sequence using the Genbank accessions NC_003461, JQ901990, JQ901989,

JQ901975 and JQ901972; while the HPIV-3 primers (S2 Text) were generated using a consen-

sus sequence generated from the accessions: AB012132, Z11575, EU424062, FJ455842 and

EU326526.

Human parainfluenza virus 1 and 3 genome sequencing
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Viral RNA was extracted from 100–400 μl of the samples using the NucliSENS easyMag

(bioMerieux, Inc., Durham, NC, USA) with elution in 25 μl at the Midwest Respiratory Virus

Program. After extraction the RNA was shipped on dry ice to the JCVI. There, RNA from each

sample was subjected to RT-PCR using a Qiagen One-step RT-PCR kit (Qiagen, Hilden, Ger-

many) to produce 650 bp amplicons from each of the 95 primer pairs for both HPIV-1 and

HPIV-3 samples. PCR products were treated with a mixture of exonuclease and shrimp alka-

line phosphatase to remove primers and dNTPs, and then Sanger sequencing was performed

with M13 primers.

For samples sequenced using Ion Torrent, 100ng of pooled DNA amplicons were

sequenced as described previously [22].

For samples sequenced using SISPA and 454/Illumina, 100ng of pooled DNA amplicons

were randomly amplified and prepared for next-generation sequencing using a sequence inde-

pendent single primer amplification (SISPA) method as initially described by Djikeng et al.

[23]. Briefly, 100ng of amplified viral DNA were denatured in the presence of 6% w/v DMSO

and a chimeric oligonucleotide containing a known barcode 22nt sequence followed by a 3’

random hexamer. A Klenow reaction was prepared with the denatured DNA template by add-

ing NEB buffer II, 3’-5’ exo- Klenow (New England Biolabs, Ipswich, MA, USA), and dNTPs

(Thermo Fisher Scientific, Waltham, MA, USA). The Klenow reaction was incubated at 37˚C

for 60 min, followed by incubation at 75˚C for 10 min. The resulting cDNA was randomly

amplified by PCR using Promega GoTaq Hot Start Polymerase (Promega Corporation,

Madison, WI, USA) at 35 cycles (denaturation: 30 sec, 94˚C; annealing: 30sec, 55˚C; extension:

48 sec, 68˚C). PCR reactions contained primers corresponding to the known 22nt barcode

sequence from the oligonucleotide utilized in the previous Klenow step. The resulting cDNA

was then treated with Exonuclease I at 37˚C for 60 min, followed by incubation at 72˚C for 15

min.

SISPA products were normalized and pooled into a single reaction that was purified using

the QIAquick PCR purification kit (Qiagen, Hilden, Germany). Sample was further gel puri-

fied to select for SISPA products 300-500bp in size for Illumina sequencing and 500-800bp in

size for 454 sequencing. Two aliquots were then submitted for sequencing with 454 and Illu-

mina sequencing technologies. 454 sequencing was performed on the GS FLX+. A rapid

library was created, and samples were sequenced on one half plate. Illumina sequencing was

performed on the Illumina MiSeq v2 with 250bp paired-end reads.

Assembly and annotation

For samples sequenced with Sanger, sequencing reads were trimmed to eliminate amplicon

primer and low-quality sequences. They were then assembled with CLC using the clc_ref_as-
semble_long program [24]. Draft assemblies were evaluated, and targeted PCR-based sequenc-

ing reactions were conducted to close gaps and improve sequence coverage.

For samples sequenced with a combination of Sanger, 454, Illumina, and Ion Torrent, the

samples were assembled, validated, and annotated as described previously with minimal modi-

fication [22]. After the sequences had been assembled using CLC Bio’s clc_novo_assemble pro-

gram [25], the resulting contigs were searched against custom full-length HPIV-1 or HPIV-3

nucleotide databases to find the closest reference sequence which was then used for mapping

the sequence.

