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Abstract

Linking in vitro bioactivity and in vivo toxicity on a dose basis enables the use of high-

throughput in vitro assays as an alternative to traditional animal studies. In this study, we

evaluated assumptions in the use of a high-throughput, physiologically based toxicokinetic

(PBTK) model to relate in vitro bioactivity and rat in vivo toxicity data. The fraction unbound

in plasma (fup) and intrinsic hepatic clearance (Clint) were measured for rats (for 67 and 77

chemicals, respectively), combined with fup and Clint literature data for 97 chemicals, and

incorporated in the PBTK model. Of these chemicals, 84 had corresponding in vitro ToxCast

bioactivity data and in vivo toxicity data. For each possible comparison of in vitro and in vivo

endpoint, the concordance between the in vivo and in vitro data was evaluated by a regres-

sion analysis. For a base set of assumptions, the PBTK results were more frequently better

associated than either the results from a “random” model parameterization or direct compar-

ison of the “untransformed” values of AC50 and dose (performed best in 51%, 28%, and

21% of cases, respectively). We also investigated several assumptions in the application of

PBTK for IVIVE, including clearance and internal dose selection. One of the better assump-

tions sets–restrictive clearance and comparing free in vivo venous plasma concentration

with free in vitro concentration–outperformed the random and untransformed results in 71%

of the in vitro-in vivo endpoint comparisons. These results demonstrate that applying PBTK

improves our ability to observe the association between in vitro bioactivity and in vivo toxicity

data in general. This suggests that potency values from in vitro screening should be trans-

formed using in vitro-in vivo extrapolation (IVIVE) to build potentially better machine learning

and other statistical models for predicting in vivo toxicity in humans.

Introduction

Relatively few chemicals in commercial use have been fully evaluated for hazard, in part due to

the resource intensive nature of in vivo animal testing [1–4]. To address concerns over the
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potential health effects of data-poor chemicals, new approach methodologies for chemical tox-

icity testing based on high-throughput in vitro and computational tools are being developed

by researchers from government, industry, and academia [5]. High-throughput screening

assays, such as those used in the Tox21 and ToxCast programs, provide in vitro bioactivity

data that may inform the potential hazard of a chemical [6, 7]. To link in vitro assays with par-

ticular in vivo endpoints, statistical and machine learning models have been developed that

select and weigh the potency and hit call data from relevant assays [8–10]. Using toxicokinetics

(TK) may potentially improve performance of such models and elucidate the general correla-

tion between in vitro bioactivity and in vivo toxicity data [11–13]. Since the probability of a

biochemical interaction is proportional to the chemical concentration of ligand at the receptor

[14, 15], the 2007 National Academies of Sciences, Engineering, and Mathematics report “Tox-

icity Testing in the 21st Century” proposed that dose-response modeling using physiologically-

based TK (PBTK) models is needed to use high-throughput screening data to estimate chemi-

cal risk [16]. TK describes the mathematical relationship between external dose and internal

concentrations, accounting for processes including absorption, distribution, metabolism, and

excretion of a chemical [13]. Utilizing TK, an in vitro bioactive concentration that is suggestive

of potential hazard can be extrapolated to an administered equivalent dose (AED) on a mg/kg

body mass/day basis, allowing for subsequent comparison to estimated exposure rates [2, 5,

17–21].

Although TK is important for transforming in vitro bioactive concentrations to estimate in
vivo doses, a large majority of chemicals are without TK data [19, 20], including hundreds of

chemicals detected in many U.S. citizens by the Centers for Disease Control and Prevention

National Health and Nutrition Examination survey [22].To overcome this limitation, high-

throughput methods have been developed that use in vitro approaches to determine important

TK parameters such as plasma protein binding and first order hepatic clearance. In vitro TK

parameters can then be scaled to in vivo situations in a process referred to as TK in vitro-to-in
vivo extrapolation (IVIVE) [21, 23–26]. More broadly, IVIVE methods are critical in the inter-

pretation of in vitro toxicity results and enable those results to be understood in the context of

risk posed to human health [17, 19, 20]. Wetmore et al. 2013 evaluated the effect of including a

