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Abstract

Brain-Computer Interfaces (BCIs) based on visual evoked potentials (VEPs) allow high

communication speeds and accuracies. The fastest speeds can be achieved if targets are

identified in a synchronous way (i.e., after a pre-set time period the system will produce a

command output). The duration a target needs to be fixated on until the system classifies an

output command affects the overall system performance. Hence, extracting a data window

dedicated for the classification is of critical importance for VEP-based BCIs. Secondly, unin-

tentional fixation on a target could easily lead to its selection. For the practical usability of

BCI applications it is desirable to distinguish between intentional and unintentional fixations.

This can be achieved by using threshold-based target identification methods. The study

explores personalized dynamic classification time windows for threshold-based time syn-

chronous VEP BCIs. The proposed techniques were tested employing the SSVEP and the

c-VEP paradigm. Spelling performance was evaluated using an 8-target dictionary-sup-

ported BCI utilizing an n-gram word prediction model. The performance of twelve healthy

participants was assessed with the information transfer rate (ITR) and accuracy. All partici-

pants completed sentence spelling tasks, reaching average accuracies of 94% and 96.3%

for the c-VEP and the SSVEP paradigm, respectively. Average ITRs around 57 bpm were

achieved for both paradigms.

Introduction

Brain-Computer Interfaces (BCIs) detect, analyze, and decode brain activities to provide com-

munication with the external environment, without involving any muscle activities [1]. The

brain activities are usually recorded non-invasively by an electroencephalogram (EEG). BCIs

may be used as a communication tool for severely impaired people [2, 3].

In comparison to other BCI paradigms, BCIs based on visual evoked potentials (VEPs)

yield the fastest spelling performance [4–7]. VEPs are brain responses to a visual stimulus and

they are usually categorized according to the type of the modulation stimulus. The most
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commonly used VEPs in BCI research are the frequency modulated steady-state visual evoked

potentials (SSVEPs or f-VEPs) [5, 8, 9] and the code-modulated VEPs (c-VEPs) [7, 10, 11].

Recently, an information transfer rate (ITR) of 325.33 bpm has been achieved with a 40-target

BCI using the SSVEP paradigm [5]. In the SSVEP paradigm, each target to be selected flashes

at a specific frequency. When such a stimulus is fixated, continuous brain responses are elicited

at the occipital and parietal cortical areas of the brain; the fundamental frequency of the stimu-

lus as well as its harmonics can be detected.

In contrast, for c-VEP BCIs, all targets are modulated with different time lags of the same

code sequence [12]. Usually pseudorandom m-sequences which have good autocorrelation

properties are used [12].

During the last decades, the spelling interfaces are among the most widely utilized applica-

tions in BCI research [13]. To demonstrate usability and feasibility of such applications, vari-

ous performance metrics such as the ITR can be applied [14]. Evaluation of BCI performance

of such applications typically requires participants to type predefined words or phrases.

While SSVEP BCIs can be realized without training sessions, highest spelling speeds are

achieved if pre-recorded user EEG data are used in a specific way to classify the attended target

[15]. While this approach yields high ITRs, usually static classification time windows, which

are dependent on the recording session, are used. For c-VEP-based BCIs, static time windows

are the standard because of the required synchronization between EEG data collection and

stimulus representation, and the fixed length of the code sequence; sliding EEG data windows

are technically much harder to realize.

If the synchronous approach is utilized in VEP-BCIs (employing either SSVEP or c-VEP

flashing patterns), the pre-recorded template with the maximum correlation to the recorded

data determines the output command. Typically, applications introduce a flickering pause

after a command is classified (flickering and, if applicable, data collection pause), which allows

the user to shift the gaze to the next target. In the literature, this stimulation pause is often

referred to as gaze shifting period [16], gaze shifting time or cue duration [17], break between

trials [18], or rest period [19]. After this pre-set gaze shifting period, the stimuli continue flick-

ering for exactly one stimulation cycle again, i.e. the user cannot influence the duration of the

flickering. The BCI outputs are determined at equidistant time points. While this approach

leads to high target selection speeds if short classification windows are used, it might be

impractical in longterm daily use as it can easily lead to unintentional target activation.

Besides high responsiveness, a natural user-BCI interaction requires the system to distin-

guish between intentional and unintentional gaze fixation. Especially, during long term use,

the user might need longer time to locate a desired target on the screen; for example, in spell-

ing applications, the time the user needs to shift his/her gaze to a desired letter depends on

many factors, such as familiarity and complexity of the letter arrangement. Complex user

interface extensions like dictionary-based word suggestion mechanisms might update the

selection options after every command [20]. Hence, a more flexible classification approach is

needed. Therefore, we utilize flexible threshold-based classification time windows in this

study.

For the SSVEP paradigm, such flexible classification times have been realized using classifi-

cation thresholds [18, 21]. For instance, in the SSVEP-based Bremen BCI speller, the target

activation corresponding to a specific frequency is only performed, if a pre-defined threshold

is surpassed; otherwise, the classified command is rejected [21].