All sequences generated as part of this study were submitted to Genbank as part of the Bio-

project id PRJNA73053 for HPIV-1 with accessions KF530195 –KF530224 and KF687307 –

KF687316 and PRJNA73055 for HPIV-3 with accessions KF530225 –KF530257 and KF687317

–KF687358.

Human parainfluenza virus 1 and 3 genome sequencing
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Recombinant analysis

All HPIV-1 and 3 genome sequences with collection years available in Genbank as of 3/7/2019

were downloaded and combined with the genomes produced in this study. The genomes were

aligned using MAFFT [26]. Any sequence that did not contain all of the complete coding

sequences (CDS) for all of the HPIV genes was deleted from the alignment. Recombination

was predicted for each alignment using the RDP, GENECONV, Chimaera, MaxChi, BootScan,

SiScan, and 3Seq algorithms in RDP4.8 [27]. Recombination events were only considered to

be potentially real if they were predicted by at least three of the algorithms. Any potential

recombinants were deleted from the alignments used for subsequent analyses. One other

sequence (MH678676) was removed due to a significant number of unresolved positions and

another (KY234287) for containing a large insertion that could not be verified.

Entropy plots

To assess the degree of variability of the HPIV-1 and 3 proteomes, the complete genome align-

ments were trimmed to contain only the protein coding sequences for the N, P, M, F, HN, and

L genes and then translated into predicted protein sequences. The entropy values for each

amino acid position were calculated using the Entropy (H(x)) plot function in BioEdit 7.0. The

entropy data was imported into Microsoft Excel where the number of positions with variants

in more than one sequence were counted, the percent of variable positions were determined

for each protein, and the data was plotted.

Positive selection

The same set of sequences used for the recombinant analysis was split into the individual CDS

for the N, P, M, F, HN, and L genes. All additional complete CDS with collection years were

retrieved from Genbank and added to these sets of sequences. Sequences were aligned again

with MAFFT. Pervasive diversifying selection was determined for each alignment using the

SLAC, FEL, and FUBAR algorithms available on the Datamonkey webserver [28–31]. Addi-

tionally, episodic diversifying selection was checked with the MEME algorithm [30]. For the

HN CDS of HPIV3 the number of sequences had to be reduced to less than 500 for SLAC,

FEL, and FUBAR and less than 400 for MEME to run successfully. Identical nucleotide

sequences and some with nucleotide substitutions that caused no amino acid changes were

removed to reach these numbers. Sites were only considered positive if they met the cutoffs for

two or more of the algorithms, which were a p-value of less than 0.05 for SLAC, FEL, and

MEME and Bayes factor/posterior probability of greater than 0.95 for FUBAR.

Phylogenetic analyses

The whole genome sequence and complete CDS alignments were analyzed with the Bayesian

method of phylogenetic inference in BEAST v1.8.2 [32].BEAUti v1.8.0 was used to generated

the xml files for use in BEAST with the collection dates used to assign tip dates with variable

precision. The HKY model of nucleotide substitution was used with the gamma + invariants

site model with four gamma categories, strict clock model, and the piecewise-constant Bayes-

ian Skyline tree prior with 10 groups. For the complete CDS analyses sites were partitioned

into 3 codon positions. The full genome and CDS sequences were run on 100 million iterations

for HPIV-1. For HPIV-3 more iterations were needed to reach appropriate effective sample

size values so two to five replicate runs of 100 million were performed. Results were analyzed

with Tracer v1.6 to find the evolutionary rates [33]. Summary trees were produced using

Human parainfluenza virus 1 and 3 genome sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0220057 July 18, 2019 6 / 17

https://doi.org/10.1371/journal.pone.0220057


TreeAnnotator v1.8.0 to infer maximum likelihood trees for the genome and full CDS. The

resulting trees were visualized and annotated with FigTree v1.4.0.

