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Abstract

Infections can spread among livestock notably because infected animals can be brought to

uncontaminated holdings, therefore exposing a new group of susceptible animals to the dis-

ease. As a consequence, the structure and dynamics of animal trade networks is a major

focus of interest to control zoonosis. We investigate the impact of the chronology of animal

trades on the dynamics of the process. Precisely, in the context of a basic SI model spread-

ing, we measure on the French database of bovine transfers to what extent a snapshot-

based analysis of the cattle trade networks overestimates the epidemic risks. We bring into

light that an analysis taking into account the chronology of interactions would give a much

more accurate assessment of both the size and speed of the process. For this purpose, we

model data as a temporal network that we analyze using the link stream formalism in order

to mix structural and temporal aspects. We also show that in this dataset, a basic SI spread-

ing comes down in most cases to a simple two-phases scenario: a waiting period, with few

contacts and low activity, followed by a linear growth of the number of infected holdings.

Using this portrait of the spreading process, we identify efficient strategies to control a

potential outbreak, based on the identification of specific elements of the link stream which

have a higher probability to be involved in a spreading process.

Introduction

Production of dairy and meat products is a major economic field in Europe. Fighting disease

spreading is thus a key issue for the protection of economic interests, as well as human health

and animal welfare. Among the various routes to infect holdings, such as contamination by

wildlife or contacts between herds in pastures, cattle trade movements spread pathogens at

national and international levels, and are thus a major way of infection. People and decision

makers in Europe have recently become more aware of the problem. In particular, since the

Bovine Spongiform Encephalopathy crisis of 1996, each state of the European Union has to

identify every bovine on its territory and to register cattle trade movements. The Base de Don-
nées Nationale d’Identification (BDNI) database, which is the focus of this work, is the French
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enforcement of this decision. This kind of data is characterized by the availability of temporal

information through the record of dated cattle exchanges. The aim of this study is to fully cap-

ture the importance of temporal information when modeling disease spreading in order to

evaluate potential outbreak sizes and to be able to characterize spreading speeds.

State of the art

Modeling disease spreading has been a hot topic for years [1–5]. Essentially, this issue relies on

two ingredients: the infection model and the structure of underlying contacts. Concerning the

infection model, the simplest one in the literature is certainly the SI model, which considers

that nodes are in one of two states (or compartments): susceptible or infected. Susceptible

nodes become infected when interacting with other infected nodes, according to a given prob-

ability. Many other compartments can be added, depending on the specific disease under

study to make this propagation model more realistic [2]. Among others, the SIR model adds a

Recovered state, which simulates immunity after having recovered from a disease; or the SIS

model, where nodes return to a Susceptible state after being infected with a certain probability

per time step or after a fixed time. For all these models, the system eventually reaches a station-

ary state which reveals the final fraction of the population being infected according to the cho-

sen parameters: infection and recovery rates, delay before immunity, etc. (see [6] for example).

The full definition of the problem demands to describe how infected agents encounter sus-

ceptible ones. A basic hypothesis is to suppose that the nodes are able to interact with all the

population with the same probability. Such a population is said to be fully mixed. However,

real populations are known to present different encounter behaviors depending on individuals.

Since the late 1990s, complex networks analysis has brought a new momentum to the domain

by emphasizing the role of this second ingredient, i.e. the structure of the contacts underlying

spreading phenomena [7]. Using a simple and general graph-based representation, it allows to

represent a variety of situations and scales. For instance, the nodes of a graph may be individu-

als [8], locations such as cities [4] or agricultural holdings—which are our objects of interest.

The versatility of these models also allows to represent other kinds of spreading phenomena,

which characteristics are supposed to be resemblant to infection spreading, such as a rumor

spreading in a social network [9]. Taking into account the characteristics of the network has

led to identify issues which result from its heterogeneities. For example it has been shown

that epidemics tend to remain endemic on a heterogeneous structure [7]. Also, it has been

stressed the prominent roles of specific nodes [10], and adapted epidemic control strategies

ensued [11, 12].

In parallel of the studies emphasizing the role of heterogeneous contact patterns on the

spreading dynamics, other works have brought into light the fact that temporality of interac-

tions also plays an essential role. Indeed, in many real world situations, the number of interac-

tions per node varies over time, and nodes that were interacting a lot during a period can

suddenly turn inactive. For example, the seminal work of Morris et al. on HIV [1] showed that

concurrent partnerships could considerably increase the impact of spreading compared to

sequential contacts. As time-labeled data was not easily available, the body of literature on this

aspect grew mostly in the last ten years. Moreover, early attempts at using temporal informa-

tion tend to use snapshot-based description of the data [13, 14]. It consists in representing the

data during a given period as a graph, where a link between two nodes represent the existence

of at least one interaction between these nodes during the period considered. Thus, such repre-

sentation allows to use the toolbox provided by graph theory. However, choosing appropriate

time windows to analyze temporal data is known to be a difficult question [15], even impossi-

ble to manage when several timescales are intertwined. It has been suggested quite early that
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burstiness and consequently the heavy-tail of the inter-event times distribution play a critical

role in the spreading process [16–18]. Other works have underlined that the bulk of this distri-

bution cannot be neglected and have laid stress on the relative order of the events [19]. More

generally, the dynamics of links considered separately cannot account alone for the global

spreading process, and several studies [20–23] evaluate with null models the impact of the cor-

relation between the structure and the dynamics of the network.

The study of both the static and dynamic properties of the contact networks are relevant in

the context of animal trade networks. Indeed, we have already mentioned that knowing the

structure of the network is essential to identify efficient epidemic control strategies [3]. Conse-

quently, many studies have focused on the description of such network data, sometimes lim-

ited to a static description [24]. When temporal information is included, it is often scrutinized

using graph snapshots, but recent works tend to consider snapshots as sequences of graphs,

and analyze spreading processes that span over several snapshots [5, 25–32]. While there is still

an important focus on graph features and representations, these studies also show an increas-

ing interest to account for the intrinsically dynamic nature of the data. Some of these works

examine purely temporal characteristics and the stability of the features observed through time

[27, 29, 30]. Others introduce or use concepts such as infection chains or disease flow centrali-

ties, which allow to investigate the limits of purely graph-based representations and discuss the

potential size of an epidemic [25, 26, 32] as well as epidemic risk in general and ways to miti-

gate it [5, 28–30]. We will come back to these points in more details later.