TK model on the ability of a statistical classification analysis to predict in vivo results from in
vitro toxicity data for the rat [27]. The authors measured in vitro rat intrinsic hepatic clearance

(Clint) and fraction unbound in plasma (fup) for 59 chemicals and used in a TK model for

IVIVE. A classical TK model was used to convert ToxCast assay AC50 (the concentration at

50% of maximum activity) values to AED for comparison to the lowest dose in which any

effect was observed from traditional in vivo toxicity studies. In general, the in vitro assay with

the lowest AED was less than the corresponding lowest dose in which any effect was observed

for a given compound, demonstrating the potential of TK in estimating hazard. However, the

performance of a statistical classification analysis was only slightly improved by incorporating

TK. The authors suggested that this could have been due to assumptions in the application of

the TK, the interpretation of the in vitro assay results, variability in the in vivo results, or other

factors. Regarding the TK, the authors noted that the use of steady state values, assumption of

restrictive clearance (i.e., hepatic clearance dependent on fup [28]), inability to characterize

active renal transport, inaccurate bioavailability assumptions, and extrahepatic metabolism

routes may have influenced results. Additionally, assuming a nominal AC50 concentration to

be bioactive ignores the disposition of the chemical to in vitro assay components (e.g., cells,

media, aqueous, plastic walls) [11, 29].

One critical assumption in the PBTK model is whether hepatic clearance is dependent or

independent of fup (i.e., restrictive or nonrestrictive) [19]. Restrictive clearance assumes that

bound chemical is not made readily available for metabolism and imparts a delay on chemical
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clearance rates. In contrast, non-restrictive clearance assumes that the off-rates for the plasma

protein-bound parent chemicals are sufficiently rapid to instantly replenish the pool of

unbound parent in the plasma as needed. Regarding selection of predicted internal concentra-

tions derived from in vivo bioassay doses, assumptions are made about which concentration

determined from the PBTK model (plasma vs. tissue, mean vs. maximum, total vs. free) would

be most comparable to the AC50 [11]. Assumptions must also be made regarding the chemical

concentration (nominal vs. free) that is bioactive in the in vitro assay, and whether additional

calculations for distribution of the chemical in the assay are necessary [11]. Rather than use

steady-state solutions from a classical 3-compartment model [27], a time-dependent, PBTK

model allows for comparison of concentration from a tissue compartment corresponding to

the cell type or target organ of an assay [11, 13].

In this current work, the ability of a high-throughput PBTK model to elucidate the general

association between in vitro bioactivity and in vivo toxicity data is evaluated. Performance of

the application of the PBTK model in this respect is determined relative to results from a ran-

domization test (i.e., random parameterization of the model) and direct comparison of the

untransformed values of dose and AC50. Additionally, the influence of some of the main

assumptions in the application of the high-throughput PBTK model are investigated. New TK

parameters of rat-based in vitro measured fup and Clint are reported and were incorporated in

the PBTK modeling. Evaluations were carried out for 84 chemicals having TK parameter data

and corresponding in vitro bioactivity and in vivo toxicity data. The in vitro bioactivity data

used were from 242 ToxCast assay endpoints having observed bioactivities for any of the cor-

responding chemicals. These were compared to in vivo data for rat in two separate analyses: 1)

the “endpoint level” analysis used doses at which 68 specific pathologies were observed in Tox-

RefDB for different study types while 2) the “point of departure” (POD) level analysis used

lowest observed effect level (LOEL) and lowest observed adverse effect level (LOAEL) values

reported on the EPA’s CompTox dashboard [30]. Regarding the latter dataset, the definition of

POD in this work is meant for research purposes and suggests doses that might be benchmarks

for the minimum effect in repeat dose toxicity studies.