Results and discussion

As part of this study, 40 HPIV-1 and 75 HPIV-3 genomes were sequenced in total. Of these, 21

HPIV-1 and 51 HPIV-3 genomes were high quality sequences resulting in complete whole

genome assemblies. The 43 remaining assemblies contained at least one sequence gap, either

due to low quality sequence at specific regions or insufficient sequencing data, resulting in

more than one contig per genome assembly. Ten HPIV-1 and 42 HPIV-3 genomes were

sequenced using Sanger, while the remaining samples were sequenced using NGS platforms.

One HPIV-3 sample was sequenced completely with both Sanger and NGS methods. Informa-

tion on the sequenced viruses can be found in S1 Table and S2 Table.

Recombination

No recombination events were predicted in the HPIV-1 genomes. In the HPIV-3 genomes

there were five genomes that were predicted to be recombinant. Two of these genomes were

produced in this study (KF530247 and KF530229). Upon further inspection of the reads for

these samples it became clear that they were a mix of reads from more than one virus with the

percentage of reads representing each virus varying greatly across the genome. A deep

sequencing analysis on KF530247 and KF530229 showed the presence of a mix of major and

minor variants at multiple positions across the genome with high confidence. We could not

tease apart the major and minor variants from the samples and therefore, for samples

KF530247 and KF530229 the consensus sequence represented just the major variant. The

amount of minor variant at positions across the genome were as much as 48%. Sample

KF530247 had sites with minor frequency variants above 10% at 26 positions and sample

KF530229 had minor variants above 10% at 11 positions across the genome. There were many

other sites in both genomes where the frequency of minor variants was less than 10%. The

other three potential HPIV-3 recombinant genomes (FJ455842, MH678681, and EU326526)

were published by other research groups and lacked the sequencing reads required to confirm

they were true recombinants. The publishers of FJ455842 argued that this virus was an exam-

ple of natural recombination in HPIV-3 [34]. However, the only evidence shown is from

recombination prediction algorithms, and the putative breakpoint falls in the overlap region of

two amplicons used for sequencing. In our experience recombination events like this are typi-

cally the result of two different viruses being amplified and sequenced. Appropriate evidence

for the recombination event would be individual reads spanning the breakpoint showing

sequence that matches one parent on each side.

Entropy plots of the HPIV-1 and 3 protein sequences

Interestingly, our analysis revealed that all of the proteins of HPIV-3 harbored more variable

sites than the equivalent proteins in the HPIV-1 virus (Fig 1). The increased percentage of vari-

able sites may at least partially be due to there being four times more sequences for HPIV-3

allowing for a larger amount of the population’s variation to be observed. From these plots it

was clear that the P protein was the most variable in both HPIV-1 and 3. The P protein is

important for RNA transcription and genome replication. A region (78–320) of the P protein

that was previously identified as not being necessary for RNA synthesis in Sendai virus (a close

relative of HPIV-1) contained 66% of the variable positions in the HPIV-1 P protein, even

though the 243 residues represent only 43% of the protein sequence [35]. This protein is not

well conserved between HPIV-1 and 3 so it is not clear exactly how the functional regions line

Human parainfluenza virus 1 and 3 genome sequencing
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up position-wise, but a similar region in HPIV-3 contained 55% of the variable positions. Per-

haps since this region is not critical for the primary functions of the protein it is more accom-

modating of mutations. Often the HN gene is selected as the target gene to analyze the

evolution of HPIVs because of its relatively high variability [36,37]. Our results suggest that the

P gene could also be useful as a molecular marker for evolutionary analyses and epidemiology

research. The entropy analysis also highlights more conserved regions of the genome that

could be useful for the development of robust diagnostics and potential vaccines.

