
RESEARCH ARTICLE

Model order reduction for left ventricular

mechanics via congruency training

Paolo Di AchilleID
1, Jaimit Parikh1, Svyatoslav Khamzin2,3, Olga Solovyova2,3,

James Kozloski1, Viatcheslav GurevID
1*

1 Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, United

States of America, 2 Ural Federal University, Yekaterinburg, Russia, 3 Institute of Immunology and

Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia

* vgurev@us.ibm.com

Abstract

Computational models of the cardiovascular system and specifically heart function are cur-

rently being investigated as analytic tools to assist medical practice and clinical trials. To

achieve clinical utility, models should be able to assimilate the diagnostic multi-modality

data available for each patient and generate consistent representations of the underlying

cardiovascular physiology. While finite element models of the heart can naturally account

for patient-specific anatomies reconstructed from medical images, optimizing the many

other parameters driving simulated cardiac functions is challenging due to computational

complexity. With the goal of streamlining parameter adaptation, in this paper we present a

novel, multifidelity strategy for model order reduction of 3-D finite element models of ventric-

ular mechanics. Our approach is centered around well established findings on the similarity

between contraction of an isolated muscle and the whole ventricle. Specifically, we demon-

strate that simple linear transformations between sarcomere strain (tension) and ventricular

volume (pressure) are sufficient to reproduce global pressure-volume outputs of 3-D finite

element models even by a reduced model with just a single myocyte unit. We further

develop a procedure for congruency training of a surrogate low-order model from multi-

scale finite elements, and we construct an example of parameter optimization based on

medical images. We discuss how the presented approach might be employed to process

large datasets of medical images as well as databases of echocardiographic reports, paving

the way towards application of heart mechanics models in the clinical practice.

Introduction

Multi-scale finite element (FE) models of cardiac mechanics are being investigated as novel

tools for analyzing medical imaging data and assisting personalized diagnostics in cardiac

resynchronization therapy and disease monitoring [1–4]. Despite recent advances, personaliz-

ing FE simulations of heart mechanics to a specific clinical case still constitutes an open

research problem. While most state-of-the-art models can capture the anatomical details of

atria and ventricles from 3-D medical images (e.g., from CT or from the more costly MRI
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[5, 6]), significant computational resources are necessary to inversely estimate, when at all pos-

sible, the many unknown model parameters. Applying FE models in large scale analyses of

clinical trials is, therefore, currently intractable. At the same time, it is widely accepted that a

more mechanistic understanding of trial results could be greatly beneficial. For example, direct

applications of models could provide illustrations of certain biophysical correlates of trial

trends, thus aiding the interpretation of complex drug effects, such as intropes on cardiac func-

tion in heart failure patients [7–9].

Clinical evaluations often rely on echocardiography as their main source of cardiac func-

tional and anatomical assessments, with analysts typically not having access to the raw acquisi-

tions from the study, but rather relying only on succint clinical reports summarizing the

measurements as a list of discrete indices. To more completely leverage information from

echocardiography, multi-scale models would additionally exploit simple descriptions of anat-

omy provided by these limited ultrasound assessments. In such a framework, anatomical

parameters would be estimated, and uncertainty quantified statistically by sampling (e.g., in a

generalized polynomial chaos framework [10]). Again, due to complexity, the large computa-

tional expense connected to statistical approaches cannot currently be absorbed into the

clinical application when FE models are employed directly. Instead in this study, we lay

groundwork for a more feasible approach employing model order reduction, and a novel strat-

egy to reduce 3-D FE models is the subject of this paper.

When using state-of-the-art biophysical models of heart, simulating even just a few beats

can require hours to days of supercomputer time. Simplified models are therefore desirable,

but they typically lack accuracy or interpretability. A clear example is provided by image-based

models of the heart (see [11, 12] for two recent reviews), for which low-order analogues have

typically relied on restrictive assumptions that fail to accurately represent the anatomy of ven-

tricles and atria [13–16]. The lack of a clear bridge between imaged anatomies and model rep-

resentations makes it difficult to link unknown parameters to radiological or physiological

measurements. Thanks to basis simplifications introduced directly at runtime, advanced

numerical techniques such as proper orthogonal decomposition [17–20], reduced basis func-

tions [21, 22], and hyper-reduction [23] are able to speed up high-resolution computations by

simplifying both the temporal and spatial solution spaces while at the same time maintaining a

strong correspondence with their computationally expensive counterparts. These techniques

provide significant advantages as they can rely on strong theoretical proofs of congruency to

high resolution simulations, and also because they do not require design changes such as mod-

ifications to the base model’s parameterization. Obstacles to their adoption have been, how-

ever, their implementation complexity and the relatively contained speed-ups that such

techniques can achieve. Although less rigorously, further speedups can be achieved by selecting

a priori the subset of main global deformation modes assumed to drive contraction, and then

by restricting the solution space accordingly [24].

Alternative strategies have proposed training purely statistical models (e.g., Gaussian Pro-

cess regressions [25]) on a relatively limited number of high-resolution runs (e.g., see [26, 27]

for applications in diastolic filling). Once fitted to a sampled training set, statistical models can

be used as efficient surrogates for the computationally expensive simulations. These simula-

tions can then be interrogated as needed by suitable optimization algorithms [28, 29]. Recent

advances in co-kriging formulations [30] have also enabled to construct regressions that can

leverage training on combined datasets comprising results from both low- and high-accuracy

simulation results (e.g., see [31] for an application in cardiac electrophysiology). It is therefore

apparent that while inferring model outputs from a statistical surrogate is computationally effi-

cient, the accuracy of the approximations strongly depends on the quality of the training set,

which might require a large computational cost to be built.

Reduced models of left ventricular mechanics
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In this work, we demonstrate a method to circumvent some of the limitations of the above

strategies by adopting a different hybrid approach. We introduce novel low-order (LO) models

of ventricular mechanics that match global results from state-of-the-art FE simulations across

multiple patients. The LO models comprise two classes of model components: first, “trained”

black box transformations with parameters sized by machine learning to match model outputs

to features of the detailed models, and therefore only indirectly linked to the underlying bio-

physics; and second, “physical” components, with parameters shared with the high-resolution

biophysical model and therefore accessible to inference and prediction of underlying biophyis-

cal states, previously only available with the detailed models.