Classification thresholds make the system more robust, but can slow down the output infor-

mation transfer rate, as it takes extra time until a threshold is surpassed. In spelling applica-

tions, this performance drop can be compensated using word prediction methods, which have

been widely used in BCI research [20, 22]. Prediction methods based on n-gram models have
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only recently been realized in BCIs [23]. The n-gram model is used for the prediction of the

next items in a sequence. Item probabilities are extracted from a text database. While it is typi-

cally used with individual characters as items in BCI, here, the n-gram model was utilized at

the word level, i.e., the words with highest probability were suggested based on the previously

entered text.

Materials and methods

Participants

Twelve healthy participants were recruited for this experiment, eight female and four male

(average age 23.75 years, SD 2.35, range 21 to 30 years). All subjects had normal or corrected

to normal vision. The research was approved by the ethical committee of the medical faculty of

University Duisburg-Essen. Prior to the experiment, the participants were informed about the

purpose, risks, and design of the study. The subjects who agreed to participate in the study

signed an informed consent in accordance with the Helsinki declaration. Information needed

for the analysis of the experiments was stored anonymously during the experiments. The par-

ticipants had the opportunity to opt-out of the study at any time. All subjects received a finan-

cial reward for their participation.

Hardware

The used computer (MSI GT 73VR with nVidia GTX1070 graphic card) operated on Micro-

soft Windows 10 Education running on an Intel processor (Intel Core i7, 2.70 GHz). A liquid

crystal display screen (Asus ROG Swift PG258Q, 1920 × 1080 pixel, 240 Hz maximal refresh

rate) was used.

An EEG amplifier (g.USBamp, Guger Technologies, Graz, Austria) was used, utilizing all its

16 signal channels. The 16 signal electrodes were placed according to the international 10/5

system of electrode placement (see, e.g., [24] for more details): PZ, P3, P4, P5, P6, PO3, PO4,

PO7, PO8, POO1, POO2, O1, O2, OZ, O9, and O10. The reference electrode was placed at CZ

and the ground electrode at AFZ. Standard abrasive electrolytic electrode gel was applied

between the electrodes and the scalp to bring impedances below 5 kO during the preparation

phase. An analogue band pass filter (between 2 and 60 Hz) and a notch filter (around 50 Hz)

were applied in the amplifier.

Stimulus presentation

In this experiment, the number of stimulus classes, K, was set to 8. Therefore, a distinct flash-

ing pattern was assigned to each target. Two stimulus types, SSVEP- and c-VEP stimuli, were

tested consecutively.

c-VEP stimulus presentation. The target stimuli consisted of eight boxes (230 × 230

pixel) arranged as 2 × 4 stimulus matrix (see section Software for more details).

The c-VEP paradigm is often realized by employing the so-called m-sequences, non-peri-

odic binary codes with good autocorrelation properties [12]. According to Wei et al. [10], a

modulation sequence with a length of 63 bit and a lag of 4 bits between adjacent stimuli yields

good performance.

Hence, for the flashing pattern 63 bit m-sequences ci, i = 1, . . ., K were assigned to the stim-

ulus matrix employing a circular shift of 4 bits (c1 had no shift, c2 was shifted by 4 bits to the

left, c3 was shifted by 8 bits, etc.). The codes were assigned row-wise to the matrix (i.e. starting

from the upper left target with c1, further targets were assigned in row major order). The sti-

muli corresponding to the codes alternated between the states ‘black’ (the background color,
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represented by ‘0’) and ‘white’ (represented by ‘1’). Here, c1 was defined as

c1 ¼ 101011001101110110100100111000101111001010001100001000001111110:

The duration of a stimulus cycle in seconds can be calculated by dividing the code length by

the monitor refresh rate r in Hz; in this experiment, 63/60 = 1.05s.
SSVEP stimulus presentation. For the SSVEP flashing pattern, a specific frequency f and

phase F were assigned to each target [25]. The flickering was realized by sinusoidally modulat-

ing their transparencies in accordance with the frequency/phase combination, as described

e.g. in [26, 27].

For this, the stimulus sequence for the i-th target is calculated as follows:

ciðtÞ ¼
1

2
1þ sin 2pfi

t
r
þ Fi

� �� �

; t ¼ 0; 1; . . . ; ð1Þ

yielding values in the range from 0 to 1. Alpha compositing, i.e., the combination of an image

with the background, was utilized to modulate the transparency of the stimulus according to

this sequence. The alpha channel of the RGBA color space indicates how opaque a pixel is. An

alpha value of zero, α = 0, corresponds to full transparency and α = 255 corresponds to no

transparency. A black background was used for the stimuli. The color value of a stimulus was

set to RGBA = (255, 255, 255, α), where alpha was set to ci(t) � 255. As a black background was

used, this resulted in the target color ‘black’ if ci(t) = 0 and ‘white’ if ci(t) = 1.

Similar to [26], frequencies fi = f0 + Δf and phases Fi = F0 + ΔF, i = 1, . . ., K, with f0 = 8 Hz,

Δf = 1 Hz, F0 = 0 and ΔF = 0.35π, where assigned column-wise to the stimulus matrix.

This frequency range was chosen, as it avoids mutual influences between fundamental and

harmonic frequencies. Further, due to the 1-Hz difference between stimuli, the stimulus cycle

is of length r, in other words, the repetition period is 1 s.