Positively selected sites

We used the SLAC, FEL, MEME, and FUBAR algorithms on the Datamonkey webserver to

identify potential positively selected sites for each of the coding regions in HPIV-1 and 3

(Table 1). The positively selected site at codon 5 of the HPIV-1 F CDS is a part of the hydro-

phobic signal peptide, which is important for insertion of the premature fusion peptide into

the rough endoplasmic reticulum [38]. Later in the fusion maturation process the signal

Fig 1. Entropy plots of concatenated HPIV-1 (A) and HPIV-3 (B) protein sequences. For each amino acid position in the protein sequence, higher entropy

values represent greater amino acid variation. Abbreviated protein sequence names are shown across the top of the plot in the order in which coding sequences

are arranged in the genome. The percentage values show the percentage of positions in the protein that have a mutation present in more than one sequence.

https://doi.org/10.1371/journal.pone.0220057.g001
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peptide is cleaved from the protein. Since the signal peptide is not present in the mature fusion

protein or virus and therefore should not be exposed to the host immune response it is unclear

what could be the potential source of the positive/diversifying selective pressure on this site. In

HPIV-3, site 108 of the F protein was found to be under positive selection. This site is part of

the cleavage sequence which has historically been described as amino acids 106–109 with the

motif R-T-K-R but in modern sequences is more commonly R-T-E-R (present in >95% of

sequences). There are seven sequences that have a G at this position and one that has an R. It is

interesting that there are positively charged (K and R), negatively charged (E), and neutral (G)

amino acids at this position. R and E have previously been observed in this position and were

found to have no effect on replication in tissue culture or the respiratory tract of rhesus mon-

keys [39]. Between HPIV-1 and 3 there were six sites predicted to be under positive selection

in the P protein. All of these sites fall in the region we described above that is highly variably

but has been shown to not be essential for the function of the protein in Sendai virus. The two

sites under positive selection in the HPIV-3 HN protein appear to frequently switch between

two functionally similar amino acids with site 58 being S or N and site 168 being K or R. Both

sites require only a single nucleotide change to change between the two amino acids. Site 440

of the HPIV-3 N protein is a Q in most sequences, but in multiple independent instances has

switched to an R. The MEME algorithm predicted that there were 21 codons across the

genome affected by episodic selection for HPIV-1 and 14 codons for HPIV-3 (S3 Table).

Evolutionary rates

The evolutionary rates estimated for the whole genomes were 4.97 × 10−4 substitutions/site/

year (95% highest posterior density of 4.55 × 10−4 to 5.38 × 10−4) for HPIV-1 and 3.59 × 10−4

(95% highest posterior density of 3.26 × 10−4 to 3.94 × 10−4) for HPIV-3 (Fig 2). Evolutionary

rates were not very different from CDS to CDS for either virus. The L gene had the lowest rate

for each virus. The evolutionary rates were similar between the two viruses with HPIV-3 hav-

ing a slightly lower rate overall despite having a slightly higher rate for four of the six CDS.

Since these viruses have significantly different tissue tropism and epidemiology this could lead

to different immunologic pressures and some differences in evolutionary rates between the

two viruses. Previous studies have estimated evolutionary rates from whole genomes to be

7.61 × 10−4 for HPIV-1 and 4.2 × 10−4 for HPIV-3 and for complete HN gene sequences to be

Table 1. Sites under positive selection for HPIV-1 and HPIV-3.

Virus Gene Codon SLAC

p-value

FEL

p-value

FUBAR

Post. Pr.

MEME

p-value

HPIV-1 P 159 0.16 0.029a 0.98 0.0002

F 5 0.23 0.036 0.973 0.0448

HPIV-3 N 440 0.0046 0.002 1 0.0038

P 109 0.026 0.008 0.961 0.0135

P 142 0.0976 0.01 0.955 0.0166

P 196 0.0967 0.013 0.962 0.0213

P 258 0.0484 0.072 0.968 0.0947

P 302 0.156 0.012 0.964 0.0016

F 108 0.0244 0.032 0.982 0.0475

HN 58 0.0342 0.019 0.974 0.0289

HN 168 0.0459 0.027 0.938 0.0394

a Bold font indicates values that meet the algorithm specific threshold.