Fig 1 shows a schematic of the method. A typical FE model is composed of multiple ele-

ments, all of which in turn incorporate models of the biological units. Coupled interactions

between FEs and the imposed boundary conditions ultimately result in the global outputs of

the detailed model. The corresponding LO description accounts for only one or few biological

units that are coupled to the global outputs through a series of transformations. In the simplest

case, a transformation can be a linear operator (e.g., a scaling matrix or linear regression)

defined by the set of “trained” parameters. Training is then performed by ensuring congruency

between outputs of the LO and FE models upon a set of perturbed conditions.

As an example application, we construct LO models of 2 representative ventricles extracted

from the publicly available Sunnybrook Cardiac MRI database [32]. After showing that the LO

models are indeed congruent to their corresponding FE simulations upon varying training

conditions, we test them under different simulated scenarios showing remarkable accuracy.

Additional simulations performed on multi-unit LO models accounting for smoothly varying

heterogeneities provide additional insights on how the LO models, despite their simplifica-

tions, can capture the global behaviors. We then explore the relationship between our

Fig 1. Schematic of low-order (LO) models and congruency training to FE simulations. The FE model on the top left accounts for the interconnections between

cellular units (U) that cooperate to generate global outputs driven by “biophysical” parameters (i.e., pi and qi). The LO model on the bottom left accounts instead for just a

single U (modulated by the shared subset of biophysical parameters, pi) that is coupled to the global outputs via the transformation modules (modulated by the “trained”

parameters, μi). On the right, the training procedure is explained in more detail. Variations imposed on the “biophysical” parameters that are shared by both FE and LO

models provide a set of perturbed simulations upon which the “trained” parameters are optimized to ensure congruency of global outputs. Once the procedure is repeated

for a sufficient number of cases, a machine learning-based regression model can be used to infer “trained” parameters for additional cases.

https://doi.org/10.1371/journal.pone.0219876.g001
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“trained” phenomenological parameters and the anatomical features of the ventricles by train-

ing LO models for 106 “virtual” anatomies sampled from realistic distributions of geometric

features. Finally, we employ the LO models as surrogates for the high-resolution FE simula-

tions in an inverse optimization problem aimed at matching cardiac phase durations and ejec-

tion fraction measured from cardiac MRI.

Materials and methods

3-D FE models of left ventricular mechanics

By integrating the cellular contraction model into a 3-D finite element formulation of soft tis-

sue biomechanics, we sought to explore how the cooperative behavior of myocardial myocytes

would translate at the macroscopic organ scale. FE models predict global outputs such as time-

varying ventricular volume and pressure while also naturally accounting for the detailed anato-

mies of the heart and for the complex boundary conditions acting on it (e.g., the behavior of

the downstream vasculature). In this work, multi-scale coupling between cellular and tissue

models was implemented according to a stabilized mixed u-P formulation with ad hoc precon-

ditioning and adapted for P1/P1 elements [27, 33]. Briefly put, coupling between cellular and

elemental stresses and strains occurred implicitly at the Gauss point level. Passive contribu-

tions from extracellular matrix and from myocyte structural proteins were described as a

hyperelastic behavior following the constitutive model by Usyk et al. [34] (see S1 Supplemental

Material for more details). To simulate also active contraction, calcium transients triggering

myocyte response had to be synchronized to the pacing dictated by heart electrophysiology.

Rather than simulating in detail the generation and propagation of action potentials, we fol-

lowed a simplified decoupled approach where information on arrival timing of the electric

impulse wavefront was computed by solving the Eikonal equation with anisotropic conductivi-

ties [35]. Specifically, myocardial fibers were assumed to have 2 times higher conductivity

than myocardial sheets and 4 times higher conductivity than mutually normal cross-fibers.

Studies on mapping electrical activation of the heart suggest that Purkinjie fibers might

resurface at a small number of endocardial foci to initiate impulse propagation [36]. We

selected, therefore, 4 small groups of endocardial elements as zero-time regions in the

eikonal solution. In polar coordinates ð�z; yÞ, the set of 4 prescribed activation foci was

ð�z; yÞ ¼ fð0:6; 70
�

Þ; ð0:3; 140
�

Þ; ð0:6; � 150
�

Þ; ð0:05; 50
�

Þg, where the first value of each tuple

indicates whether the activation focus was closer to the base (i.e., �z ¼ 0) or to the apex (i.e.,

�z ¼ 1:0), while the second value represented the circumferential coordinate (in degrees) mea-

sured counterclockwise around the longitudinal axis of the ventricle starting from the approxi-

mate center of the left ventricular free wall (θ = 0˚).

Computational domains and boundary conditions

While the FE formulation could be in principle applied to arbitrarily complex geometric

domains such as detailed multi-chamber models, this study targeted only the behavior of left

ventricles (LVs). Specifically, we employed a 6-parameter axisymmetric representation of ven-

tricular anatomy that was recently employed to automatically process the Sunnybrook Cardiac

MRI database [27, 32]. The parameterization scheme captured ventricular anatomy as a trun-

cated prolate spheroid defined by the parameters: Rb, the outer LV radius at base; L, the LV

thickness at base; Z, the main longitudinal axis dimension including thickness at the LV apex;

H, the LV thickness at the apex; e, the sphericity/conicity parameter, with values between 0.5

(rotation cone) and 1 (perfect sphere); C0, the truncation angle, which typically assumes nega-

tive values. Fig 2 shows axial and longitudinal cross-section profiles of the two LV geometries

Reduced models of left ventricular mechanics
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that were selected as representative of the normal (N) and heart failure (HF) subject groups

included in the database. To at least partially correct for the fact that all imaged ventricle con-

figurations are subjected to non-negligible loads (e.g., due to intraventricular pressure and

external boundary conditions), we first “unloaded” the geometries reconstructed from MRI

using Gaussian Process regression under the assumption of a 10% mid-wall end-diastolic

strain for the N geometry and a 15% mid-wall strain for the HF one (see leftmost and central

columns for cross-section profiles at end-diastole and after unloading, respectively) [27]. The 2

idealized anatomies were then discretized into 3-D meshes of 34 590 (N) and 49 121 (HF) lin-

ear tetrahedral elements (see righmost column). Ventricle bases (marked in yellow) were pre-

vented to move out of plane, while a 5 mm-wide stripe of epicardial elements (marked in red)

closest to base was fully constrained to prevent rigid motions. Pressure and volume couplings

between the left ventricle, the left atrium and the distal vasculature was weakly enforced at the

endocardial surface as a Neumann boundary condition (marked in blue).