To thoroughly evaluate the application of PBTK for IVIVE, the model was used for both

forward and reverse dosimetry. In forward dosimetry, in vivo endpoint level doses for specific

pathologies in rat and study level POD were converted to internal concentrations (e.g., mean

plasma concentration) for comparison with in vitro AC50 values. In reverse dosimetry [13, 31],

AC50 values were converted to AED values [17, 32] for comparison with doses from the end-

point level and POD level data. While one might expect that the TK that works in the reverse

application should perform similarly for the forward solution, the comparison of dose vs. AED

(reverse dosimetry) is not equivalent to the comparison of AC50 and predicted concentration

(forward dosimetry) because the transformation between dose and concentration varies across

chemicals and in vivo study treatment regimens (e.g., the number of doses). The performances

of the reverse and forward solutions were evaluated by a series of orthogonal regressions of the

standardized log10 transforms of the variables. In general, applying the PBTK model elucidates

the association between in vitro bioactivity and in vivo endpoint level toxicity data. Several

assumption sets appeared to perform well, including the assumption set of restrictive clearance

with the selection of in vivo mean free concentration in venous plasma and the in vitro free

concentration predicted by an in vitro disposition model. Additionally, this latter assumption

set demonstrated less bias with respect to input model parameters (e.g., fup and Clint) than the

biases exhibited by otherwise similarly performing assumptions sets.
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Methods

In this work, the parameters fup and Clint were measured in vitro for rat and incorporated in a

PBTK model. These data were combined with previously published rat-specific in vitro TK

data collected in the R package httk [23]. A PBTK model was used to evaluate two dosimetry

approaches for comparing high throughput screening in vitro bioactivity and rat in vivo toxic-

ity data. A reverse dosimetry approach transformed in vitro concentrations to predicted

administered equivalent doses. Conversely, a forward dosimetry approach transformed in vivo
doses to predicted plasma concentrations. We restricted our evaluation to chemicals for which

effects were observed for both in vitro bioactivity and in vivo toxicity data. For each combina-

tion of in vitro bioactivity and in vivo endpoint a regression analysis [24, 33, 34] was used to

evaluate the performance of the PBTK model relative to the untransformed values and ran-

domized PBTK results. Results were summarized based on the count of the number of times

the PBTK model performed better than both a randomized result (y-randomized TK parame-

ters) and comparison of the untransformed values (in vitro AC50 vs. in vivo dose). Processed

data and models are provided in the R package httk [23] version 1.9 (https://cran.r-project.

org/web/packages/httk/). All analyses were performed in R version 3.5.1. Input data and

scripts for analysis are available in S1 File. A list of the abbreviations used in this work is

included in S2 File.

New in vitro measured TK parameters

New In vitro TK parameters for rat of fup and Clint measured in this work are reported in S1

Table; 67 chemicals had measurable values for fup and 77 chemicals had measurable values for

Clint. Collectively, 65 chemicals had measured values for both fup and Clint. In general, experi-

mental procedures similar to those previously described in [12, 17, 19, 20, 27] were employed

for this work.

Chemical samples

Neat chemicals along with supporting certificates of analysis were obtained from commercial

sources by the ToxCast chemical library management contractor (Evotec, San Francisco, CA).

Test substances were provided to Cyprotex (Watertown, MA) by Evotec in vials as solids. The

solids were dissolved in Dimethyl sulfoxide (DMSO) at 50 mM stock concentration and fur-

ther diluted as necessary. During chemical concentration analytical method development

attempts were made to identify the presence of the chemical peak and to assess the presence of

any background peaks. Only chemicals with verifiable presence and minimal background

were analyzed for protein binding and/or metabolic stability.

Chemical analysis

The in vitro methods for both fup and Clint require the development of chemical-specific analy-

sis methods to determine relative concentration. This requirement is in contrast to many

assays used for high throughput screening in which a single reporter, such as bioluminescence,

allows rapid analysis of the degree of perturbation across many chemicals [35]. The methods

used here did not develop a calibration curve to quantitate the chemical but rather relied on a

percent remaining approach (ratio of chemical peak areas).

For LC-MS/MS the signal is optimized for each compound by electrospray ionization posi-

tive or negative ionization mode. A full mass scan is used to optimize the fragmentation volt-

age and precursor ion m/z. A product ion analysis is used to identify the best fragment for

analysis and the optimal collision energy. A test injection is then performed using a standard
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C18 and/or HILIC column with a water/acetonitrile plus 0.1% formic acid gradient. Samples

are analyzed by LC-MS/MS using an Agilent 6410 or AB Sciex 5500 mass spectrometer cou-

pled with an Agilent HPLC and a CTC PAL chilled autosampler, all controlled by MassHunter

software (Agilent) or Analyst (AB Sciex). Instrumentation details and parameters for the

chemical analysis are also provided in S2 Table and S3 Table.