Position and contribution

Our study focuses on the French cattle trade network from 2005 to 2015, as it appears in the

BDNI. Other works have described previous versions of this database: [24] described year

2005, and [30] described the 5-years period from 2005 to 2009. Here, we do not aim at model-

ing the propagation of a specific disease, with a precise compartment model or a very fine-

grained description of the agents of the system—in the spirit of [33] for example. We rather

consider this study in the line of [34]: we explore the structure of the dataset using a simple epi-

demic model, which is a deterministic SI model, with an infection probability during a contact

set to 1. This model can be understood as a proxy to represent a worst case scenario. Besides

that, many conclusions on spreading characteristics remain valid for more complex propaga-

tion models in spite of its simplicity. For example, if we are looking for potential super-spread-

ers of an infection, there is a high probability that a node identified as such with a SI model

would also be a super-spreader using a more elaborate model. [35] also describes the SI model

as a good mean to explore the first stages of an infection spreading. From our point of view, a

decisive argument to use such a model is that one may consider that it is rather a measurement

probe of the structure of the data, as it is deterministic.

We seek properties of the temporal structure of the dataset which have an important impact

on spreading processes in the specific case of this cattle trade dataset. Indeed, cattle trade net-

works exhibit specificities that we aim at pointing out, and in that sense our work is close to

studies such as [30, 32].

The contributions of this work are the following:

• We evaluate on the BDNI the impact of the events chronology on the reachability of nodes.

These measurements are close or similar to what has been observed in previous studies on

the German pig trade network [29, 32]. On this point, we confirm their observations and

suggest that most animal trade networks would probably lead to the same qualitative

conclusions.
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• We propose a new measurement of the spreading impact which allows to differentiate

spreading scenarios by also accounting for the spreading speed in a SI context.

• Then, we propose a simple and intuitive model to describe a spreading phenomenon, which

allows to describe the process with few parameters. This model corresponds to a specific

kind of scenario which seems to be the norm in the BDNI with the spreading model that we

have chosen.

• Finally, based on the former observations and definitions, we propose suited target control

protocols. In particular, we propose to use as a cost unit the actual atom of information in a

link stream, which is an interaction. We will see that it deeply affects the intuition that a user

can have of the efficiency of a target control strategy. And consequently, we bring into light

that link-based strategies, which directly use the temporal nature of the data are more effi-

cient than usual node-based strategies in the literature.

In order to reach these goals, we first present some characteristics of the dataset, focusing

on properties which have a direct impact on the spreading dynamics examined later. Then, we

discuss the infection model at the heart of this work and the sequences of infections that ensue

in a static and a dynamic context, comparing the number of reachable nodes in both cases. We

propose a simple model of the sequences of infections based on a two-phases description of

the process, which provides a schematic description of the dominating spreading scenario.

Finally, we propose to rethink standard targeted control strategies in the light of the observa-

tions made, in particular we propose strategies based on the descriptions of the sequences of

infection which prove to be efficient in the context of the BDNI.

Materials and methods

Throughout this work, we deal with the BDNI, which records bovine trade movements in

France. We have access to eleven years of data from 2005 to 2015. The access to the BDNI is

not public, but can be obtained through a specific agreement with the French ministry of agri-

culture. It contains approximately 148 million animal transfers. Animals are often traded in

batches, and as we do not model an infection at the animal level, we focus on batch transfers

between holdings, which are dated with a daily granularity. Batch sizes are not investigated in

this work. Moreover, different types of holdings feature the data: farms, markets, assembly cen-

ters, slaughterhouses and knackery premises. Movements to slaughterhouses and knackeries

are dead-ends concerning disease propagation, therefore, we exclude them from our data.

After this basic preprocessing, there are around 32,600,000 time-labeled batch movements in

the dataset. Among the remaining 300.000 holdings, there are 90 markets (0.03%), about 2800

assembly centers (0.9%), and the rest are farms.

Data modeling

One needs a formalism to represent time-labeled data that contains the information of the

interactions which can support the infection spreading. Such data is often referred to as a tem-

poral network, which is a general term to refer notably to a collection of triplets (t, i, j) meaning

that node i interacts with j at time t [36]. Depending on the data specifics (for example interac-

tion durations), authors adapt the formal tools to the context and their needs. Recently, spe-

cific formalisms have been developed to define mathematical tools and algorithms adapted to

these data. In this study, we use the link stream formalism [37], which favors an intuition

based on the idea that such data are best represented by taking into account both its graph-

related and time-series related characteristics. Other formalisms exist with similar benefits,

like for instance TVG [38], but we use here the link stream formalism that emphasizes the
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streaming nature of data. It also allows to describe the temporal network with continuous

time, though we do not use this property of the formalism in this work. In a few words, a link

stream L is a set of nodes V, a set of temporal links or interactions E, and a set of interaction

times T. An interaction is a triplet (t, i, j) 2 E, with t 2 T and (i, j) 2 V × V.

Here, a directed edge from holding i to holding j on day t corresponds to a triplet (t, i, j) in

the data. In most experiments conducted in this work, we focus on temporal parts of the data-

set. We mainly use year 2015, and check that the results are consistent for other time periods.

Implementation

Throughout this work, our computer implementations have been achieved in python. Specific

graph-based computations (such as betweenness centrality) are realized using the NetworkX

library (https://networkx.github.io/). To give the reader an idea of the order of magnitude of

the computational times, a typical batch of 1000 spreading runs (such as the ones described

later in the paper, with Δ = 4 weeks) takes approximately 1 hour. Consequently, it may be use-

ful to use a lower level, more efficient programming language in order to scale up the simula-

tion parameters.

Characteristics of the BDNI

In the rest of this section, we report a few features of this dataset, which have a direct impact

on the spreading dynamics, as we will see later on.

Temporal variations of active nodes. A holding is said to be active during a given period

if it sent or received at least one batch during this period. We show in Fig 1 the number of

active holdings (or nodes) and the number of batches exchanged over several aggregation peri-

ods. Of course, only active nodes can relay an infection, so it gives insight on how important is

the risk of spreading a disease in case of an outbreak depending on the period considered.

We can see that the number of active holdings as well as the number of transfers is fluctuat-

ing: the overall trend is a decrease over the years. It is consistent with the observations on years

2005 to 2009 in [30], and it is probably a consequence of the holding merging phenomenon in

France. We also see periodic activity patterns which are visible when measuring the number

of active holdings per week. Overall, there is a higher activity level during early spring and

autumn, and a lower level during summer and at the end of the year, which is consistent

with the common knowledge of the field. Note that at a daily scale (not represented here), we

observe peaks of activity on Mondays, then the activity decreases throughout the week and is

at its lowest level during weekends.