Fig 2. Discretization of the two computational domains considered as representative of a normal (N) and heart failure (HF)

LVs extracted from the Sunnybrook Cardiac MRI database. Leftmost column: cross-sections profiles matching end-diastolic

configurations are overlayed with corresponding MRI slices (see Table 1). Central column: cross-section after unloading via GP-

regression under the assumption of 10% (15%) mid-wall stretch for the N (HF) geometry. Rightmost column: discretization of the

unloaded geometries into finite element meshes. Overlayed colored segments mark the different boundary conditions applied: zero

displacement within a 5-mm wide stripe of epicardial elements adjacent to base (red), zero axial displacement at base (yellow), and

weakly imposed hemodynamic pressure-volume coupling acting on the inner surface of the ventricle (light blue).

https://doi.org/10.1371/journal.pone.0219876.g002

Table 1. Patient description and parameterization of ventricular geometries at end-diastole and after virtual unloading.

Group Description Sex Age

(years)

Configuration Rb
(mm)

L
(mm)

Z
(mm)

H
(mm)

e C0

(deg)

N healthy control female 77 end-diastole 38 8.2 52 11 0.76 −61

unloaded 35 9.6 54 12 0.70 −53

HF heart failure without infarct male 77 end-diastole 42 8.2 49 6.0 0.71 −78

unloaded 38 10 49 7.7 0.66 −64

https://doi.org/10.1371/journal.pone.0219876.t001
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Low-order models of ventricular mechanics

Parallel schematics of the high-resolution FE models and the here proposed corresponding LO

counterparts are reported in Fig 3. In terms of formulation, the FE models relied on a PDE-

based description of mechanical equilibrium coupled via hemodynamic boundary conditions

to a simplified representation of atrial pressure (Pat) and to a 3-element Windkessel model of

the downstream vasculature with additional resistance to split aortic valve R1, aorta R2, and

Fig 3. Parallel between between schematics of finite element and novel LO models of ventricular mechanics. Note

how the architecture and structural organization of the many myocyte units (M) of the FE models is described in the LO

framework by a transformation module coupled to a representative myocyte and to lumped parameter models of atrium

and cardiovasculature. Parameters for the LO module are sized via congruency training to ensure good correspondence

between global outputs (e.g., LV pressure and volume traces) among the FE and LO descriptions.

https://doi.org/10.1371/journal.pone.0219876.g003
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peripheral artery resistance R3. In training the LO model, we used a simpler configuration

with R2 = 0, combining aortic and peripheral system. In the model, the capacitance of the

peripheral system is denoted as C. The LO models maintained identical hemodynamic compo-

nents, but also simplified the description of the computational domain (O) to a set of algebraic

relationships linking cellular active tension (Ta) to left ventricular pressure (P), and cellular

elongation (λ) to left ventricular volume (V).

Passive behavior. The hyperelastic passive mechanical behavior of ventricles was modeled

by the 3-D strain energy function presented in [34] (see S1 Supplemental Material for more

details). To reproduce an equivalent behavior, our LO models were endowed with empirical

relationships mimicking the combined effects of nonlinear hyperelasticity and ventricular

geometry. Specifically, we considered separate formulations for the responses observed at vol-

umes higher and lower than the unloaded volume V0,

Ppass ¼ a 1 � exp bg 1 � V
V0

� �h in o
if V � V0

Ppass ¼ a V
V0
� 1

� �3

þ b V
V0
� 1

� �2

þ c V
V0
� 1

� �
if V > V0

8
>><

>>:

ð1Þ

where α, β, γ are coefficients modulating the pressure-volume exponential behavior upon

compression; a, b, c are coefficients of the 3rd-order polynomial describing the ventricle under

passive tension. The differential treatment of the behavior under compression or tension was

necessary to ensure good fits of the LO model behavior to the FE simulations.

Active behavior. Coupling between active myocyte response and time-varying ventricular

hemodynamics is a pivotal component of the LO models introduced here. The relationships

driving cell action can be summarized as

dS
dt ¼ f1ðS; l;Ca; tÞ ODE of myofilament model

Ta ¼ f2ðS; lÞ generated active tension

(

ð2Þ

where S is a vector containing the time-varying state variables of an ODE model of myofila-

ment contraction that depends on calcium concentration, Ca, and on strain of the myofila-

ment, λ; state variables and strain also uniquely determine the active tension generated by the

myofilament Ta (see S1 Supplemental Material for the specific f1 and f2 used for this work).

The relationships in (2) need to be opportunely transformed to incorporate the role played

by the coordinated contraction of the left ventricle, with correct sizing of the transformations

being of great importance for building LO models for a given ventricular anatomy of interest.

The relationships linking cellular strain to ventricular volume and active tension to ventricular

pressure are given by

l ¼ m1
V
V0
� 1

� �
þ 1

P ¼ m2Ta þ Ppass;

8
><

>:
ð3Þ

where μ1 and μ2 are opportune scaling coefficients of the active component of the low order

model, and Ppass follows what shown in (1).

Congruency training. We now describe the strategy used to find the overall best-fit coeffi-

cients for the linear transformations in (3) from high-resolution FE runs. To ensure that the

LO models maintained correspondence to their FE counterparts over a wide range of myocyte

lengths and downstream hemodynamic resistances, we considered a set of 3 active and 1 pas-

sive training simulations encompassing varying hemodynamic conditions. More specifically,

Reduced models of left ventricular mechanics
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to extract the passive coefficients {α, β, a, b, c} we fitted the LO model predictions to a FE pres-

sure-inflation test performed using an intraventricular pressure range of 0-4 kPa. Note the esti-

mation α, and β was done under the assumption of neutral role of γ (i.e., γ = 1), as we defined

γ to capture differential behavior upon compression conditions (see (1)), which are not tested

upon passive inflation. Best-fit values of the remaining parameters {μ1, μ2, γ} were instead

found from active simulations accounting for different combinations of atrial pressure and

Windkessel parameters (see Table 2). In other words, for any ventricular geometry defined by

{Rb, L, Z, H, C0, e}, we solved two sequential problems to maximize correspondence between

global outcomes of the FE and the LO models. A first minimization problem leveraged the

results of the passive inflation simulation,

min
fa;b;a;b;cg

X

p2fⓅg

VFEðpÞ � VLOðpÞ
VFEðpÞ

� �2

; ð4Þ

where the subscripts FE and LO are used to label the left ventricular volumes predicted by the

FE and LO models, and p is a set of left ventricular pressures considered in the passive

simulation Ⓟ. The optimal best-fit coefficients for the passive material behavior were then

used in a second minimization problem seeking the active “trained” parameters,

C2 ¼
1

3

X

i2f①;②;③g

R
½VFEðtÞ � VLOðtÞ�

2dt
R
½VFEðtÞ�

2dt

( )

i

þ

R
½PFEðtÞ � PLOðtÞ�

2dt
R
½PFEðtÞ�

2dt

( )

i

;

min
fm1 ;m2 ;gg

C2;

ð5Þ

where the discrepancies between global outputs P and V are computed for all of the active

training simulations (i.e., {①, ②,③}, see Table 2). To solve the problem in (4) we used a stan-

dard curve fitting procedure based on the Levenberg-Marquardt algorithm available in SciPy.