https://doi.org/10.1371/journal.pone.0220057.t001
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1.12 × 10−4 to 1.4 × 10−3 for HPIV-1 and 8.39 × 10−4 for HPIV-3 [40–42]. The published rates

are generally higher than those seen in this study, which may be due to differences in the selec-

tion of viruses used for the estimate. Regardless, the published rates are similar to those seen in

this study and are typical of those seen for RNA viruses [43,44]. Another recent study found a

very similar rate (3.12 × 10−4) for HPIV-3 when analyzing the concatenated coding regions

from all genomes available in Genbank at the time [45]. Our data suggests that at least from an

evolutionary rate standpoint standard vaccine approaches to HPIV-1 and 3 should be success-

ful because the genetic and predicted antigenic change in each virus is slow enough to allow

subsequent change to any vaccine with reasonable genetic monitoring of the virus population.

HPIV-1 phylogenetic analysis

The Bayesian Markov Chain Monte Carlo (MCMC) analysis of 67 HPIV-1 genome sequences

identified two major HPIV-1 clades (Clades 2 and 3) circulating at the time samples were col-

lected for this study and one clade (Clade 1) that had been circulating in the late 1990s (Fig 3).

Clade 1 was very distinct with sequences from the winter of 1997 from just Wisconsin, USA,

and appeared to have died off before samples were collected for our study. Clade 2 included

viruses collected from 2003–2009 from Australia, France, Mexico and USA; whereas, clade 3

included viruses collected from 2009–2015, mostly from USA, with a few sequences repre-

sented from France and South Africa. Clades 2 and 3 were found to co-circulate in the USA.

However, the degree of clade co-circulation in other countries was difficult to assess due to

low representation of samples from other countries. However, both clades were found in

France and South Africa within one or two years of each other suggesting that co-circulation

Fig 2. Evolutionary rates for each coding sequence in HPIV-1 and HPIV-3. Error bars represent the 95% highest posterior density.

https://doi.org/10.1371/journal.pone.0220057.g002
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may be occurring in these regions. All viruses sequenced in this study from Mexico and Aus-

tralia belonged to clade 2. Since these few sequences represented all the sequences available for

these two countries, it is unclear if other clades co-circulate with clade 2 in these regions. Previ-

ous studies have found these same clades co-circulating in Croatia, Japan, USA, and Vietnam

[36,40,41,46,47]. Combined, the results of these studies suggest that there may have only been

two main clades of HPIV-1 circulating globally during the period included in this analysis.

HPIV-3 phylogenetic analysis

Most HPIV-3 phylogenetic papers follow a classification system established in a study from

China in 2012 [48] and further refined in 2015 [49]. In this system HPIV-3 is divided into

three clusters (A, B, and C), cluster C is divided into several sub-clusters (1, 2, 3, etc.), and then

some of the sub-clusters are further divided into a 3rd level of classification called lineage (a, b,

c, etc.). Since then some groups have split up the sub-clusters into slightly different lineages

that do not completely agree between papers or added a fourth level of classification below

lineage. We decided to use the more agreed upon clades mostly following what was established

in Almajhdi 2015 [49]. Our MCMC analysis of 268 HPIV-3 genomes included two of the three

clusters (B and C) (Fig 4). Cluster C was the largest and included viruses collected in Argen-

tina, Brazil, China, France, Mexico, Netherlands, Peru, USA, South Africa, Thailand, United

Kingdom, and Vietnam during the period 2004–2016. Our analysis included subclusters C1,

C2, C3, and C5 with lineages C1a, C1b, C1c, C3a, and C3b. Subcluster C3 had the largest num-

ber of sequences with most of them belonging to lineage C3a. Cluster B was much smaller than

cluster C with sequences mostly from Australia collected in 2007, one sequence from South