Heterogeneity of nodes degree and activity. We now investigate the number of neigh-

bors of a node, that is to say the number of holdings from and to which it receives and send

batches. As previously discussed, the heterogeneous structure of the network is known to have

a significant impact on spreading processes.

We measure the inverse cumulative distributions (ICD) of in and out degree of the nodes,

as well as the inverse cumulative distributions of in and out activity, that is to say the number

of in and out transfers a node is involved in. We plot the results obtained for the year 2015 in

Fig 2. Similar results are obtained for every year of the BDNI. The degree distributions are het-

erogeneous, which is also consistent with the literature of the field [27, 30, 32]. Note that the in

and out-activity ICD have different shapes as the in-activity ICD is closer to a power-law distri-

bution; by contrast, the out-activity ICD exhibits much fewer high activity nodes and more

nodes with low and intermediary values, with a significant drop when the activity reaches

approximately 100 transfers.
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A few nodes are in or out-hubs. For example on the 2015 data only, if we arbitrarily set the

threshold to 100 batches bought or sold, around 1.7% of nodes with in-degree > 0 are in-hubs,

while 0.3% of nodes with out-degree > 0 are out-hubs. Markets and assembly centers are over-

represented among hubs, as they account respectively for about 2.7% and 39.1% of in-hubs

and 7.2% and 91.7% of out-hubs. They also have a much larger average out-degree (markets:

263, centers: 105, farms: 5 in 2015) and average in-degree (markets: 721, centers: 292, farms: 3

in 2015).

Asymmetry of interactions. It was observed that the French cattle trade network is asym-

metric, in the sense that the existence of a link from i to j does not involve in general the exis-

tence of a link from j to i [30]. An indication of this property can be seen by comparing the

number of holdings buying and selling cattle. For instance in 2015, 95% of active holdings are

selling animals, while only 58% are introducing new animals in their herds. This property is

also measured using the reciprocity ratio RR, which is defined as the fraction of reciprocated

Fig 1. Number of active nodes. Left: number of active nodes and number of transfers per month from 2005 to 2015. Right: number of active nodes per

week over several years. A node is active if it is involved in at least one transfer during the period considered.

https://doi.org/10.1371/journal.pone.0217972.g001

Fig 2. Degree and activity inverse cumulative distributions. Inverse cumulative degree (left) and activity (right) distributions over 11 years of data

collection. Distributions are clearly heterogeneous, but while in-degree and in-activity ICDs are relatively close to power laws, out-degree and out-

activity exhibit two modes, with sudden drops at intermediary values.

https://doi.org/10.1371/journal.pone.0217972.g002
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links during a given period:

RR ¼
number of reciprocated links

total number of links

We measure that this ratio is indeed between 0.10 and 0.13 for yearly networks, and between

0.06 and 0.09 for monthly networks. Note that the RR is mostly relevant when compared to a

reference model, as underlined in [39]. Here, it is hard to decide what is an appropriate refer-

ence model as a holding in the network can only reach a limited number of other holdings,

due for example to constraints related to geography or to the production chain. However, a

layperson could think that if an animal can be sent from holding A to holding B, then the

reciprocal is true and therefore would expect a rather high probability of observing this

situation. But these measurements indicate that this is actually a rare situation and thus, the

directedness of traffic flows should not be neglected, as it certainly impacts potential infection

propagations.

We have reported a few characteristics of the dataset which have a direct impact on spread-

ing simulations. A more detailed description of the BDNI is not the topic of this work, however

we report that the dataset exhibits characteristics which are consistent with measurements

made on previous analyses of the BDNI [24, 30]. Moreover, other bovine trade networks

exhibit similar structural properties, for example the dataset has qualitatively similar distribu-

tions of inactivity periods as the one observed in the Italian cattle trade network [27]. Even

other animal trade networks have common traits with the one that we have used, such as pig

trade in Germany [32], which suggests that results presented in the following might be general

to animal trade networks.

Results

Node reachability in snapshot-based vs temporal representation

A usual question when considering the spreading of an infection on a network is which nodes

can be reached by the infection, knowing already infected nodes. The point investigated in this

section is the closely related issue of evaluating the maximum number of nodes that can be

reached in the worst case scenario where any transfer from an infected holding to a susceptible

one infects it systematically. In particular, we compare the results obtained when the data is

described with static graph snapshots to the case where the data is described as a truly temporal

network.

Reachability in a directed network. We call snapshot of the data a static network repre-

sentation which aggregates the interaction data during a given time window. Using this

representation, the spreading process is considered to take place on the network over the

aggregation period only, and is therefore equivalent to a spreading process on a graph. In this

case, the question of the reachability of nodes can be understood through a large-scale descrip-

tion of the directed network. Indeed, real-world directed networks often exhibit bow-tie struc-

ture, as represented in Fig 3, which was originally used as a large-scale map of the world wide

web [40]. A giant weakly connected component gathers most nodes of the network, and such

component can be divided in the following way:

• a central bulk which is a giant strongly connected component (GSCC), where any node can

reach any other node following a directed path;

• a component upstream to the GSCC, called in-component, where nodes can reach nodes

of the GSCC following a directed path, but cannot be reached by the nodes of the GSCC;
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• reciprocally, some nodes are downstream to the GSCC: they can be reached from the GSCC

following a directed path, but cannot reach it, they constitute the out-component;

• the remaining nodes of the giant component are part of structures called tendrils (going out

from the in-component without reaching the GSCC, or going in the out-component without

coming from the GSCC) and tubes (connect directly the in- to the out-component, without

going through the GSCC).

Finally, other nodes in the network are in small weakly connected components.

Snapshots of the BDNI exhibit a structure of this kind. For example, the directed graph

obtained from the interactions of year 2015 has 176.771 active holdings that year, among

which 98% are in the giant weakly connected component, 42% are in the GSCC, 47% in its in-

component, 3% in its out-component, 6% in tubes and tendrils. These percentages are stable

from one year to another. Note that the aggregated graph at other timescales (monthly, quar-

terly) also exhibit a bow-tie structure.

We consider a deterministic SI model on such a structure, starting from a random node in

the network (the seed), and investigate the number of nodes reached at the end of the process.

The result can be easily anticipated from the bow-tie: if the seed is chosen in the GSCC, the

infection reaches all nodes located in the GSCC and all nodes in the out-component; if it is

located in the in-component, it reaches nodes of the GSCC and of the out-component and the

nodes of the in-component located on a directed path from the seed to the GSCC, etc.