For some chemicals, peaks could be identified in the hepatocyte incubation media, but

could not be separated from the background caused by the presence of plasma protein in the

assay for fup or vice versa. This was possibly due to matrix effects (e.g., differential recovery

from the plasma matrix compared to the hepatocyte media matrix) that impacted sensitivities

in detecting chemicals. As such, fup and Clint were not necessarily determinable for the same

chemical.

Plasma protein binding data analysis (fup)

The fraction of the chemical unbound in the presence of plasma protein (fup) for rats was mea-

sured using rapid equilibrium dialysis (RED) [36] in which the free fraction of the chemical

was calculated based on the measured chemical concentrations in two chambers separated by

a dialysis membrane [17, 19, 27, 36]. Whenever fup was below the limit of detection, a default

value of 0.005 was assumed. This default value was estimated from half the minimum detect-

able level and previous experience with the RED assay [17]. New measured values for fup for 67

chemicals are included in the httk R package version 1.9 and are available in S1 Table. For use

in the models, a correction for non-specific binding in the RED assay was applied following

previous methods [24].

Positive controls used in the RED assay were Warfarin (Sigma, Part A2250) and (±)-pro-

pranolol hydrochloride (Sigma, Part P0884). DMSO was obtained from Fisher Scientific

(Part D128). Assay preparation used acetonitrile (Fisher Scientific, Part A955), water

(Fisher Scientific, Part W6), methanol (Fisher Scientific, Part A45, Potassium phosphate

buffer pH7.4 (Corning, Part 451201), hydrochloric acid 1N (HCl, Fisher Scientific, Part

SA48), and sodium hydroxide (NaOH, Fisher Scientific, Part SS266). Rat plasma was pur-

chased from BioIVT (formerly Bioreclamation; Westbury, NY). Approval by an Institu-

tional Animal Care and Use Committee or equivalent animal ethics committee was not

needed.

The plasma was thawed at 37˚C using a water and pH adjusted to pH 7.4 ± 0.1 using a con-

centrated stock solution of either NaOH or HCl. This mixture was dialyzed in a RED Device

(Pierce) per the manufacturers’ instructions against phosphate-buffered solution (PBS) and

incubated on an orbital shaker. The test compound solutions were diluted into plasma, 5 μM

final concentration, where the DMSO concentration did not exceed 1%. The assay was initi-

ated with the addition of 500 μL PBS containing 1% DMSO in the white chamber and 300 μL

of the chemical-spiked plasma in the red chamber of the RED device, samples were run in

duplicate. The RED device plate was then sealed and incubated in a 37˚C incubator with gentle

rotating shaking for 4 hours.

The recovery determination plate, or T0, was immediately prepared after the start of the

4-hour incubation. For recovery determination, 20 μl of the initial non-incubated plasma was

transferred to a 96-well plate and mixed with 50 μl blank PBS containing 1% DMSO followed

by the addition of 150 μL cold methanol containing internal standard (1 μM bucetin and 1 μM

diclofenac). Blanks were prepared for background subtraction and run in duplicate and pre-

pared by quenching 20 μL plasma containing 1% DMSO and 50 μL PBS containing 1% DMSO

into 150 μL internal standard. The quench plate was kept on ice for 10 minutes then centri-

fuged at ~6000x relative centrifugal force at 4˚C for 20 minutes.
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After the 4-hour incubation, each well was mixed and 200 μL aliquoted to a transfer plate.

Aliquots from both plasma and PBS sides are collected, an equal amount of PBS is added to

the plasma sample, and an equal volume of plasma is added to the PBS sample. Methanol con-

taining internal standard is added to precipitate the proteins and release the test agents. From

the transfer plate 20 μl of each plasma sample and 50 μl of each PBS sample were aliquoted

into a 96-well quench plate. The samples were matrix matched (i.e. 50 μL PBS containing 1%

DMSO were mixed with plasma samples and 20 μl plasma containing 1% DMSO were mixed

with PBS samples). The samples in the quench plate all received 150 μL of cold methanol con-

taining internal standard. The quench plate was kept on ice for 10 minutes then centrifuged at

~6000x relative centrifugal force at 4˚C for 20 minutes. The supernatant was then transferred

to a liquid chromatography tandem mass spectrometry (LC-MS/MS) plate or gas chromatog-

raphy-mass spectrometry (GC-MS) vial for analysis. Each assay was run with propranolol and

warfarin as controls.