Africa in 2007, and one recent 2016 sequence from USA. Previous studies with the HN gene

have also identified a small number of sequences from cluster B in Canada and Japan

[46,48,49]. Noteworthy, there were no cluster C representative sequences from Australia. Per-

haps that indicates some geographical restriction of HPIV-3 transmission in and out of Aus-

tralia. It would be interesting to see a larger sampling of HPIV-3 in this country over multiple

years to further clarify this situation. In several countries multiple lineages of HPIV-3 were

observed within the same country in a single season or year showing that multiple lineages can

co-circulate. Co-circulation of multiple HPIV-3 lineages was also observed previously in a

study in Croatia [46]. The co-circulation of multiple clades is not uncommon for viruses and

has been observed in other paramyxoviruses like RSV subtypes A and B and human metap-

neumovirus with subtypes A1, A2, B1, and B2 [50,51].

Conclusions

When we initiated this study, there were relatively few whole genome sequences available for

HPIVs in GenBank. We have now added 40 HPIV-1 and 75 HPIV-3 genomes to GenBank. In

the past couple of years a few other groups have also added additional HPIV genomes

sequences to GenBank. Our analysis showed that multiple genetically distinct clades of both

HPIV-1 and 3 circulate on a global scale with HPIV-3 having a larger number of distinct sub-

clades that co-circulate. It may be important to consider the multiple clades of these viruses

when designing vaccines in order to confer broad cross-protection. We found that some geo-

graphically distinct clades may have existed, and some appear to have died out. We further

Fig 3. MCMC tree of HPIV-1 genome sequences. Phylogenetic tree estimated from 54 genome sequences including those sequenced in this project and

those available in Genbank. The summary tree of this analysis is depicted in the figure with a time scale in years across the x-axis. The tree is divided into

three clades shown with different colors and labels. Branch tips are labelled with the Genbank accession, the appropriate ISO 3166–1 alpha-3 code

representing the collection country, and the year of sample collection for each sample.

https://doi.org/10.1371/journal.pone.0220057.g003
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showed that HPIV-1 and 3 are evolving at similar rates and identified genomic and proteomic

sites that are under positive selection. Moreover, we did not find any clear evidence that these

viruses evolve by genetic recombination and demonstrate that it is possible to misinterpret

dual infections as recombination events.

The whole genome HPIV sequences generated in this project will contribute to the develop-

ment of robust diagnostic tools, vaccines, therapies, and a better understanding of the global

and regional epidemiology and the evolution of these viruses. However, further surveillance

and whole-genome sequencing is greatly needed to further understand the spatial dynamics of

these important human respiratory viruses. While this and other studies have significantly

increased the number of genome sequences available for HPIV-1 and 3 in GenBank, the num-

ber of genomes available for these important viruses is still very limited. Influenza A, for exam-

ple, has greater than 100-fold more sequences available and it is still difficult to predict the

correct vaccine strain or more prevalent subtype for any given season. Therefore, considerably

more sequencing effort is needed in paramyxoviruses to further improve our knowledge of

their molecular epidemiology and genetics. More studies incorporating larger numbers of

sequences from other geographic regions and years are critical.
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46. Košutić-Gulija T, Slovic A, Ljubin-Sternak S, Mlinarić-GalinovićG, ForčićD. A study of genetic variability

of human parainfluenza virus type 1 in Croatia, 2011–2014. J Med Microbiol. 2016; 65: 793–803.

https://doi.org/10.1099/jmm.0.000297 PMID: 27302417

47. Tsutsui R, Tsukagoshi H, Nagasawa K, Takahashi M, Matsushima Y, Ryo A, et al. Genetic analyses of

the fusion protein genes in human parainfluenza virus types 1 and 3 among patients with acute respira-

tory infections in Eastern Japan from 2011 to 2015. J Med Microbiol. 2017; 66: 160–168. https://doi.org/