Spreading cascades and reachability in a link stream. In the context of temporal net-

works, we define what we call a spreading cascade in the following of this work. We simulate

a deterministic SI spreading model starting from a seed node at a given time t0, with an infec-

tion active only during a predefined period of time Δ. By contrast with the snapshot case, the

spreading follows the chronological order of the interactions. The spreading cascade is the link

stream that is built from this propagation process. Precisely, when there is a directed interac-

tion (t, i, j) from an infected node i to a susceptible one happening between t0 and t0 + Δ, then j
is infected, and it is included as a node of the cascade and the triplet (t, i, j) is added to the tem-

poral links of the stream. An example of such cascade is represented in Fig 4. The number of

Fig 3. Bow-tie structure of a directed graph. The bow-tie map of a directed graph exhibits the different parts of any

directed graph with a giant weakly connected component: its GSCC, the relative in and out-components, tendrils and

tubes. Adapted from [40].

https://doi.org/10.1371/journal.pone.0217972.g003
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nodes in the cascade is thus the number of reachable nodes. A similar measurement can be

found in the epidemiology literature, it has been defined and used under the name out-compo-
nent respecting temporal sequence of contacts [29], and a previous version of it with no time

limit Δ is called outgoing infection chain [5, 25, 41, 42].

Comparing maximum outbreak sizes. We now compare experimentally the potential

sizes of the outbreaks according to the SI model with the snapshot-based representation and

with the link stream representation using the measurements aforementioned. First, we need to

precise some details of the experimental setup. Suppose that we consider snapshot of duration

T. To make the comparison as fair as possible, we compare the number of reachable nodes on

these snapshots to spreading cascades of duration Δ = T in the link stream. In the rest of the

article, we use three timescales which are typically used to investigate animal trade data: 4

weeks, 3 months and 1 year [26, 30]. We run a SI model using successively as a seed every

active node during the period of interest. In the temporal network case, the starting time t0
of the cascade is decided as follows: we draw a random point in time, then t0 is chosen as the

moment of the next outgoing interaction from this node (if it exists). Again, for the sake of

clarity, we only present results obtained on year 2015 for Δ = 4 weeks and 3 months, but the

results obtained on other years are consistent. Concerning Δ = 1 year, the starting points of

temporal cascades are drawn during year 2014, as having starting points in 2015 would not

allow to have 1 year long cascades.

In Fig 5, we represent the size distributions obtained using the three timescales investigated.

Let us first analyze the yearly network: it clearly displays two different situations: most of the

outbreaks are large (92% reaching more than 79,000 nodes), and the remaining ones are small

(between 1 and 500 nodes). In other words, the distribution exhibits two modes. This is a

direct consequence of the bow-tie structure mentioned above: if the seed is in the GSCC or

the in-component, it will reach all nodes downstream, that is to say the GSCC, the out-compo-

nent and possibly a few nodes of the in-component (up to 79,510 nodes, that’s 45.0% of active

nodes). Qualitatively the results are quite similar at smaller timescales in the sense that we

observe several modes. In fact, static distributions are obtained by putting together outbreaks

over each 4 weeks and 3 months snapshot in 2015, but if we consider each of these snapshots

separately, it also has only two modes. Besides that, the largest outbreaks reach a smaller frac-

tion of the nodes active that year (7.5% on 4 weeks networks, 15.5% on quarterly networks).

This observation confirms the fact that yearly animal trade mobility is not at all the repetition

Fig 4. Spreading cascade. Representation of a spreading cascade (in blue) starting from node c at time t0 = 2, with

overall time duration Δ = 7. The spreading stops at time t0 + Δ = 9 (in red). Arrows represent directed interactions

from node i to node j at time t, they are supposed to be instantaneous.

https://doi.org/10.1371/journal.pone.0217972.g004
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of movements occurring at a monthly or quarterly scale, which is consistent with previous

studies [26, 27, 30].

The results for propagation cascades using a link stream model show that maximal outbreak

sizes reach less nodes than their static equivalent: 6.0% for 4 weeks cascades of all active nodes

in 2015 (to be compared to 7.5%), 13.2% for quarterly cascades (comp. to 15.5%), 39.3% for

yearly cascades (comp. to 45.0%). Consequently in a snapshot-based approach, the maximum

outbreak size is overestimated by a factor 1.25 in the case of 4-weeks experiments (1.17 and

1.15 for quarterly and yearly timescales). Note that this overestimation factor is also measured

in [32] and named causal error, as it represents the error committed when neglecting the cau-

sality imposed by chronological order. It shows that neglecting temporal information leads to

significant overestimates of the possible size of epidemic outbreaks. We also observe in Fig 5

another striking fact: whereas yearly, quarterly and monthly snapshots consistently lead to

different modes of outbreak sizes (a few small ones and a majority reaching a large part of the

network, and none in-between), a temporal network representation leads to a continuum of

cascades sizes, from small to large ones.

In short, taking into account the chronological order of the events reduces the systematic

overestimation that a snapshot-based representation implies, and gives a more accurate view

of the size distribution, which is continuous rather than discretized in a few modes.

Similar results have been shown in [29, 32] in the case of the German pig trade network.

The authors observed that spreading cascades in this static directed graph are distributed in

modes, by contrast with spreading cascades in a temporal network. They also observed that

the maximum outbreak size is overestimated typically by a few tenths when using a snapshot

description. Our work confirms the assumption made in [29] that this result is true for other

animal trade networks, precisely the French bovine trade network. As the distribution of out-

break sizes in the snapshot case stems from the bow-tie structure of the directed network, we

expect that it generalizes to many other contexts.

Propagation profiles and modeling

The number of individuals reached by an epidemic-like process in a population can be sche-

matically represented by a S-shape curve. First, there is often a slow initial growth, then it takes

off and grows rapidly, in a way which is typically superlinear (e.g., [22]) and finally saturates

when all reachable nodes are indeed reached. Of course, we expect that a SI spreading model

behaves similarly on the BDNI dataset. However, this may correspond to very different

Fig 5. Outbreak sizes. Distributions of outbreak sizes using graph-based cascades (snapshot-based representation) and temporal cascades (link stream

representation). Δ = 4 weeks and 3 months distributions are built from all the outbreaks computed during year 2015, while Δ = 1 year distribution

results from the outbreak computed on years 2014 and 2015. While graph-based cascades are distributed in a few modes while temporal cascades reach

less nodes and do not exhibit such modes.

https://doi.org/10.1371/journal.pone.0217972.g005
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spreading scenarios which depends on the duration of each of these schematic phases and on

the timescale of observation.