Solving (5) was less straightforward, as it required iterative runs of the LO model to compare

global outputs during active contraction. To exploit parallel execution on multicore machines,

we used a custom implementation of the OrthoMADS algorithm [37], with search steps inter-

rogating an iteratively updated kriging surrogate to speed up convergence [28, 29].

Multi-element low-order models

In a simulated heartbeat, the many cell units of a high-resolution model undergo deformations

that may vary based on their anatomical location (e.g., across the cardiac wall or along the

apex-base direction). As a result, even for the same computational domain, cellular models of

active contraction may operate at heterogeneous sarcomere lengths that cannot be explicitly

accounted for a single-cell LO description. To incorporate heterogeneity and evaluate approxi-

mation errors, we then extended the LO models to account for multiple interconnected ele-

ments that share the same left atrium and Windkessel models. Fig 4 shows schematics of the

Table 2. Boundary conditions for training simulations.

Simulation Pat
(kPa)

R1

(kPa ml−1 s)

R2

(kPa ml−1 s)

R3

(kPa ml−1 s)

C
(kPa−1 ml)

Ⓟ 0-4.0 − − − −
① 0.33 0.0015 − 0.20 8.0

② 0.66 0.0015 − 0.05 8.0

③ 1.5 0.0015 − 0.20 8.0

https://doi.org/10.1371/journal.pone.0219876.t002

Reduced models of left ventricular mechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0219876 January 6, 2020 8 / 23

https://doi.org/10.1371/journal.pone.0219876.t002
https://doi.org/10.1371/journal.pone.0219876


two considered multi-element configurations, with LO submodules connected either in paral-

lel (see panel A), or in series (see panel B). Outputs from each configuration were then com-

pared to a single-element LO model that was adapted via congruency training to maximize

correspondence between global outputs of the single-element and multi-element models. Con-

gruency training was carried out solving (5) and the error analysis was repeated for 3 different

atrial pressures, Pat = 0.3, 0.6, and 1 kPa.

Parallel configuration. The parallel model can be viewed as the combination of LO sub-

components that share the same ventricular volume V but operate at different sarcomere

lengths because of non-uniform μ1 values. In this case, Eq (3) takes the form

lðxÞ ¼ m1ðxÞ
V
V0
� 1

� �
þ 1

P ¼ Ppass þ m2

R 1

0
TaðxÞdx

8
><

>:
; ð6Þ

where λ and Ta are the stretch ratio and the active tension of the LO submodels, respectively,

and ξ 2 [0, 1] indicates the discretization of the system into subcomponents. To include het-

erogeneity, the μ1 parameter was imposed to vary linearly within the [μ1(ξ = 0), μ1(ξ = 1)] =

[0.01, 0.179] range. We overall considered 256 LO subcomponents.

Fig 4. Schematics of multi-element LO models accounting for deformation heterogeneity. A) Multi-element LO models with

subcomponents connected in parallel share the same ventricular volume, V, but operate at different sarcomere lengths (i.e., generate

different active tension, Ta,i) due to varying μ1 values. B) Multi-element LO models with components connected in series operate under

the same ventricular pressure, P, but they each contribute a different volume subportion, Vi, to the total volume, V. Volume magnitude

and general behavior of each series element is modulated by weighing the LO parameters {α, a, b, c, μ2}.

https://doi.org/10.1371/journal.pone.0219876.g004
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Series configuration. The series model combines LO subcomponents each contributing a

volume portion, V(ξ), to the global left ventricular volume, V, while operating under the same

ventricular pressure, P. The weights w(ξ) introduce heterogeneity in the series multi-element

model by modulating the effects of a subset of LO parameters, {α, a, b, c, μ2}. Accordingly, Eq

(3) takes the form

ðaðxÞ; aðxÞ; bðxÞ; cðxÞ; m2ðxÞÞ ¼ wðxÞ � ða; a; b; c; m2Þ

V ¼
R 1

0
VðxÞdx

lðxÞ ¼ m1

VðxÞ
V0
� 1

� �
þ 1

PðxÞ ¼ PpassðxÞ þ m2ðxÞTaðxÞ ¼ P

8
>>>>>>>><

>>>>>>>>:

; ð7Þ

where ξ 2 [0, 1] indicates the discretization of the system into subcomponents. The w(ξ)

weights were imposed to vary linearly within the range [w(0), w(1)] = [0.6, 1.0]. Overall, the

model was discretized into 256 LO subcomponents connected in series.

Regression for congruency coefficients

While the minimization problems (4) and (5) were solved for any given geometry on the basis

of 4 high resolution runs, the computational burden would scale up quickly in situations

where many anatomies might be of interest. For this reason, we built a Gaussian Process

regression model mapping the geometric parameters of the left ventricle (i.e., {Rb, L, Z, H, C0,

e}) to the 8 parameters of the LO module (i.e., {α, β, γ, a, b, c, μ1, μ2}). To train the regression

model, we randomly sampled 150 virtual anatomies uniformly distributed over the range of

geometric features observed for the patients included in the Sunnybrook Cardiac MRI datasets

[27]. 3-D high-resolution simulations were run for all geometries and under all training condi-

tions (see Table 2). To ensure meaningful fits also for the γ parameter, which acts only when

LVV is smaller than V0, we excluded from subsequent training the cases for which the left ven-

tricle did not contract enough to reach 85% of the unloaded volume V0 under hemodynamic

conditions ②, which imposed a minimal afterload constraint. Efficacy of the Gaussian Process

regression model in learning the behavior of the LO indices was evaluated via 5-fold cross-

validation.