Intrinsic hepatic clearance (Clint) assay

The in vitro intrinsic hepatic clearance (i.e., rate of first order metabolic clearance of the parent

compound normalized to cell number) in primary rat hepatocytes was measured and analyzed

similar to previously described methods [19, 27] at concentrations of 1 μM and 10 μM for each

chemical. If the chemical was measurable but disappearance of parent compound was not

apparent during the two hours over which the assay was performed, then the clearance was

assumed to be zero. For the subsequent calculations the clearance at 1 μM was used, if measured

successfully, otherwise the clearance at 10 μM was used. New measured values of rat Clint for 77

chemicals are reported in the httk R package version 1.9 and are available in S1 Table. In vivo
clearance is estimated from the in vitro measured Clint following methods in Wambaugh et al.

[26], including division by the estimated unbound fraction in the in vitro clearance assay [37],

correction using a well-stirred model [38], and scaling by the number of cells in the liver.

For the Clint assay, reference chemicals used were (±)-verapamil hydrochloride (Sigma, Part

V4629) and Warfarin. Pooled male cryopreserved rat hepatocytes were purchased from

BioIVT. Characterization of hepatocytes, including enzyme expression levels, was performed

by the vendor (BioIVT). 500 mL of William’s E medium, 5 mL of 200 mM L Glutamine (final

concentration 2 mM) and 3 g of HEPES (final concentration 25 mM) were added to the hepa-

tocytes. The media was mixed by inversion, warmed to 37˚C, and adjusted to pH 7.4 before

each use. The cells were thawed, viable cells counted, and then equilibrated according to the

supplier’s directions. Pooled male cryopreserved rat hepatocytes were added to an incubation

plate and kept at 37˚C in the incubator. After 30 min equilibration with gentle agitation,

250 μL of test compound solutions were aliquoted in triplicate into wells containing the cells

to give the desired final concentration of 1 or 10 μM. The cell suspension was incubated at

37˚C as above. At 15, 30, 60 and 120 minutes, 100 μL aliquots from the incubation plate were

removed and precipitated into a quench plate containing an equal volume of cold methanol

containing internal standard (1 μM bucetin, 1 μM propranolol, and 1 μM diclofenac). The 0

minute sample was prepared from aliquoting 50 μL hepatocytes into a quench plate containing

100 μL internal standard followed by the addition of 50 μL from the compound plate. Blanks

were prepared for background subtraction and run in duplicate and prepared by quenching

50 μL hepatocytes and 50 μL media into 100 μL internal standard. The quench plates were kept

on ice for 10 minutes then centrifuged at ~6000x relative centrifugal force at 4˚C for 20 min-

utes. The supernatant was then transferred to a LC-MS/MS plate or GCMS vial for analysis.

Each assay was run with verapamil, midazolam, and 7-OH 4-trifluoromethyl coumarin as

controls.
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Literature data on in vitro TK

The prior version 1.8 of the R package httk included literature data on rat-specific measure-

ments of fup and Clint for 97 chemicals. For fup these data were composed of 58 chemicals from

Wetmore et al. 2013 [27], 19 chemicals from Wood et al. 2017 [39], 13 chemicals from Pearce

et al. 2017 [23], and 7 chemicals from Naritomi et al. 2003 [40]. For Clint these data were com-

posed of 59 chemicals from Wetmore et al. 2013 [27], 35 chemicals from Wood et al. 2017

[39], and 3 chemicals from Naritomi et al. 2003 [40].