Differentiating profiles with speed. To discriminate between various spreading scenar-

ios, such as the ones represented in Fig 6, the size of the outbreaks is not sufficient. One key

advantage of the link stream modeling is that it allows to account for the speed of the spread-

ing. In order to evaluate the speed of a cascade with a simple scalar measurement, we define

the Area Under the Infection Curve (AUIC) as:

AUICðDÞ ¼
Z t0þD

t0

nðtÞdt

where n(t) is the number of infected nodes at time t. Fast-then-saturating spreading scenario

will have large AUIC while slow-then-expanding scenario will have low AUIC.

Now, we investigate on the data how the AUIC depends on the final number nf = n(t = t0 + Δ)

of infected nodes in a cascade. We plot in Fig 7 the corresponding scatter plot for the year 2015

data with Δ = 4 weeks. We observe that for a given number of infected nodes, the corresponding

AUIC covers a broad range of values, especially for large cascades. For example for nf = 6000, the

AUIC ranges from 40, 000 to 100, 000. Yet, when comparing to the theoretical upper and lower

bounds of cascades AUIC for a given nf, we observe that we only cover a small part of the possible

spreading scenarios. These theoretical bounds correspond to infections with minimum and

maximum possible AUIC. For a given final number of infected nodes, it corresponds to an infec-

tion where all nodes except the seed are infected on the last day (minimum) and to an infection

where all nodes are infected on the first day (maximum). Moreover, the scatter plot has a very

specific shape: it exhibits a wing-like envelope, and a closer examination indicates that it is a

beam of parabolic curves passing by the origin of the plot.

When increasing Δ, the wing-like envelope tends to get thiner, with a higher density of

cascades concentrated on a few parabolas and large AUIC, indicating that cascades are less

diverse. Yet, qualitatively similar observations can be made with Δ = 3 month and 1 year, as

can be seen in Fig 8.

Fig 6. Spreading scenarios. Comparison between two schematic spreading scenarios. A is a fast-then-saturating
scenario, which means than the infection spreads rapidly during the early days, and then the infection rate decreases. B

is a slow-then-expanding scenario, which means than the infection spreads slowly at the beginning, and then the

infection rate increases.

https://doi.org/10.1371/journal.pone.0217972.g006
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Modeling the propagation. In order to explain the scatter plot described in the previous

section, we propose a simple model of the number of infected nodes as a function of time n(t).
From the observation of large cascades, it seems that the most common spreading scenario is

the following: during a first period that we call waiting time, very few nodes are infected, then

the infection reaches a tipping point from which the number of infected nodes increases line-

arly. A typical fit of the evolution of the number of infected nodes as a function of time in a

4-weeks cascade is represented in Fig 9. During the growth phase, we can observe that the

growth rate oscillates with a weekly period, which stems from the fact that cattle transfers are

rare during the week-end.

Fig 7. AUIC vs number of infected nodes (4-weeks): Real data. Scatter plot of the 4-weeks cascade sizes and AUIC in

the real data. Each point is a cascade of the sample. The black solid lines represent the theoretical boundaries outside

which there is no cascade, because of the theoretical relationship between the AUIC and the size of a cascade. The

scatter plot exhibits a wing-like envelope and is structured as a beam of parabolic curves.

https://doi.org/10.1371/journal.pone.0217972.g007

Fig 8. AUIC vs number of infected nodes (4-months, 1-year). Comparative scatter plots of the cascade sizes and AUIC in the real data for quarterly

(left) and yearly (right) cascades. Each point is a cascade of the sample. The black solid lines represent the theoretical boundaries outside which there is

no cascade.

https://doi.org/10.1371/journal.pone.0217972.g008

Spreading dynamics in a cattle trade network: Size, speed and typical profile

PLOS ONE | https://doi.org/10.1371/journal.pone.0217972 June 10, 2019 12 / 24

https://doi.org/10.1371/journal.pone.0217972.g007
https://doi.org/10.1371/journal.pone.0217972.g008
https://doi.org/10.1371/journal.pone.0217972


In order to check whether this two phase process can account for the spreading characteris-

tics, we fit its n(t) curve with a basic two-phase model n̂ðtÞ:

n̂ðtÞ ¼

(
1 if t 2 ½t0; t0 þ w½

g � ðt � ðt0 þ wÞÞ þ 1 if t 2 ½t0 þ w; t0 þ D�

The waiting time w and the linear growth rate g are parameters of the fit, and the best fit is

obtained by minimizing the root mean square error (RMSE) for each cascade. Note that 5.7%

of the cascades are filtered out because they are too small to provide a fit.

In order to evaluate the overall quality of the fits, we plot in Fig 10 the distribution of the

normalized RMSE (denoted NRMSE) for the 4-weeks cascades (year 2015). We use a standard

normalization by nmax − nmin = nf. It can be seen on the distribution that 96.5% of cascade fits

have a lower than 0.05 NRMSE. To give the reader an idea of what it visually means, the case

represented in Fig 9 has a NRMSE in the interval [0.020; 0.025]. Also, notice that few cascades

have a NRMSE lower than 0.02, that is because the model neglect the weekly variations of the

infection growth, which entails a small error on most fits, as in the case represented in Fig 9.

We present in Fig 11 the plot of the AUIC as a function of the final number of infected

nodes obtained using this two-phase model (in the 4-weeks cascade case). The model displays

the same wing-like envelope as real data does. Furthermore, when setting the value of the

growth rate, the points corresponding to the model all fall on a same parabola, which could be

inferred from the expression of the AUIC as a function of n̂f ¼ n̂ðt0 þ DÞ:

n̂f ¼ g � ðD � wÞ þ 1

) AUIC ¼ Dþ ðn̂f � 1Þ
ðD � wÞ

2
¼
ðn̂f � 1Þ

2

2g
þ D

This expression reveals indeed that the AUIC is a quadratic function of n̂f , which parameters

only depend on g. This simple model is then sufficient to understand the salient features of the

Fig 9. Fit of n(t). Example of the evolution of the number of infected nodes n(t) during a 4-weeks cascade and its fit

according to the two-phase model, according to which the number of infected nodes first remains constant, and after a

period tw increases linearly.

https://doi.org/10.1371/journal.pone.0217972.g009
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spreading cascade. Note that the model still fits well the data at a quarterly timescale, but the fit

is less convincing on larger timescales.