Experimental protocol

Participants sat on a chair facing the LCD screen (at a distance of approximately 60 cm). After

they were prepared for the EEG recording, they went through two sessions (c-VEP and

SSVEP). Each session consisted of a training phase (for template recording and automated

parameter setup), an on-line copy spelling phase, and a brief questionnaire. The experiment

took approximately one hour for each participant. The order of the starting paradigm was

altered for every other participant. Hence half of the participants started the experiment with

the SSVEP paradigm, the other half with the c-VEP paradigm.

Training phase. In the training phase, each of the eight stimuli was fixated several times.

For each trial the code pattern repeated for three cycles, i.e., the stimuli flickered for 3 � 1 = 3s
for the SSVEP paradigm and for 3 � 1.05 = 3.15s for the c-VEP paradigm. A green frame

around the box indicated which box the user had to fixate. Initially, subjects pressed the space

bar to start the stimulation.

The recording was grouped in six training blocks, nb = 6. In each block every stimulus

was attended once, resulting in 6 � 8 = 48 trials in total. After each trial, the next box was

highlighted, the flickering paused for one second, and the participant shifted his/her gaze to

the next target.

In order to avoid visual fatigue, subjects were allowed to take breaks after each block of

eight trials (the recording automatically paused). To start another recording block, the subjects

needed to click the space bar.

Copy spelling phase. Prior to the copy spelling task, a brief familiarization run was per-

formed were participants spelled the word KLEVE, and a word of free choice (e.g. the own
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first name). During this familiarization run, in some cases, the automatically determined

classification thresholds were lowered manually to increase the responsiveness of the appli-

cation. In the copy spelling phase, participants were asked to spell the words BCI and

BRAIN as well as a longer English sentence. For each participant and paradigm, different

sentences were used. Occurring errors were corrected using the UNDO function of the

interface.

Questionnaires. Prior to the training phase, participants filled in a brief questionnaire,

answering questions regarding gender and age. Additionally, after each session, participants

gave their subjective impressions of the BCI answering questions regarding fatigue and annoy-

ance. The questions as well as the collected answers of this questionnaires are provided in the

results section.

Software

CCA-based spatial filters. Canonical-correlation analysis (CCA) is a statistical method

which investigates the relationship between two sets of variables [28]. Given two multidimen-

sional variables X 2 Rp�s
and Y 2 Rq�s

, CCA finds weight vectors wX 2 R
p

and wY 2 R
q

that

maximize the correlation ρ between the linear combinations x = XTwX and y = YTwY. The

weight vectors wX and wY are determined by solving

max
wX ;wY

rðx; yÞ ¼
E½wT

XXY
TwY�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½wT
XXX

TwY�E½wT
YYY

TwY�
p ð2Þ

The value ρ is the first and maximal canonical correlation and x and y represent the first

pair of canonical variables. Successively, additional pairs x, y can be constructed by maxi-

mizing (2) with the constraint that they are orthogonal to the already found pairs. The num-

ber of canonical variable pairs is constrained by the dimensionality of the variables X and Y.

In BCI research, CCA is used to find a linear transformation that maximizes the correlation

between the recorded signal and the averaged template signals. Typically, only the first

canonical correlation and corresponding weight is used for classification and construction

of filters [4, 5, 29]. Nonetheless, some recent studies yielded better performance when the

additional canonical variable pairs with their associated correlations and weights where also

utilized [30].

Here, to improve signal-to noise ratio, CCA was used to create class-specific spatial filters

(see, e.g., [5, 7]).

In this regard, filters were constructed from the training data as follows: The trials recorded

during the training phase were stored in a m × nt matrix, where m denotes the number of elec-

trode channels (here m = 16) and nt denotes the number of samples. All nb trials Ti 2 R
m�nt

corresponding to a specific class are averaged by calculating the arithmetic mean, yielding the

template X 2 Rm�nt ,

X ¼
1

nb

Xnb

i¼1

Ti:

For the filter, two additional matrices need to be constructed. All trials Ti are concatenated

horizontally yielding a matrix T̂ 2 Rm � ðnbntÞ,

T̂ ¼ ½T1T2 . . .Tnb
�:
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A second matrix X̂ with the same dimensions is constructed by replicating X,

X̂ ¼ ½XX . . .X
|fflfflfflfflffl{zfflfflfflfflffl}

nb

�:

By plugging X̂ and T̂ into Eq (2), the weight vector w ¼ wX̂ is obtained.

This procedure is applied for all classes, yielding a set of training templates Xi and weights

wi, i = 1, . . ., K.

Time window mechanism. The output command corresponding to a classification was

only performed if certain thresholds were surpassed. In this regard, sliding classification time

windows of dynamic length were utilized [8], i.e., in the case where no classification could be

made, a new classification was performed, after receiving the new EEG data.

The multichannel EEG signals that were about to be classified were stored in a matrix

Y 2 Rm�ny , where ny represents the length of the classification time window in samples. In

praxis, ny needs to be selected carefully. Too small time windows can lead to errors [31]. On

the other hand, if ny is too large, data unrelated to the desired target (e.g. due to gaze move-

ments at the beginning of the time window) remains to be considered for classification, which

can slow down performance. Therefore, ny needs to be restricted,

ny min � ny � ny max : ð3Þ

The selection of the minimum time window, the lower bound in (3), is critical. Here, it was

determined individually based on the training data as elaborated later. Recall that the stimulus

cycle was 1 s and 1.05 s for the SSVEP and c-VEP approach respectively. The number of sam-

ples collected in this period, nc, was therefore nc = 600 for SSVEP and and nc = 630 for c-VEP.