Inverse problem solution: Fit to MRI data

To test the efficacy of our LO models as convenient surrogates of high-resolution 3-D FE

counterparts, we employed the overall model reduction framework to solve an inverse parame-

ter identification problem. More specifically, we sought values for the model parameters that

would ensure an optimal match with the ejection fraction and cardiac phase durations mea-

sured from the Sunnybrook Cardiac MRI scans [27, 32]. Knowing that heart failure might

likely affect both calcium handling and overall contractility, we chose to optimize the τ2 and Sa
parameters, which modulate the duration of the calcium transient in the cellular unit and the

overall efficiency of contraction, respectively. At the same time, we also penalized deviations of

central aortic blood pressure from the normal range 85-110 mmHg by adapting the hemody-

namic parameters of the Windkessel submodel, i.e., the aortic resistance R2, the distal resis-

tance R3, and the capacitance C. We used the same value for the aortic valve resistance as

during the congruency training simulation (i.e., R1 = 0.0015 kPa ml−1 s). Finally, we assumed

that the left atrium would contribute to diastolic relaxation by providing a progressively

decreasing blood pressure. For this, we employed an electrical circuit analogy and represented
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the atrium as a capacitor. The capacitance value, Cat, was considered unknown and optimized

together with {τ2, Sa, R2, R3, C}.

As in 5, the inverse optimization problem was solved via OrthoMADS, leveraging parallel

execution. Comparison analyses were finally carried out with respect to the pressure and vol-

ume traces computed for the optimal set of parameters.

Results

In our approach, the simulated global behavior is reproduced at a reduced computational cost

by transforming the outputs of a modeled cellular subcomponent. To determine a suitable

functional form for the cell-to-global transformations, our first analyses investigated the rela-

tionships between local and global biomechanical measures in active FE simulations. Fig 5

shows LVV plotted against mid-wall stretch in the fiber direction (λmw) in simulations run

under the same boundary conditions used for congruency training (i.e., ①, ② and ③ in

Table 2). Probing locations were taken across the ventricular wall at half of the apex-to-base

distance and averaged over 40% and 60% of thickness. As expected, simulated perturbed con-

ditions led to pronounced changes in local stretch for both the N (see black lines) and the HF

(see gray lines) cases, with stretch ranges within 0.88-1.21. A least-square error fit revealed that

the relationship between LVV and λmw could be reasonably assumed to be linear for both con-

sidered geometries (R2 = 0.99).

This relationship between simulation outputs at the global (LVV) and local (λmw) levels

caused us to adopt simple linear forms for the transformations in (3). Fig 6 shows the outputs

from high-resolution FE (solid lines) overlayed with outputs from LO models (dashed lines)

after parameter optimization via congruency training. Best-fit values for the trained parame-

ters {μ1, μ2, γ, α, β, a, b, c} are reported in Table 3 for the N and HF ventricular geometries.

Fig 5. Quasi-linear relationships between left ventricular volume, LVV, and mid-wall stretch, λmw in the fiber

direction for both the N and HF geometries. The approximately linear relationship (R2 = 0.99) between LVV and

λmw was preserved over a wide range of perturbed boundary conditions (i.e., ①, ② and ③, see Table 2 and text for

more details).

https://doi.org/10.1371/journal.pone.0219876.g005
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The perturbed hemodynamic parameters considered during training affected significantly

global performance both in terms of ejection fraction (observed ranges within 44%-60% and

40%-60% for the N and HF geometries, respectively), and peak systolic LVP (observed ranges

within 77-158 mmHg and within 91-174 mmHg for the N and HF geometries, respectively).

Fig 6. Correspondence between finite element (FE) and low-order (LO) models after congruency training of

passive and active behaviors. Top row, left ventricular pressure (LVP) traces over the course of a cardiac cycle show

an overall good match between active simulations of the two classes of models for both considered anatomies. Central

row, similar to top row but for left ventricular volume traces over the course of a cardiac cycle, showing almost

complete overlap in all cases. Bottom row, same traces of the rows are plotted as PV loops overlapped to the passive

inflation tests Ⓟ, showing how the LO model recapitulates well also passive behavior over an extended ranges of

pressures and volumes.

https://doi.org/10.1371/journal.pone.0219876.g006

Table 3. Best-fit parameter values from congruency training for the two geometries considered. μ1, μ2 and γ parameters were estimated via active training simulations

(①, ② and ③) once the remaining parameters were constrained from the passive inflation test Ⓟ.

Geometry Active training Passive training

μ1 μ2 γ α
(kPa)

β a
(kPa)

b
(kPa)

c
(kPa)

N 0.191 0.183 4.97 0.640 1.39 1.70 -1.41 1.64

HF 0.190 0.173 5.17 0.571 1.47 1.77 -1.47 1.61

https://doi.org/10.1371/journal.pone.0219876.t003
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Note that LO and FE models employed the same values for all the “physical” parameters mod-

ulating myocyte contraction and hemodynamic coupling. Outputs from the two classes of

models matched closely, with small discrepancies appreciable between pressure traces (see top

row of Fig 6) and almost complete overlap occurring at the volume level (see central row in Fig

6). The largest, but still contained, mismatch was appreciable for simulation ③ in the HF case

(see gray lines in the top right panel Fig 6). For both classes of models, simulated pressure-vol-

ume loops are shown in the bottom row overlayed to results from the passive inflation tests

run to optimize the LO coefficients {α, β, a, b, c}. Both relations in (1) resulted in good matches

during passive filling, but the polynomial form provided better accuracy at lower pressures.

Despite supporting our choice for the functional forms (3), the results of Fig 6 did not pro-

vide any indications on whether the LO models would show congruent behavior also in sce-

narios not directly considered during training. To assess performance under more general

conditions, we then compared global outputs of the two classes of models when independently

varying sets of parameters modulating cellular action as well as a hemodynamic scenario not

accounted for during training. Meanwhile, the trained parameters of the LO models were

maintained fixed to the optimal values obtained via congruency training without further tun-

ing (see Table 3). Fig 7 compares LVP (first and third rows) and LVV traces (second and

fourth rows) obtained in the additional simulated scenarios. The first column shows effects of

varying the maximum velocity of muscle shortening, Vmax, by simultaneously modulating the

attachment and detachment rates of crossbridges, i.e., fXB and gXB, respectively. The 3 shown

simulations account for 50% rate variations above and below the baseline values used for train-

ing. Altering crossbridge dynamics resulted either in faster (for increased fXB and gXB) or

slower (for decreased fXB and gXB) contractions during systole, as appreciable from the differ-

ent LVV trace slopes observed during ejection. The LO results (see dashed lines) followed

closely their FE counterparts (see solid lines) for both the N (top two rows) and HF (bottom

two rows) cases, and with mismatches limited to the isovolumic relaxation phase, when ventri-

cles operated under compression behavior.