10.1099/jmm.0.000431 PMID: 28266286

48. Mao N, Ji Y, Xie Z, Wang H, Wang H, An J, et al. Human parainfluenza virus-associated respiratory

tract infection among children and genetic analysis of HPIV-3 strains in Beijing, China. PloS One. 2012;

7: e43893. https://doi.org/10.1371/journal.pone.0043893 PMID: 22937119

49. Almajhdi FN. Hemagglutinin-neuraminidase gene sequence-based reclassification of human parainflu-

enza virus 3 variants. Intervirology. 2015; 58: 35–40. https://doi.org/10.1159/000369208 PMID:

25592955

50. Khor CS, Sam IC, Hooi PS, Chan YF. Displacement of predominant respiratory syncytial virus geno-

types in Malaysia between 1989 and 2011. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis.

2013; 14: 357–360. https://doi.org/10.1016/j.meegid.2012.12.017 PMID: 23305888

51. Reiche J, Jacobsen S, Neubauer K, Hafemann S, Nitsche A, Milde J, et al. Human Metapneumovirus:

Insights from a Ten-Year Molecular and Epidemiological Analysis in Germany. Schildgen O, editor.

PLoS ONE. 2014; 9: e88342. https://doi.org/10.1371/journal.pone.0088342 PMID: 24505479

Human parainfluenza virus 1 and 3 genome sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0220057 July 18, 2019 17 / 17

https://doi.org/10.1006/viro.1994.1409
https://doi.org/10.1006/viro.1994.1409
http://www.ncbi.nlm.nih.gov/pubmed/8030249
https://doi.org/10.1186/1743-422X-8-533
http://www.ncbi.nlm.nih.gov/pubmed/22152158
https://doi.org/10.1099/jmm.0.068189-0
https://doi.org/10.1099/jmm.0.068189-0
http://www.ncbi.nlm.nih.gov/pubmed/24464692
https://doi.org/10.1016/0042-6822(86)90388-0
https://doi.org/10.1016/0042-6822(86)90388-0
http://www.ncbi.nlm.nih.gov/pubmed/3012869
http://www.ncbi.nlm.nih.gov/pubmed/1689394
https://doi.org/10.1371/journal.pone.0046048
http://www.ncbi.nlm.nih.gov/pubmed/23029382
https://doi.org/10.1038/s41598-018-24767-4
https://doi.org/10.1038/s41598-018-24767-4
http://www.ncbi.nlm.nih.gov/pubmed/29717150
https://doi.org/10.12688/wellcomeopenres.14730.2
http://www.ncbi.nlm.nih.gov/pubmed/30569021
https://doi.org/10.1007/s00239-001-0064-3
https://doi.org/10.1007/s00239-001-0064-3
http://www.ncbi.nlm.nih.gov/pubmed/11821909
https://doi.org/10.1038/nrg2323
http://www.ncbi.nlm.nih.gov/pubmed/18319742
https://doi.org/10.1128/mBio.00898-18
http://www.ncbi.nlm.nih.gov/pubmed/29970463
https://doi.org/10.1099/jmm.0.000297
http://www.ncbi.nlm.nih.gov/pubmed/27302417
https://doi.org/10.1099/jmm.0.000431
https://doi.org/10.1099/jmm.0.000431
http://www.ncbi.nlm.nih.gov/pubmed/28266286
https://doi.org/10.1371/journal.pone.0043893
http://www.ncbi.nlm.nih.gov/pubmed/22937119
https://doi.org/10.1159/000369208
http://www.ncbi.nlm.nih.gov/pubmed/25592955
https://doi.org/10.1016/j.meegid.2012.12.017
http://www.ncbi.nlm.nih.gov/pubmed/23305888
https://doi.org/10.1371/journal.pone.0088342
http://www.ncbi.nlm.nih.gov/pubmed/24505479
https://doi.org/10.1371/journal.pone.0220057