The upper bound, nymax, was selected as a multiple of nc.
In the on-line BCI, the time window extended incrementally. The amplifier transfers EEG

data in blocks Ai 2 R
m�na , where na denotes the number of samples per block. For the imple-

mentation of the sliding window mechanism, na was selected as divider of the cycle length, i.e.,

na|nc.
A further restriction to na was given by the amplifier manufacturer. For the gUSBamp, the

buffer needed to contain at least 20-30 ms of data. Here, na was set to 30 samples (50 ms

recordings with the sampling rate of 600 Hz).

The amplifier blocks where accumulated in a buffer Â 2 Rm�nâ ,

Â ¼ ½A1;A2; . . .�:

If the number of samples of the buffer, nâ , was to small, i.e., nâ < ny min , no classification

was performed.

If ny min � nâ � ny max , the classification time window gradually increased (with step

width na). The classification was performed using the data matrix Y ¼ Â, i.e., all data from the

buffer were considered for classification. If the classifier did not meet a certain threshold crite-

rion, as described later, further EEG data was collected.

Lastly, if nâ > ny max , only the last nymax samples were used for classification. Therefore,

we set Y as the sub-matrix of Â formed from rows 1, . . ., m and columns nckþ 1; . . . ; nâ ,

Y ¼ Â½1; . . . ;m ; nckþ 1; . . . ; nâ �;

where k is the smallest integer such that ny follows (3). Since na|nc, data collection and stimulus

presentation remain synchronized.
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Classification. The test matrix Y 2 Rm�ny is compared against individual reference tem-

plates Ri 2 R
m�ny , i = 1, . . ., K each of which was set as the sub-matrix of the corresponding

training template Xi, formed from rows 1, . . ., m and columns 1, . . ., ny,

Ri ¼ Xi½1; . . . ;m ; 1; . . . ; ny�: ð4Þ

As the spatial filters for each target are similar to each other, we adopted the ensemble-

based target identification which was proposed originally for the SSVEP paradigm in [5].

Ensemble correlations, λk, were determined by stacking all target-specific spatial filtered data

and template vectors as follows:

lk ¼ r

YTw1

..

.

YTwK

2

6
6
6
6
4

3

7
7
7
7
5
;

Rk
Tw1

..

.

Rk
TwK

2

6
6
6
6
4

3

7
7
7
7
5

0

B
B
B
B
@

1

C
C
C
C
A
; k ¼ 1; . . . ;K: ð5Þ

Additionally, the difference between target- and non-target correlations can be enhanced

further by applying a filter bank method, which decomposes VEP-data in sub-band compo-

nents as described in [17]. The lower and upper cut-off frequencies for the m-th sub-band

were selected as m � 8 and 60 Hz. To this end, an 8th order Butterworth filter was utilized. For-

ward and reverse filtering were applied to cancel the phase response [32].

The ensemble approach, Eq (5), was then applied to each sub-band component individu-

ally, yielding a set of correlations l
ð1Þ

k ; l
ð2Þ

k ; . . . ; l
ðMÞ
k , k = 1, . . ., K, where M denotes the number

of considered sub-bands. Then, the output command candidate was determined using

weighted linear combinations of the correlations,

C ¼ arg max
k¼1;...;K

~lk; where ~lk ¼
XM

m¼1

aml
ðmÞ
k : ð6Þ

Mirroring the decrease in amplitude in the higher bands, the weights am in (6) where set as

am ¼
a0mPM
k¼1

a0
; with a0m ¼ m� 1:25 þ 0:25; ð7Þ

yielding decreasing weights for the higher bands. The optimal choice of these weights needs to

be investigated further (see, e.g. [17]).

The number of sub-bands, M, was set to 1 and 5, for c-VEP and SSVEP, respectively. In the

on-line copy spelling phase, the action associated with a classified label C was only performed

if a certain threshold criterion was met, which is described in the following. The decision cer-

tainty, ΔC, was calculated as the distance between the highest and second highest correlation.

The output was performed if ΔC exceeded a certain threshold value, β; otherwise the, classifier

output was rejected. In other words, the output command was only performed if ny� nymin

and ΔC� β.

After a produced output command, the data buffers B and Y were cleared and a 1 second

gaze shifting period followed. In this gaze shifting period, the amplifier data blocks, Ai, were

ignored and the stimuli did not flicker, allowing the user to shift his/her gaze to the next target.

Please note that the BCI did not require a full cycle of the stimulation pattern for classification.

If a command was classified before the stimulus pattern completed a full cycle (1.05 s for c-

VEP and and 1 s SSVEP), the flickering stopped.
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Automatic parameter calibration. In order to realize individually optimized system

parameters, the values for the classification threshold β and for the minimum time window

nymin were determined automatically for each participant on the basis of the training data via a

leave-one-out cross-validation.

In this regard, we considered the ITR in bpm (see [1], an on-line calculation tool can be

found at https://bci-lab.hochschule-rhein-waal.de/en/itr.html),

ITR ¼
log 2K þ p log 2pþ ð1 � pÞ log 2

1 � p
K � 1

� �

t=60
;

ð8Þ

where the target identification accuracy, p, was calculated based on the number of correctly

classified commands divided by the total number of commands, and t represented the average

time needed to make a selection (in s).