For a second scenario, we compared LO and FE simulation results for varying length-ten-

sion relationships. When progressively increasing n0, i.e., the minimum stretch required for

myocytes to generate active force, ventricles generated progressively less force and contracted

less. Maximum relative mismatch (i.e., absolute pointwise difference normalized by pointwise

mean value) in LVP and LVV traces between FE and LO was * 3% on average. The third sce-

nario is again depicted in Fig 7 (see third column) and targeted the nA parameter, which

defines coperativity in the interaction among fraction of troponin with bound calcium, tropo-

myosin state, and crossbridge dynamics (see S1 Supplemental Material for more details).

Increasing nA resulted in smaller forces of contraction (i.e., larger end-systolic volumes) com-

bined to faster ejection and isovolumic relaxation phases. These findings can be attributed to

crossbridges being recruited at lower calcium levels when nA is low, while increasing nA

resulted in crossbridges more quickly reaching their maximum generated force. Even for this

set of simulations, relative errors between LO and FE models were small, with a maximum rel-

ative error of *5% observed for the HF geometry at the lowest value of nA. For the fourth sce-

nario (see second column from right), we varied τ2, which impacts the relaxation time of the

intracellular calcium transients and, hence, contraction duration. Higher τ2 values resulted

in prolonged ejection and isovolumic relaxation times, and a maximum mismatch of 5%

between LO and FE results was observed for the LVV trace of the HF ventricle at the longest

considered τ2 (i.e., for τ2 = 285 ms). For the final scenario (see rightmost column), we progres-

sively increased R1, the aortic resistance, to simulate the large afterloads that ventricles might

need to overcome, for example, due to stenosis of the aortic valve. We considered 3 sets of sim-

ulations where R1 was progressively increased up to 0.1 kPa ml−1 s, which is half of the distal
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arterial resistance. As expected for a 3-element Windkessel model, increasing the ratio between

proximal and distal resistances resulted in smoother transition in ventricular pressure at the

opening and closing of the valves. Again, as expected, maximum contraction was achieved for

the lowest R1 value (i.e., R1 = 0.025 kPa ml−1 s), while maximum ventricular pressure was

reached for the largest R1 (i.e., R1 = 0.1 kPa ml−1 s).

Overall, the good matches between FE and LO global outputs observed both under training

conditions (see Fig 6) and for the simulated scenarios of Fig 7 suggested that, despite account-

ing for just one active cell unit, the LO models were able to effectively capture the global

Fig 7. Reduced order models maintain good congruency to 3-D FE models even for cases not included in the training set. Top 2

rows, pressure and volume traces simulated via FE (solid lines) and LO (dashed lines) over the course of a cardiac cycle for the

normal geometry N. Plots in each column show simulated behavior resulting from changes in one of the following parameters: Vmax,

maximum velocity of contraction; n0, regulating the slope of the length-dependence function for both thick and thin filaments; nA,

Hill coefficient of curve governing myofilament cooperativity; τ2, characteristic time of calcium transient decrease (see text and S1

Supplemental Material for more details); R1, aortic valve resistance. Two bottom rows, same as above but traces were simulated by

considering the HF geometry (see gray lines).

https://doi.org/10.1371/journal.pone.0219876.g007
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behavior of 3-D FE models, which instead results from the cooperation of many units operat-

ing under heterogeneous strain conditions. For further investigation, we then decided to

extend the LO modeling framework to account for heterogeneity by allowing for the global

ventricular dynamics to be captured by multiple LO sub-components connected either in par-

allel or in series and varying for their material properties (see section Multi-element low-order

models). More specifically, for units connected in parallel, we imposed variations in μ1 within

the range [μ1,min, μ1,max] = [0.01, 0.179]. Similarly, heterogeneity was achieved for the series

configuration cases by modulating 6 LO parameters, {a, b, c, α, β, μ2}, with weights varying

within the range [wmin, wmax] = [0.6, 1.0]. To analyze the capability of single-element models

to approximate multi-element configurations, we then trained LO models with a single cell

unit to maximize the match in global ventricular volumes and pressures. Average mismatches,

quantified as C (see (5)), between single and multi-element models are reported in Table 4

upon variations of the same testing parameters considered for Fig 7. In all cases, the single ele-

ment models were able to capture well the multi-unit behaviors, with a maximum mismatch of

3.5% observed for the parallel configuration at the lowest Vmax considered. Maximum mis-

match with the series configuration was observed instead for the largest τ2 value (C = 2.59%).

As an example, Fig 8 shows pressure (top row) and volume (bottom row) traces from

multi-element models (connected in series) overlayed on the corresponding traces from

best-fit single-element models. The results shown derived from two different levels of myofila-

ment cooperativity (i.e., nA = 10 and and nA = 5, in the left and right panel, respectively)

Table 4. Error of approximation of multi-element models by the LO model with a single element.

Parallel

Vmax n0 nA τ2

sv factor error, x100 value error, x100 value error, x100 scaling factor error, x100

1.00 0.53 0.50 0.62 1.00 0.11 1.10 0.54

1.75 0.51 0.54 0.58 2.00 0.14 1.20 0.57

2.50 0.55 0.59 0.54 3.00 0.21 1.30 0.60

3.25 0.53 0.63 0.53 4.00 0.51 1.40 0.63

4.00 0.50 0.68 0.53 5.00 0.89 1.50 0.65

0.62 1.15 0.72 0.57 6.00 0.83 1.60 0.68

0.45 1.82 0.77 0.66 7.00 0.75 1.70 0.70

0.36 2.40 0.81 1.13 8.00 0.66 1.80 0.72

0.29 2.94 0.86 0.93 9.00 0.57 1.90 0.74

0.25 3.43 0.90 2.08 10.00 0.53 2.00 0.75

Series

Vmax n0 nA τ2

sv factor error, x100 value error, x100 value error, x100 scaling factor error, x100

1.00 1.31 0.50 1.57 1.00 2.99 1.10 1.38

1.75 1.84 0.54 1.48 2.00 3.15 1.20 1.47

2.50 2.26 0.59 1.40 3.00 3.47 1.30 1.57

3.25 2.44 0.63 1.31 4.00 2.55 1.40 1.69

4.00 2.48 0.68 1.23 5.00 3.06 1.50 1.83

0.62 1.19 0.72 1.15 6.00 2.58 1.60 1.98

0.45 1.22 0.77 1.04 7.00 2.08 1.70 2.14

0.36 1.16 0.81 1.07 8.00 1.72 1.80 2.30

0.29 1.16 0.86 1.46 9.00 1.47 1.90 2.45

0.25 1.16 0.90 1.45 10.00 1.31 2.00 2.59

https://doi.org/10.1371/journal.pone.0219876.t004
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demonstrating almost complete overlap between outputs from the two modeling schemes (i.e.,

compare dashed and dotted black lines). Heterogeneity within multi-element models was evi-

dent when comparing volume traces from the two most different subunits of the model (i.e.,

those modulated by weights at the range extremes). As weights modulated also passive