We plot in Fig 12 the distributions of waiting times and growth rates according to the

model. Waiting times are heterogeneously distributed, with a large majority of cascades having

small waiting times. By contrast, growth rates are distributed rather homogeneously: almost

90% of growth rates fall in the range from 150 to 400 infected nodes per day. The distribution

is centered around a peak at about 280. Note also that there is a peak at very low growth rates

(a few units), which correspond to cascades that do not reach their tipping point.

Fig 10. Distribution of the normalized root mean square errors. The RMSE of the fits is computed over the sample

of 4-weeks cascades, then it is normalized to the final value of the size of the cascade (nf). 5.7% of the cascades are

filtered out as they are too small to provide a fit. We observe that 96.5% of the remaining cascades exhibit a normalized

RMSE lower than 0.05.

https://doi.org/10.1371/journal.pone.0217972.g010

Fig 11. AUIC vs number of infected nodes (4-weeks): Model. Scatter plot of the 4-weeks cascade sizes and AUIC in

the 2-phase model. The black solid lines represent the theoretical boundaries, black dots correspond to model cascades

with a similar linear growth rate (300 ± 5 holdings infected per day).

https://doi.org/10.1371/journal.pone.0217972.g011

Spreading dynamics in a cattle trade network: Size, speed and typical profile

PLOS ONE | https://doi.org/10.1371/journal.pone.0217972 June 10, 2019 14 / 24

https://doi.org/10.1371/journal.pone.0217972.g010
https://doi.org/10.1371/journal.pone.0217972.g011
https://doi.org/10.1371/journal.pone.0217972


To conclude, we underline the fact that the growth phase on the BDNI is well fitted by a lin-

ear approximation. Moreover, our typical time scales of observation of animal trade networks

do not allow to observe the saturation effect. What we observe is a transient. We mean by satu-
ration effect that the growth rate of the infection should notably decrease and turn sublinear,

because the infections run out of susceptible nodes to infect. The saturation effect begins to be

clearly visible on n(t) for a Δ of several years (not shown in this work).

Impact of the type of nodes. Before moving to the implications of what we have observed

on the epidemic control strategies, let us briefly discuss the role of the node types (farm, assem-

bly center or market) on the scatter plot that we have discussed. Intuitively, waiting times can

be interpreted as the times needed to reach some key nodes in the network. We have seen pre-

viously that markets and assembly centers are very active and thus likely to be among these key

nodes. To test this assumption, we plot in Fig 13 the AUIC as a function of nf, depending on

the type of the starting node of a cascade.

Fig 12. Waiting times and growth rates. Normalized distributions of waiting times (left) and growth rates (right) of

4-weeks cascades, obtained when fitting n(t) with the two-phase model. While waiting times distribution is

heterogeneous, growth rates are distributed homogeneously around approximately 280 infected nodes per day.

https://doi.org/10.1371/journal.pone.0217972.g012

Fig 13. AUIC vs n(t): Role of node types. AUIC as a function of the final number of reached nodes (4-weeks cascade

on year 2015). Cascades are differentiated according to the type in the BDNI of their source nodes: markets (black),

assembly centers (yellow) and farms (blue). The plot indicates that centers and markets tend to be sources of larger

cascades with larger AUIC than farms.

https://doi.org/10.1371/journal.pone.0217972.g013
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For a given number of reached nodes, the figure shows that propagations starting from

markets have AUIC in the upper part of the scatter plot, which means that these cascades are

among the fastest on average. Moreover, we notice that cascades starting from markets almost

always reach more than 4000 nodes, therefore, markets source nodes lead to fast and large

spreadings. Concerning assembly centers, we observe a similar trend, but less dramatic than

for markets. In the light of these observations, one can suppose that if a cascade starting from a

farm reaches rapidly a market or an assembly center, it is more likely to be fast and large. How-

ever, the spreading dynamics is not so simple as to say that an infection reaching a market or

an assembly center also reaches its tipping point. This calls for further work to highlight the

role of markets and assembly centers in the propagation process.

Consequences on epidemic control strategies

In this section, we follow a procedure to evaluate epidemic control strategies based on the net-

work structure analysis, which has become popular since early works such as [7]. The overall

idea is to identify central elements of the network, in general nodes—sometimes links—and

then evaluate how removing them decreases the epidemic risk. The deletion operation repre-

sents the fact that sanitary measures are enforced (vaccination, quarantine, slaughter, etc.). We

investigate how the elements that we have discussed in the previous sections should be taken

into account for this kind of analysis.

Elements of the protocol. We consider three key elements underlying this method to

assess epidemic control strategies:

• First, the cost of a strategy is usually evaluated using the number of nodes removed from the

network.

• Second, the epidemic risk evaluation: according to a static, snapshot-based point of view, it

is often made using the connected components of the graph [24, 27, 30, 43]. A natural equiv-

alent in the context of temporal networks are the spreading cascades aforementioned. That’s

why recent studies have utilized the outgoing infection chains or related measurements to

evaluate the risk in animal trade networks [5, 28, 32, 41, 42].

• Finally, the strategy itself relies on an evaluation of the centrality of a node (or link). A cen-

trality is a measure of how important an element of the structure is in respect to a specific

property, here its ability to spread an infection. When the complete structure of the network

is available, usual centrality candidates are degree, activity, betweenness, closeness, which are

graph-based measurements [5, 7, 27, 30, 32, 41] and more scarcely dynamic centralities [28,

42].

Adapting the protocol to temporal networks. We have previously mentioned that a

same cascade size could correspond to very different spreading scenarios. Consequently, we

have defined the AUIC in order to account for the spreading speed. In the following, we use

this measurement to assess the epidemic risk. Note that in the case of the BDNI, analyzing the

sizes of the cascades or the AUIC leads to the same conclusions on target control strategies,

certainly because most large cascades follow the same 2-phases scenario that we have described

earlier. However, we suggest that with other datasets or other spreading contexts, this measure-

ment should complete an analysis based on outbreak sizes. Indeed, the AUIC plays a role

which can be compared to the measurement of the epidemic peak in the case of more elaborate

epidemic models (such as SIS or SIR).

Another important point is that the atom of information in a link stream is a temporal link

(t, i, j). Thus, it makes more sense to evaluate the cost of a strategy using the number of triplets
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removed rather than the number of nodes or links. Moreover, it makes possible to compare

strategies which target different elements of the temporal network structure.