Utilizing leave-one-out cross-validation on the training data, an average ITR was calculated

for classification windows of ny = 30, 60, . . ., 3nc samples. The value of ny that maximized the

ITR (8) was selected as minimum time window nymin. The classification threshold β was

selected as the minimal decision certainty, ΔC, at that time window. An example of the parame-

ter setup procedure is depicted in Fig 1.

As stated in the experimental protocol, the suggested thresholds were sometimes lowered

manually in the on-line spelling tasks. An explanation for the sometimes lower certainty in on-

line tasks is that in contrast to the cue-guided training, it was not guaranteed that participants

were fixating the target when the flickering started.

Dictionary-driven spelling application. The spelling application utilized n-gram predic-

tion, which is used in computational linguistics. An n-gram describes a sequence of n items

from a text database. An item (here, a word) xi has the probability P(xi|xi−(n − 1), . . ., xi−1). The

text database was extracted from the Leipzig Corpora Collection, a ready to use corpora [33]. It

contains a word frequency list as well as a word bi-grams list (co-occurrences as next neigh-

bors) containing observed frequency counts, which were generated from approximately 1 mil-

lion sentences publicly accessible.

Here, an n-gram of size 2 (also called bi-gram) was utilized, i.e., next word candidates were

weighted according to the probability on the word level.

Structured query language (SQL), a query language for relational databases, was used to

retrieve word suggestions from the Leipzig text database. Based on the already typed string,

three word suggestions where extracted using SQL statements. First, all co-occurrence pairs,

including the previously typed word and the words beginning with the already typed part of

the current word, were ordered according to their frequency. If this yielded less than three can-

didates, the suggestions were complemented with the word frequency list (independent of the

precedent word), i.e., the most frequent words matching the already typed string were added.

The speller presented eight selection options, arranged in a 2 × 4 matrix format (Fig 2). One of

two layers was shown. In Layer I, the first row contained 28 characters (26 letters, underscore

and full stop character) divided into four groups of seven characters. The second row con-

tained the three dictionary suggestions as well as a correction option (undo the previous com-

mand). By selecting one of the group boxes from the first row, Layer II was presented, which

allowed for the selection of individual characters.

The copy-spelling sentence and the user output were presented in the center of the screen.

If the classifier produced an output command, audio and visual feedback were provided: The

size of the selected box increased for a short time and a sound file, voicing the selected com-

mand, was played.
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The functioning of the dictionary-driven spelling application is illustrated in Fig 2.

Results

Off-line performance

Optimal time windows and ITRs were calculated using off-line leave-one-out cross-validation.

As expected, the highest ITRs were achieved with different time windows for each user. The

time window yielding maximal ITR, which was used as minimal time window in the on-line

experiment, as well as the corresponding maximum ITR are listed in Table 1. Fig 3 shows off-

line ITRs and accuracies across all participants for a time window length up to 1.05 s with an

interval of 50 ms. On average, participants reached a theoretical maximal ITR of 100.90 bpm

and 95.21 bpm with the optimal time window for the c-VEP and SSVEP paradigm. However,

the difference between the paradigms was not statistically significant (t = 1.488, p = 0.165).

Fig 1. Example of the proposed automatic selection of the classification parameters. Displayed are the results from the leave-one-

out off-line analysis of the SSVEP training data for one participant. In the training session, each of the 8 targets was attended 6 times

for 3 seconds. (A) Displayed are the correlation values of the target stimulus (green) and the maximum correlation of the non-target

stimuli (red). For each stimulus class the correlations calculated in the first second are displayed. (B) ITR averaged over the 6 training

blocks. Here, the time window yielding the highest ITR was 0.45 seconds. (C) Correlogram of the training data. Depicted are the

correlations for each target using the determined time window, averaged over the trials. This minimal difference between target and

non-target stimuli was used as the threshold value. Here, the distance was minimal for the 10 and 14 Hz pair, yielding a difference of

0.2.

https://doi.org/10.1371/journal.pone.0218177.g001
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On-line spelling performance

The on-line performance was evaluated utilizing the output command accuracy, the ITR, as

well as the output characters per minute (OCM) which measures typing speed by dividing the

total number of output characters by the time needed to type them [14]. Measuring the OCM

therefore takes into account that all errors are corrected. Tables 1, 2 and 3 summarize spelling

results across all participants for each paradigm and spelling task.