Toxicity data

Two sets of in vivo data were analyzed in this work: one set for an “endpoint level” analysis and

another for a “POD level” analysis. For the analysis of in vivo endpoint level data, doses corre-

sponding to observation of specific pathology endpoints were determined for each chemical,

and study types were analyzed separately. For the analysis of POD level data, minimum doses

were determined for each chemical from combined a dataset of LOEL and LOAEL values

determined across studies and study types. While allowing for simultaneous comparisons for a

larger number of chemicals, a potential lack of concordance between doses across study types

may be expected in the POD analysis. This serves as a point of comparison for the endpoint

level analysis. Data for in vivo doses used in the endpoint level analysis and the POD level anal-

ysis are available in S4 Table and S5 Table, respectively.

In vivo endpoint level data

In vivo data for rat were accessed from the Toxicity Reference (ToxRef) database [41–44] ver-

sion 1. Much of the data in ToxRefDB v1 was derived from studies or study summaries for

study designs compliant with or similar to the EPA OCSPP 870 series guidelines [45]. Tox-

RefDB v1 is a “positives-only” database, and in vivo data were reported as the nominal dose at

which an effect (not necessarily critical) was observed for a particular endpoint (e.g., nonneo-

plastic liver change, change in body weight gain, etc.), along with additional information

including the chemical used and study descriptors. The analysis in this work included chronic

(2 year), subchronic (90 day), and developmental (parental and fetal generations) study types,

which were analyzed separately. Multigenerational studies were not evaluated as they were not

directly amenable to treatment with the PBTK model as the time units were given in genera-

tions. Entries with rat in vivo data were selected for analysis. In vivo endpoints were defined

for each response pathology, as described by each unique combination of study type, effect-

category, effect-type, and effect-target. For a given combination of study, chemical, and

response endpoint, the lowest dose at which a response was observed was taken as the end-

point level dose. In this respect, the analysis was restricted to positive effects and multiple end-

points from a given study were represented for a given chemical. The doses may therefore

differ from LOEL and LOAEL values taken across the study and should not be considered

study-level LOEL or LOAELs as they are instead endpoint specific. Also, some chemicals had

results from multiple studies. Both sexes and all rat strains were used. The list of in vivo end-

points in the analysis are reported in S6 Table.

In vivo POD level data

In contrast to the endpoint specific in vivo data, we also evaluated POD level data using LOEL

and LOAEL maintained on the CompTox Chemicals dashboard (https://comptox.epa.gov/

dashboard). A table of the values used in this analysis (accessed March 2018) is provided in S5

Table. Rat data were selected, entries without usable dose units (mg/kg/day) or duration of
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study were filtered out, and the study types included in the evaluation were subacute, subchro-

nic, and chronic. Evaluation was further restricted to those doses that were orally administered

and had non-zero values. For each chemical, the minimum dose from a combined set of LOEL

and LOAEL values across the available data was determined and used in subsequent POD level

analyses. Although using data across study type may allow for comparisons made with a larger

number of chemicals, data taken across study types and pathologies may have a higher

variance.

In vitro bioactivity data

The Toxicity Forecaster (“ToxCast”) project consists of a suite of in vitro high throughput

screening assays conducted using a variety of different technologies and preparations [46].

ToxCast assays include both biochemical and cell-based assays. These assays are primarily

focused on human toxicity and are generally derived from human proteins and tissues. Assays

are conducted in concentration-response format and are analyzed to determine if a concentra-

tion-dependent response is observed. These responses are modeled by either a Hill function or

a Gain-Loss model, which can be summarized by the concentration required for 50% activa-

tion (AC50). In vitro data were accessed from the ToxCast summary files from October 2015

[47]. The AC50 value (μM) for each assay component endpoint was used for the evaluations in

this study. We restricted our analysis in this work to in vitro bioactivity data with positive

results (i.e., positive hit-calls) and filtered by disregarding positive hit-calls with any curve-fit-

ting flags. In vitro bioactivity data are available in the S1 File.

Analysis

An overview of the analysis workflow we used is shown in Fig 1. This workflow applies to both

the endpoint level data and POD level data. Scripts to reproduce the analysis are available in

the S1 File. As a first step, data for in vitro bioactivity and in vivo toxicity were merged by

chemical. In the endpoint level analysis (for which doses correspond to observed effects for

specific pathologies in rat), the number of unique chemicals with values for both dose and

AC50 were counted for each combination of in vivo endpoint and in vitro assay. Only those in
vitro-in vivo comparisons with at least 5 chemicals were included in the subsequent analyses.