Retrospective analysis. We analyze the efficiency of target control strategies in the follow-

ing way: first we rank nodes, links or triplets according to some centrality measurement. Then,

we delete a given fraction of the top-ranked triplets and run the SI spreading model on the

remaining structure. We evaluate the efficiency of the strategy by measuring the AUIC (and

the size, not reported here) of the cascades. This analysis is retrospective in the sense that

the data which is used to rank elements of the temporal network structure is also the data on

which we run the SI cascades. Experiments are conducted using year 2015 as the observation

period and with 4 weeks cascades.

Various strategies are tested in this section:

• We use classic node-based centralities: out-degree (denoted strategy n-OD), out-activity

(n-OA) and betweenness centrality (n-BC). Note that computing betweenness centrality is

expensive, thus we approximate the computation using the random pivot strategy described

in [44], with 20% of nodes used as pivots.

• We also use a basic link-based strategy based on its activity: the number of occurrences of

the link over the whole observation period (l-A).

• Finally, we define strategies which are specific to the cascade definition: we compute the

number of occurrences of nodes (n-Oc), links (l-Oc) and triplets (t-Oc) in the cascades. The

purpose of these strategies is to target nodes, links and triplets which are really located on the

propagation paths.

When a strategy is node-based (respectively link-based), removing a node corresponds to

removing all triplets, i.e. temporal links, involving this node (resp. link). This has a significant

impact on the strategies evaluation. Indeed removing the top 1% (resp. 10%) nodes ranked by

decreasing activity corresponds to removing 46% (resp. 80%) of triplets. Consequently, remov-

ing even a few central nodes from the cattle trade network has a dramatic impact on the vol-

ume of batches exchanged, which suggests that the corresponding safety measures are hardly

applicable.

To get insights about how similar these rankings are, we build sets of 70,000, 200,000 and

400,000 elements (that is approximately a fraction of respectively 2.6, 7.5 and 15% of the trip-

lets that year) featuring the top of each rankings, then we compute the Jaccard index between

these sets. Let us remind that the Jaccard index of two sets A and B is
jA\Bj
jA[Bj. The results are

reported in matrices displayed in Fig 14. The most striking observation is that all node-based

strategies have a relatively high Jaccard coefficient (larger than 0.5), which means that they

Fig 14. Correlation between strategies. Matrix of the Jaccard index between the top-70,000, top-200,000 and top-400,000 elements

in the rankings. The matrices show that the level of correlations between node-based strategies is high, which means that there is an

important overlap between the sets of triplets ranked high by two of these strategies.

https://doi.org/10.1371/journal.pone.0217972.g014
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share more than 2/3 of their triplets. Other rankings are more dissimilar, in particular strate-

gies based on the temporal description.

Going back to the comparison of target control strategies, the results are gathered in Fig 15.

We observe that the least efficient strategy is the one based on the number of occurrences of

a link on the observation period (l-A). For instance, when removing approximately 200,000

temporal links (7.5% of the total), the maximum cascade AUIC drops by 6% only. All three

node-based strategies are a little more efficient, leading to a 9% drop for a 7.5% triplet deletion.

Contrary to what has been reported in other works [24, 30], betweenness centrality does not

outperform other node-based methods significantly. A reader may be surprised by these obser-

vations, but it stems from the fact that we are actually examining very low percentages of node

deletions (7.5% of triplets deleted corresponds to only around 10 nodes deleted in node-based

strategies). The fact that node-based methods are almost identically efficient is consistent with

the level of similarity of the rankings that we have mentioned before. By contrast, the strategy

based on the number of occurrences of a triplet in a cascade and the number of occurrences of

a link in a cascade are much more efficient. For example, they lead to respectively a 77% and

Fig 15. Comparing strategies—Case 1. Comparison of deletion strategies in a retrospective analysis context expressed with the AUIC ratio, i.e.

the fraction of the maximum AUIC to its initial value, as a function of the percentage of triplets deleted. Triplets are ranked according to measures

realized on the data of year 2015, and AUIC ratios are also measured using cascades of year 2015. The plot shows that strategies based on the

number of occurrences of links (l-Oc) and the number of occurrences of triplets in the cascades (t-Oc) are much more efficient than all other

strategies, in particular node-based strategies (n-OD, n-OA, n-BC, n-Oc).

https://doi.org/10.1371/journal.pone.0217972.g015
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67% drop with 7.5% triplet deleted. Furthermore, these strategies allow to rank only around

400,000 triplets, beyond that links simply do not appear in any cascade of the sample. We

could find the remaining triplets by extending the sample size, but the interest would be lim-

ited as we have nearly completely contained any outbreak. In [29], the authors stated that only

a small fraction of nodes could lead to large cascades, if they are reached at the right time. In

the light of these observations, we can go one step further by stating that only a fraction of the

links could lead to large cascades.

As a conclusion, the number of occurrences of links and triplets in the cascades are the

most efficient targeted control methods on the temporal networks that we have tested. One

could argue that it comes from the fact that we are using a measure which is related to the

structure of the cascade, that is to say what is used to evaluate the risk. Still, the cascades used

for ranking are different from the cascades used to evaluate the performance (in particular

they don’t have the same starting point t0).

Predicting future risks. Now in a real prediction context, a forecaster would have to use

past data in order to evaluate the effect on cascades in the future. In order to be efficient, a pre-

diction protocol necessitates that the structure of the network does not evolve too fast, as dis-

cussed in previous studies [27, 30, 45]. In this section, we evaluate if the strategies identified in

the previous section can be used for risk prediction.

So we apply the same experimental protocol, except for the fact that we use data from the

previous year (in our experiments, 2014) to rank nodes, links or triplets; and evaluate the strat-

egies by running the SI model on the following year (2015). Note that with this setting, some

of the strategies defined previously cannot be used: in particular, as triplets from past year

obviously differ from triplets of the current year, we cannot rank triplets of the current year

following the strategy based on the number of occurrences of triplets in cascades of the previ-

ous year.

Fig 16. Comparing strategies—Case 2. Comparison of deletion strategies in a predictive context expressed with the

AUIC ratio, i.e. the fraction of the maximum AUIC to its initial value, as a function of the percentage of triplets deleted.