Fig 2. Writing a sentence with the dictionary-driven speller. A participant is writing JUST_DO_IT in seven steps. Selection of

individual letters required two steps: Initially the group containing the character was selected (Layer I), and then the desired

character was selected (Layer II).

https://doi.org/10.1371/journal.pone.0218177.g002
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Table 1. Information transfer rate (ITR) in bits/min for each participant for the c-VEP and SSVEP system.

c-VEP SSVEP

Subject Cl. Time Training Words Sentence Cl. Time Training Words Sentence

S01 0.50 s 97.99 100.6 83.9 1.35 s 76.60 32.8 42.2

S02 0.35 s 126.71 76.5 36.2 0.30 s 131.58 70.7 62.4

S03 0.40 s 122.18 107.8 62.1 0.45 s 124.14 98.8 78.6

S04 0.60 s 82.40 85.9 58.6 0.90 s 94.74 45.5 53.0

S05 0.50 s 108.07 101.7 49.1 0.45 s 117.97 92.5 51.2

S06 0.55 s 104.58 107.6 59.9 0.80 s 95.03 91.2 41.1

S07 1.00 s 76.58 69.8 43.8 0.45 s 71.10 73.2 47.7

S08 0.45 s 111.80 111.0 89.6 0.65 s 79.93 76.7 77.3

S09 0.90 s 63.54 66.3 44.0 0.95 s 66.20 32.7 30.4

S10 0.80 s 85.09 84.2 46.1 0.45 s 72.45 88.4 63.4

S11 0.35 s 120.08 111.9 64.8 0.25 s 117.58 135.3 96.4

S12 0.45 s 111.80 88.5 47.3 0.45 s 95.21 62.9 43.4

Mean 0.57 s 109.00 92.65 57.11 0.62 s 95.20 75.1 57.3

Provided are the optimal time window determined in the training (leave-one-out cross-validation), the corresponding training ITR and the ITR achieved in the spelling

tasks. The words column lists the mean ITR of the single word spelling tasks BRAIN and BCI.

https://doi.org/10.1371/journal.pone.0218177.t001

Fig 3. Comparison of SSVEP and c-VEP methods. ITRs and accuracies of all participants are presented. The asterisks mark

statistical significance determined with paired sample t-tests (�p< 0.05 and ��p< 0.01).

https://doi.org/10.1371/journal.pone.0218177.g003

Dynamic time window mechanism for time synchronous VEP-based BCIs

PLOS ONE | https://doi.org/10.1371/journal.pone.0218177 June 13, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0218177.t001
https://doi.org/10.1371/journal.pone.0218177.g003
https://doi.org/10.1371/journal.pone.0218177


For the single word spelling tasks (BCI and BRAIN), the average ITR was 92.65 and 75.06

bpm for the c-VEP and SSVEP system; the difference between the paradigms was significant

(t = 2.503, p = 0.029). As expected, these values were lower than the off-line values because of

the threshold criterion described in the previous section.

For the sentence spelling tasks, no statistically significant difference between the paradigms

was found; ITRs of 57.11 and 57.26 bpm were achieved for the c-VEP and SSVEP paradigm.

Due to the n-gram prediction model, the average OCM was higher in the sentence spelling

tasks in comparison to the word spelling tasks for the two tested paradigms. For the single

word spelling tasks, 15.43 and 12.63 OCM were reached; for the sentence spelling tasks, 18.89

and 18.31 OCM were achieved with the c-VEP and SSVEP paradigm.

Table 2. c-VEP spelling task accuracies and output commands per minute (OCM).

Subject Sentence Accuracy OCM Word Accuracy OCM

S01 THE TRAIN WAS OVERCROWDED 97 20.8 BCI, BRAIN 100 16.8

S02 THAT WAS AN INTERESTING LECTURE 100 12.1 BCI, BRAIN 100 12.7

S03 THE BOOK IS WAY TOO BORING 100 17.9 BCI, BRAIN 100 18.0

S04 I DO NOT LIKE TO EAT FISH 96 24.1 BCI, BRAIN 100 14.3

S05 DID YOU EVER DRIVE A SKATEBOARD 92 16.4 BCI, BRAIN 96 16.8

S06 THE RECORDING IS REALLY BAD 94 19.0 BCI, BRAIN 100 17.9

S07 I DO NOT LIKE THIS MUSIC AT ALL 92 15.9 BCI, BRAIN 100 11.6

S08 DOGS ARE NOT ALLOWED 100 37.3 BCI, BRAIN 100 18.5

S09 I WILL GO SWIMMING TOMORROW 84 16.7 BCI, BRAIN 94 10.9

S10 I NEED TO BUY A NEW TOOTHBRUSH 88 13.2 BCI, BRAIN 96 13.9

S11 THE SHOP WAS CLOSED ALREADY 100 20.8 BCI, BRAIN 100 18.7

S12 THE DOG BARKED LOUDLY 85 12.3 BCI, BRAIN 96 15.1

Mean Mean length: 26.7 characters 94.0 18.9 4 characters 98.5 15.4

Provided are the specific spelling task, corresponding command accuracy, and output commands per minute (OCM) for each participant.

https://doi.org/10.1371/journal.pone.0218177.t002

Table 3. SSVEP spelling task accuracies and output commands per minute (OCM).