Fig 8. Global output comparison between series multi-element and single-element LO models at two levels of myofilament cooperativity (i.e.,

nA = 5 and nA = 10). Pressure (top), and volume (bottom) traces are shown for the two multi-element subcomponents with extreme parameter weights

(i.e., wmin = 0.6 and wmax = 1.0, respectively; see gray lines). Total output traces from the multi-element models (see dashed black lines) are also shown

together with analogue output traces from the single-element models (see dotted black lines). Total traces show almost complete overlap.

https://doi.org/10.1371/journal.pone.0219876.g008
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stiffness, the wmax (wmin) subunit was least (most) compliant and therefore contributed the

smallest (largest) volume subportion to the resulting total trace. As expected, no differences

could be appreciated among pressure traces, as subunits connected in series were designed to

sustain the same left ventricular pressure.

As the the above results show, after training, even single cell-to-global transformations (2)

were able to capture the structural organization and heterogeneity accounted for in FE models

and that we imposed in our multi-element LO models. To characterize better the links existing

between ventricular anatomy and corresponding trained LO parameters, we then repeated

congruency training for a set of virtual ventricles representative of the anatomies collected by

the Sunnybrook Cardiac MRI database. Similar to [27], we employed an axisymmetric

6-parameter geometric description and used latin hypercube sampling to extract 150 ventricles

from uniform distributions constructed over the entire range of the dataset anatomies. From

this initial sampling, 44 simulations were discarded as either not compatible (e.g., due to unre-

alistically large ventricular thickness as compared to radius), or because they did not contract

enough (i.e., LVV did not reach 85% of V0 at peak contraction, see section Regression for con-

gruency coefficients for more details). For the remaining 106 simulations, congruency training

was achieved with mean square errors always lower than 1%. Fig 9 shows scatter plots and

overall trends of the LO parameters after training from the active simulations (μ1, μ2 and γ)

with respect to the variations of the two most influential anatomical parameters (Rb and the

ventricular thickness L). When considering the trends separately (see panel A), all trained

parameters were most affected by L. Some of this dependence on L can be expected, as thicker

ventricles are able to accomodate more force-generating myocytes, thus explaining the direct

proportionality between L and μ2 (see central row). The opposite was true for μ1, which trans-

forms LVV into myocardial strain, indicating that, in thicker ventricles, changes in volumes

tend to correspond to smaller changes in effective myocardial strain (see top row). Effects on γ
(see bottom row) were more complex with a minimum γ = 0.92 observed for L = 13 mm and

higher values observed both at smaller and larger thicknesses. The role played by Rb emerged

more clearly in contour plots showing expected coupled effects when varying also L in a 2-D

Gaussian Process regression (see panel B). In general, Rb had opposite effects with resepect to

L, which resulted in the maximum expected parameter values being located in the vicinity of

either the top (for μ1) or bottom (for μ2 and γ) left corners. In addition, the combined varia-

tions assumed locally complex behaviors (e.g., see isocontours in the lower half the μ1 plot),

which would difficult to capture without a statistical regression model. Cross-validation results

of the regression are reported in the S1 Supplemental Material.

Fig 10 shows simulated global outputs after the model parameters were optimized to match

cardiac phase durations and ejection fraction from MR imaging for the N (left panels) and HF

(right panels) cases. In addition, we show volume measurements extracted from MRI that pro-

vided the target for the optimization (see solid circles in the two bottom panels). As expected,

the MRI analysis revealed a reduced ejection fraction (-19%) and a prolonged ejection time

(+21% after normalizing to a 60 bpm heart rate) for the HF case than to the N one (see Table 3

in the S1 Supplemental Material). Accordingly, the optimization algorithm achieved optimal

matches by assigning smaller Sa (-46%) and larger τ2 (+31%) values to the HF case compared

to the N one. Given our simplified description of the atrium, we did not correctly reproduce

the dynamics of diastoling filling. Accordingly, our target variables (i.e., ejection fraction, ejec-

tion time, isovolumic relaxation time, and aortic pulse pressure) did not include diastolic fill-

ing metrics, as they would not be helpful without proper accounting of atrial and mitral valve

function. Average mismatches to the target variables were smaller than 3% in both cases, sug-

gesting that the combined tuning of hemodynamic parameters, calcium handling via τ2 and
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contraction efficiency via Sa might be sufficient to constrain the model to global contraction

measurements from images.

Discussion

Models of cardiac mechanics promise to provide significant insights into the state of health of

patients with heart disease by providing quantitative descriptions of the biophysics driving car-

diac contraction at different space and time scales. Image-based mechanistic reconstructions

such as state-of-the-art FE models allow for capturing high levels of detail in anatomic com-

plexity and spatial heterogeneity (e.g., to account for the varying preferential directions of

myofibers), but are also computationally expensive. Not surprisingly, significant obstacles are

added when large parameter searches and inverse problem solutions are required to adapt

these models to experimental or clinical observations. To at least partially address such chal-

lenges, we have demonstrated a procedure to train efficient LO models of ventricular mechan-

ics and reproduce the global behavior of FE models by scaling the outputs of just a single

modeled cell. The computational costs of cardiac models were therefore radically reduced. By

Fig 9. Variations of parameter trained via active simulations (μ1, top row; μ2, central row; γ, bottom row) with

respect to changes in ventricular anatomy. A) Scatter plots showing trends with respect to variations in Rb (left

column) and L (center column). Grey overlay indicates expected value (solid lines) and standard deviation of a 1-D

Gaussian Process regression fitted on the data. B) Contour plots of trained parameter values expected for combined

variations in Rb and L as predicted by a 2-D Gaussian Process regression model fitted to the data.

https://doi.org/10.1371/journal.pone.0219876.g009
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implementing the LO model to exploit GPU computations via CUDA, we were able to run 48

simulations in parallel (20 heartbeats each) in 5 seconds on a workstation mounting an nVidia

Quadro K5200. In comparison, 20 heartbeats in a FE model would require, depending on reso-

lution, between 1 and 40 CPU hours on high performance servers.