Triplets are ranked according to measures realized on the data of year 2014, and AUIC ratios are measured using

cascades of year 2015. The plot shows that the strategy based on the number of occurrences of links (l-Oc) in the

cascades is much more efficient than other strategies, in particular node-based strategies (n-OD, n-BC).

https://doi.org/10.1371/journal.pone.0217972.g016
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We report on Fig 16 the corresponding results. Here again, node-based methods perform

more or less similarly, but the method based on removing links that occurred frequently in the

past cascades is much more efficient. However, we observe that after a number of deletions

(again around 400,000 deletions, or 15% of the triplets), the strategy does not improve any-

more, as we probably cannot find the remaining triplets involved in the cascades. The remain-

ing cascades cannot be broken probably because they involve links or nodes that did not exist

during the previous year.

When measuring what types of links are removed depending on the types of nodes that

they connect, we observe that the links from centers to farms are heavily overrepresented

among the top links. For example they represent 80% of the links deleted among the first

200,000 triplets, while they represent only 13% of the links in the data. This share decreases

when deleting more triplets, mostly to the benefit of links connecting farms to centers which

are underrepresented in the top of the ranking. We interpret these observations as the exis-

tence of some kind of essential links in the network, which are regularly used for cattle trade

and are also bottlenecks of the overall flows of animals over the network. Links from centers

to farms seem to be overrepresented among them. These links are priority targets for control

strategies, as deleting them during a period of time should be less costly than deleting a node

from the network. It is tempting to assert that such links constitute a backbone, but previous

works on the topic have emphasized the fact that a stable backbone is hardly observable in

these networks [27, 45]. While this is true that the renewal rate of the links is high in cattle

trade networks, these recurring links play an important role in the spreading process which

justifies to focus on them.

Effect on the cascade growth rates. We come back to the two-phase model presented

previously to analyze the node deletion processes. When deleting triplets according to the ret-

rospective analysis protocol, we observe that the two-phase model still fits the observations rel-

atively well with much smaller cascades. Moreover, when fitting the growth rates, we observe

that different strategies affect the distributions very differently—see Fig 17. Indeed, in the case

of node-based deletion strategies, we can see that the average diminishes but the shape of the

distribution remains qualitatively similar. By contrast, deletion strategies based on the occur-

rence of links and triplets in a cascade not only cause the average to be lower, but also distort

the distributions: cascades tend to have homogeneous growth rates. We analyze this observa-

tion in the following way: using node-based strategies, a node deletion cuts out a branch of the

cascade but does not modify its shape significantly, most of the nodes that could be reached

are still infected using secondary paths; whereas the link and triplet-based strategies deeply

alter the shape of the cascade by cutting selectively bottleneck paths.

Fig 17. Effect on the distribution of growth rates of deletion strategies. Effect of suppressing triplets according to different strategies

on the distribution of growth rates computed with the two phases model. Left: node out-degree strategy, middle: occurrences of links

in a cascade strategy, right: occurrences of triplets in a cascade strategy. While node-based deletion strategies imply lower averages,

they do not change the shape of the growth rates distributions; in comparison link and triplet-based strategies deeply disrupt the

distributions.

https://doi.org/10.1371/journal.pone.0217972.g017
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Discussion

In this work, we gave support to the idea that it is crucial to take into account the temporal

dimension of data in order to model spreadings in animal trade networks. This point of view is

well-spread in the literature, and previous works put forward several arguments in its favor. In

the case of the BDNI, we confirmed several aspects of these works, in particular the fact that

snapshot-based representations tend to overestimate the sizes of outbreaks, and give a dis-

torted view of the distribution of potential outbreak sizes. Furthermore, we investigated the

spreading scenarios encountered, using not only measurements of the outbreak size but also

of its speed. We pointed out that our spreading process leads essentially to a unique kind of

large-size cascades in the case of the BDNI, well approximated by a two phases model. This

model gives a simple picture of the spreading process: during a waiting period, the infection

remains nearly silent, then it reaches a tipping point and grows linearly from then on. These

observations led us to reconsider several aspects of epidemic control strategies. First, the cost

of a strategy should be more appropriately evaluated in terms of the natural unit of a temporal

network, that is a triplet of interaction. Second, the impact of an infection model may be

assessed with its size but also with its speed, even in the case of our standard deterministic SI

model. Finally the strategy itself can be conceived using the epidemic cascades themselves,

which proves to be much more efficient that usual node-centrality based strategies, in a retro-

spective as well as in a predictive context.

This study raises several questions, most notably the identification of essential links in a

directed temporal network, which would be favored routes for spreading phenomena. Links

belonging to many cascades are certainly among those links, and we observed in the BDNI

that links from centers to farms are largely overrepresented in this set. We leave for future

work a more comprehensive investigation of the patterns formed by these essential links: it

would be indeed very interesting to point out more elaborate temporal motifs which are often

part of spreading cascades.

From our point of view, another interesting point is that we did not detect the saturation

effect of the spreading phenomenon at the timescales of observation. There are two possibili-

ties: either the saturation effect is occurring on a larger timescale, or there are new holdings

entering the system which always feed the cascades with new nodes. In the second case, we

would never observe the saturation phenomenon, and if the renewal rate is high enough, the

linear growth could continue forever. The truth lies in between these two extreme cases. A few

additional experiments indicate that it is closer to the former hypothesis: indeed, after a few

years the renewal rate per day seems to stabilize around a few dozens of new nodes appearing

in the dataset per day, which is insufficient to account for the typical growth rate of the cas-

cades. However, a question to solve for future works is to determine what part of the growth

rate is explained by new nodes entering the system and what part comes from old nodes which

have not been reached yet.
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10. Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A. Velocity and hierarchical spread of epidemic

outbreaks in scale-free networks. Physical Review Letters. 2004; 92(17):178701. https://doi.org/10.

1103/PhysRevLett.92.178701 PMID: 15169200

11. Holme P, Kim BJ, Yoon CN, Han SK. Attack vulnerability of complex networks. Physical review E. 2002;

65(5):056109. https://doi.org/10.1103/PhysRevE.65.056109

12. Cohen R, Havlin S, Ben-Avraham D. Efficient immunization strategies for computer networks and popu-

lations. Physical review letters. 2003; 91(24):247901. https://doi.org/10.1103/PhysRevLett.91.247901

PMID: 14683159

13. Braha D, Bar-Yam Y. From centrality to temporary fame: Dynamic centrality in complex networks. Com-

plexity. 2006; 12(2):59–63. https://doi.org/10.1002/cplx.20156

14. Lahiri M, Maiya AS, Sulo R, Wolf TYB, et al. The impact of structural changes on predictions of diffusion

in networks. In: Data Mining Workshops, 2008. ICDMW’08. IEEE International Conference on. IEEE;

2008. p. 939–948.
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