Subject Sentence Accuracy OCM Word Accuracy OCM

S01 HE IS AFRAID OF HORSES 100 11.9 BCI, BRAIN 100 5.5

S02 I WANT TO BECOME A BUSDRIVER 100 16.2 BCI, BRAIN 87 12.3

S03 I WOULD LIKE TO PLAY THE CELLO 100 32.8 BCI, BRAIN 100 16.5

S04 I DO NOT SPEAK FINNISH 100 18.5 BCI, BRAIN 100 7.6

S05 ALL OF THE PHOTOS WERE BLURRED 95 14.2 BCI, BRAIN 100 15.4

S06 I COULD EAT PIZZA EVERYDAY 93 10.2 BCI, BRAIN 100 15.2

S07 I USUALLY FALL ASLEEP IN THE CINEMA 95 17.1 BCI, BRAIN 100 12.2

S08 THAT WAS A NICE MOVIE 100 28.5 BCI, BRAIN 96 12.6

S09 THEY OWN A BLACK CAT 91 8.0 BCI, BRAIN 96 5.6

S10 MY BIKE HAS NOT BEEN STOLEN 93 26.0 BCI, BRAIN 93 15.7

S11 I WANT TO LISTEN TO THE RADIO NOW 95 22.5 BCI, BRAIN 100 22.5

S12 DID YOU GO TO SCHOOL TODAY 94 14.1 BCI, BRAIN 100 10.5

Mean Mean length: 26.8 characters 96.3 18.3 4 characters 97.6 12.6

Provided are the specific spelling task, corresponding command accuracy, and output commands per minute (OCM) for each participant.

https://doi.org/10.1371/journal.pone.0218177.t003
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Questionnaire results

Further, the results from the questionnaires are depicted in Fig 4. For an overview of the pre-

and post-questionnaire answers, see also Table 4. The subjective impressions regarding fatigue

level and annoyance were measured using a five-point Likert scale [34], where “1” indicated

the strongest degree of disagreement and “5” the strongest degree of agreement.

The majority of the users did not find the flickering annoying or fatiguing. Overall, answers

regarding the user-friendliness were slightly more positive for the SSVEP paradigm. Five out

of twelve participants stated that they found the flickering of the c-VEP system annoying. In

contrast, only one participant found the SSVEP to be annoying. In respect to the subjective

level of fatigue, the SSVEP paradigm yielded better results. Four participants found the c-VEP

flickering fatiguing, but only two participants stated that the SSVEP flickering caused fatigue.

A spearman rank correlation test was performed to investigate if the tiredness affected the

spelling performance. Neither for the SSVEP experiment nor for the c-VEP experiment a sig-

nificant relationship was found between the subjective level of tiredness and the mean ITR of

the sentence spelling task (rs = −0.43, n.s for SSVEP and rs = −0.44, n.s. for c-VEP).

Fig 4. Results from the user questionnaires. Responses were given on a 1-5 Likert scale, 1 indicating strong disagreement and 5

indicating strong agreement.

https://doi.org/10.1371/journal.pone.0218177.g004

Table 4. Questionnaire answers.

Subject Gender Age SSVEP annoying c-VEP annoying SSVEP fatiguing c-VEP fatiguing

1 f 25 3 2 2 4

2 m 24 1 4 1 3

3 m 30 2 3 1 1

4 m 23 3 3 3 3

5 f 23 2 2 2 3

6 f 21 2 1 1 1

7 m 22 3 4 3 2

8 m 25 1 2 1 1

9 f 25 4 5 4 4

10 f 24 3 3 4 4

11 f 22 3 4 1 1

12 f 21 3 5 2 4

Mean 23.75 2.50 3.17 2.08 2.58

Range 21-25 1-4 1-5 1-4 1-4

Provided are the answers collected from the pre- and post-questionnairies. In questions that were answered on a 1-5 Likert scale, 1 indicates strong disagreement and 5

indicates strong agreement.

https://doi.org/10.1371/journal.pone.0218177.t004
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Discussion

The main purpose of the presented study was to investigate methods of dynamic gaze classifi-

cation time windows for time synchronous VEP BCIs. The proposed methods lead to a more

natural user-BCI interaction. To demonstrate the robustness of the approach, a dictionary-

driven spelling application was tested with the SSVEP and the c-VEP paradigm. In this sense,

the study also provides a direct comparison between c-VEP and SSVEP stimulation, both in

terms of performance and user-friendliness.

The comparison of the two stimulation approaches indicates that c-VEP slightly outper-

forms SSVEP in terms of ITR, while SSVEP is preferred by most users in terms of user-friend-

liness, see Figs 3 and 4.

For the SSVEP paradigm, the flickering was realized by sinusoidally modulating the trans-

parencies. This allowed a slightly more subtle visual stimulation in comparison to the c-VEP

flickering which switched from full illumination to no illumination in correspondence to the

code patterns. Indeed, a slight difference regarding the subjective level of annoyance and

fatigue caused by the flickering is evident from the questionnaires (Fig 4). Regarding the user-

friendliness, most participants seemed to favor the SSVEP paradigm. It should be noted that a

more subtle stimulation could be achieved by utilizing higher carrier frequencies for the c-

VEP paradigm as well [35]. On the other hand, faster rate flickering could lead to a lower per-

formance for some users [36]. A similar effect has been observed for SSVEP stimuli as well

[37]. For SSVEP BCIs, a more subtle stimulation could also be achieved by utilizing motion-

based stimulation [38]. Further, Chien et al. [39] achieved promising results with little flicker-

ing sensations by employing a composition of red/green/blue 32 Hz/40 Hz flashing lights.

As can be seen in Fig 3, the variability between subjects (inter-subject variability) seems to

be slightly higher for the SSVEP paradigm than for the c-VEP paradigm. A reason for this

could be that the tested frequencies interfere with the natural brain activity. As stated by Bin

et al. [12], narrow-band signals in the natural EEG (e.g. alpha and beta rhythms) are likely to

interfere with low frequency SSVEP stimuli.