Our strategy was motivated by our finding that the relationship between local fiber strain

and ventricular volume could be well linearized over a large range of stretches (see Fig 5), and

surprisingly also when accounting for material and geometric nonlinearities [33, 34], and spa-

tially-varying distribution of fiber orientation and heterogeneous activation times [35]. By

lumping the nonlinearities introduced by the 3-D architecture of the myocardial tissue at the

passive level (e.g., during filling) into an additive pressure term (see (1)), we were able to repro-

duce the global behaviors observed at the organ level by just linearly scaling the active contri-

butions of the cellular model (see (3)). In effect, our approach exploited the links between

length dependence active force and Frank-Starling mechanism [38] to generate a concise

model of global heart function, which can be computed with minimal cost. Coupling between

local cell behavior and global outputs was achieved by transformation modules incorporating

the linear relationships (3), which were trained to ensure congruency with FE results upon

varying hemodynamic conditions. Given the empirical nature of the transformation relation-

ships, the “trained” parameters {μ1, μ2, γ, α, β, a, b, c} did provide only an indirect physiological

Fig 10. Inverse estimation of model parameters from cardiac phase duration and ejection fraction measured from

MRI. Top row, simulated intraventricular and aortic pressure traces after optimization for the N (left) and HF (right)

cases. Hemodynamic parameters of the Windkessel submodel were adapted to maintain central aortic pressure

approximately within the normal range 80-120 mmHg. Bottom row, corresponding simulated ventricular volume

traces (see dashed lines) overlayed to measurements from 20 MRI snapshots (see solid circles) included in the

Sunnybrook Cardiac MRI database. The τ2 and Sa parameters (regulating calcium handling and contraction efficiency,

respectively) were optimized to match ejection and isovolumic relaxation times, as well as ejection fraction. Solid

vertical lines mark transitions between simulated cardiac phases, denoting good match with corresponding transitions

in the MRI traces. As the model does not properly account for atrial and mitral valve functions, behaviors during

diastolic filling are are not expected to mach well, and do not.

https://doi.org/10.1371/journal.pone.0219876.g010
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meaning. Although we did not conduct a systematic investigation to minimize the number of

high-resolution simulations necessary for training, our results suggested that even just 3 active

and one passive high-resolution simulations were sufficient to achieve good fits of the LO

model to the FE model (see Fig 6).

We submit that the presented model order reduction strategy presents significant advan-

tages over standard machine learning approaches where training is conducted directly on

high-resolution simulations (e.g., [27, 31]). While efficient at the inference stage, statistical

models tend to require extensive training to achieve sufficient accuracy. By maintaining a bio-

phyisical component (i.e., the cell unit), our LO models can be more easily trained, especially

given that probing simulations can be chosen to explore large variations in operating sarco-

mere lengths (see Fig 5 and Table 2). After training, LO models then achieve remarkable

computational performance, with the possibility of simulating thousands of heartbeats every

second on commodity hardware. This level of computational efficiency is comparable to alter-

native order reduction methods [13–16], but, unlike these, our approach does not require

restrictive assumptions on ventricular anatomy. The popular CircAdapt model [13], for exam-

ple, achieves computational efficiency by assuming sphericity of ventricles, and then by analyt-

ically exploiting symmetry. The congruency training proposed here can handle any anatomy

that the FE model can handle. The LO model also outperform the speed-ups typically reported

for more sophisticated numerical approaches, such as reduced-basis functions and proper

orthogonal decomposition (e.g., [17, 18, 21, 22]), although, in the current form, our reduction

technique does not maintain details on spatially-varying fields.

To investigate further the properties of the LO reduction approach, we also considered

extensions of the single-element LO architectures, and built configurations where multiple LO

subcomponents are connected either in series or in parallel (see Fig 4). Even when introducing

heterogeneity among material properties of different subcomponents, the global outputs could

still be recapitulated by a trained single-cell analogue. This finding was also backed analytically

under the assumptions of a simplified model of active contraction and of linear passive mate-

rial properties (see section “Approximation of multi-element model with single-element LO

model” in the S1 Supplemental Material). Our empirical and analytical analyses demonstrate

that the global aspects of the biomechanics simulated by FE models could indeed be captured

by these simplified descriptions.

Given their computational efficiency and demonstrated versatility, the presented LO mod-

els are thus ideal for solving difficult inverse parameter estimations problems. To showcase

this strategy, we adapted model parameters to capture contraction features measurable from

cardiac imaging. More specifically, we relied on our previous analysis of the Sunnybrook Car-

diac MRI database [27] to select 2 representative patients from the normal and heart failure

groups, and found model parameterizations that would match ejection fraction and cardiac

phase durations from MRI, while also maintaining central aortic pressure within a reasonable

85-110 mmHg range. As expected for this type of complex inverse estimation problem, param-

eter optimization required running the LO models for several thousands of parameter combi-

nations and for tens of beats at each evaluation to reach steady-state. Tackling such an inverse

problem would be impractical with a standard FE technique, even when considering efficient

surrogate-based optimization algorithms [28, 29, 37], as we did in this study. By exploiting

multi-thread execution on GPU, we were instead able to optimize LO model parameters in

just a few minutes on commodity hardware, and achieved good matches (see Fig 10). Interest-

ingly, the optimization algorithm did not reveal large differences in hemodynamic lumped

parameters, but it attributed instead the discrepancies in ejection fraction and cardiac phase

duration to the Sa and τ2 parameters, which modulate cardiac contraction efficiency and decay

time of calcium transients, respectively. More specifically, our analysis suggested that the HF
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MRI measurements could be explained by smaller Sa values and longer τ2 times, which is in

agreement with experimental findings on heart failure myocyte phenotypes, which are less

effective in contracting partially due to dysfunctional calcium handling [39, 40].

Given the encouraging preliminary results in extracting mechanistic insights from clinical

assessments of cardiac function, we submit that, after validation, our approach could prove

helpful to assist statistical analyses of large databases of clinical measurements and provide

interpretations for variable associations. By providing an efficient model-order reduction strat-

egy that does not compromise anatomical details, our work might also facilitate future studies

involving high resolution simulations, where FE and LO models could be employed in combi-

nation for effective inverse estimation of parameter values.

Supporting information

S1 Supplemental Material. Myofilament contraction model, optimized model parameters,

cross-validation of GP regression and approximation of multi-element LO model with sin-
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(PDF)
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