Here, a training session was utilized in both methods for template recording and parameter

optimization. It should be noted that in general, c-VEP BCIs require a training stage to obtain

templates. SSVEP BCIs on the other hand can be realized without training if desired, by utiliz-

ing sine- and cosine templates. Typically, for the recording of the c-VEP templates, only one

code sequence is utilized for the training session. By shifting the recorded data templates, the

required amount of classes can be generated. In this study, however, templates were recorded

and averaged separately for each c-VEP class. This was done for the following reasons. It facili-

tates an ensemble-based classification approach. Further, as demonstrated by Nagel et. al,

monitor latencies differ depending on the position of the target [40]; using all targets to create

one single template would require a correction of these latencies.

One of the key parameters for BCI performance is the time window used for the classifica-

tion of the signals. User variability justifies user-dependent selection of a minimum value for

the minimum classification time interval [31]. For the c-VEP paradigm, typically, this interval

is determined by the cycle length; e.g., for 63 bit m-sequence stimuli with 60 Hz monitor

refresh rate, a time window of 1.05 seconds can be utilized [10, 41]. SSVEP BCIs have been

used with time windows as low as 0.3 s [5]. In some studies larger classification windows were

incorporated to improve robustness of the system. For example, to outbalance the lower sig-

nal-to-noise-ratio with dry electrodes, Spüler [41] utilized larger classification windows in a c-

VEP BCI by averaging over multiple trials. Similarly, in previous studies, we incorporated

large classification windows to deal with age-related inter-subject variability in users [8, 42].
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For the system presented in this paper, a dynamic threshold-based time window approach

was utilized. Two conditions needed to be met before an output was produced:

1. The distance class yielding maximum correlation needed to surpass the other correlations

by a certain threshold amount,

2. the time window for classification needed to be sufficiently long.

Here, the minimal time window was set user-specifically based on the ITR using the

recorded training data. A similar approach was utilized in our previous study, where the time

window was determined in relation to off-line accuracy [31].

Interestingly, although, good correlation properties of the m-sequence require a full stimu-

lation cycle (here 1.05 s), high accuracies were achieved with an incomplete code sequence (see

Fig 3). On average, the optimal classification time window in terms of off-line ITR was 0.57 s

(ranging from 0.35 s to 1 s) for the c-VEP paradigm and 0.62 s (ranging from 0.25 s to 1.35 s)

for the SSVEP paradigm. Hence, despite the comparably low number of targets, high ITRs

were achieved. This can also be attributed to the utilization of ensemble methods, which can

significantly increase system speed [5]. Additionally, for the SSVEP paradigm a filter bank

approach as proposed by Chen et al. [17] was utilized to enhance target discrimination. Similar

methods could also enhance the classification accuracy for the c-VEP approach. Therefore,

our future work will focus on investigating suitable cut-off frequencies for the c-VEP

paradigm.

Regarding the copy spelling phase, the number of output characters per minute was on

average significantly higher for the sentence spelling tasks, in comparison to the word spelling

tasks where no dictionary suggestions were used (see Tables 2 and 3). This demonstrates the

robustness of the proposed time window approach as well as the effectiveness of the imple-

mented word suggestion methods. It should be noted, that participants did not always use the

dictionary whenever they had the chance to do so (suggestions were simply overseen). For this

reason, in some cases, the single word OCM was higher in comparison to the sentence task.

Improvements could be made in regards to the arrangement of the GUI targets to make the

suggestions more prominent. For some participants, a longer gaze shifting phase when sugges-

tions are presented could also be helpful. It should further be noted, that participants used the

system for the first time. More experience with the GUI could improve OCM as well.

Overall, there was surprisingly little performance difference between the two stimulation

modalities. The c-VEP stimulation patterns yielded slightly higher off-line ITRs and signifi-

cantly higher ITRs in word copy spelling tasks. In on-line sentence spelling, the speed differ-

ence becomes negligible. This is due to the fact that in sentence spelling, usually larger search

phases are required to find the next letter or word to select.

Conclusion

A dynamic classification time window approach for time synchronous VEP BCIs was pro-

posed. The optimal time window was determined individually deduced from a training session

which was also used for the generation of templates and spatial filters. An 8-target spelling

application utilizing n-gram-based word suggestions was used to evaluate the usability of the

developed methods. Twelve participants tested the system in on-line spelling tasks with the

SSVEP and the c-VEP paradigm. The presented study demonstrates the robustness of the pro-

posed approach. All participants completed sentence spelling and word spelling tasks with

accuracies well above 90% for the two paradigms. Ensemble-based classification strategies

were employed in both cases. The proposed methods were equally effective for c-VEP and

SSVEP based systems in terms of ITR; mean ITRs of approximately 57 bpm were achieved in
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both cases. Nevertheless, in word spelling tasks, the c-VEP system (mean word spelling ITR

92.7 bpm) outperformed the SSVEP system (ITR 75.1 bpm). In terms of user-friendliness how-

ever, the SSVEP paradigm was preferred by most participants. The results suggest that the

stimulation pattern (SSVEP vs. c-VEP) could be selected based on the user preference. In

terms of speed, the optimal paradigm could be determined individually for each user in a short

training session. However, the perceived level of user-friendliness should also be taken into

account, as it might be more relevant for end users than pure system speed.
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