In the POD level analysis (for which doses correspond to minimum values by chemical from

combined data for LOEL and LOAEL taken across pathologies and study types), in vitro assays

in the merged data set having AC50 values and corresponding in vivo POD doses for at least 5

chemicals were included in subsequent analyses.

Randomization test

The resultant merged data sets each contained a vector of chemicals having a particular distri-

bution. In addition to comparing the results of IVIVE using the PBTK model relative to

untransformed values of dose and AC50, we also compared performance of the PBTK model

relative to randomized results. If the performance of the random results were similar to the

PBTK result, it would suggest that differences between the performance of the PBTK result

and untransformed values were due to the mechanics of the model or analysis, rather than

chemical specificity. In each of the two separate analyses of in vivo data (endpoint and POD

level data), the vector of chemicals from the combined data set was permuted ten times with

resampling (Fig 1, step 2). Subsequently, these ten vectors of randomly permuted chemicals

were used to produce ten sets of “randomized” results. Effectively, each randomized result was

determined by parameterizing the PBTK model and accessory calculations based on the corre-

sponding random chemical.
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Fig 1. Diagram for the analysis workflow. κ is the ratio of internal concentration (μM) to dose (mg/kg/day) determined using the PBTK model for

an external dose of 1 mg/kg/day. ORMSE is the orthogonal root mean square error. Example chemicals are denoted by Ex1, etc. to enable

demonstration of data mergers.

https://doi.org/10.1371/journal.pone.0217564.g001

Evaluating in vitro-in vivo extrapolation assumptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0217564 May 28, 2019 9 / 33

https://doi.org/10.1371/journal.pone.0217564.g001
https://doi.org/10.1371/journal.pone.0217564


PBTK model

A diagram of the PBTK model used in this work is shown in Fig 2. The model allows for doses

to be absorbed through the gut or injected intravenously, although analysis was restricted to

oral doses in this work. The fraction absorbed was assumed to be 100%. We accounted for

organ and tissue partitioning in the PBTK model following the methods described by Pearce

et al. [24]. When experimental values for log P (EPI Suite, [48]) were unavailable, predicted

values from the OPERA model [49] were used. pKa values were from the work by Strope, et al.
[50] or predictions from ChemAxon (Budapest, Hungary). The time course internal concen-

tration of the PBTK model was evaluated using the EPA’s httk R package.

For a given set of assumptions, a dose of 1 mg/kg/day administered once a day was used to

determine in vivo concentration-to-dose ratios (κ) by the application of the PBTK model and

any accessory calculations with respect to the dose and study length. κ, effectively the ratio of

the concentration (μM) at 1 mg/kg/day to the dose of 1 mg/kg/day, is determined from the

PBTK model and any additional calculations (e.g., concentration selection, in vitro disposi-

tion). As such, κ is a function (generically denoted by f) of the chemical, time, assumptions,

and internal concentration selection (Eq 1). Concentrations (C) produced by the PBTK model

are proportional to dose (Eq 2); this holds for concentrations at a given point in time, linear

means, maxima, and steady state concentration. This characteristic allows for simple applica-

tion of reverse dosimetry, where in vitro concentrations (i.e., AC50) are converted to adminis-

tered equivalent doses (AED) by dividing the concentration by the corresponding

concentration determined for a dose of 1 mg/kg/day (Eq 3) [12, 17, 19–21, 27]. In previous

work, this type of conversion was applied for steady state concentrations [20]. The same

method is applicable to the transient solution, but with the requirement that the dosing regi-

men (study length and doses per day) are model inputs [23, 26].

k ¼ f ð1 mg=kg=day; chemical; time; assumptions; dose selectionÞ ð1Þ

C ¼ dose � k ð2Þ

AED ¼ AC50=k ð3Þ

In the analysis workflow (Fig 1, step 4), values for κ determined for different study lengths

and chemicals were then merged with the data set by matching chemical and study length to

produce the vector of κPBTK. Similarly, ten separate vectors of random results (κrand,i = 1:10)

were produced by assigning κ values corresponding to the permuted chemicals and study

lengths (Fig 1, table iii). It is important to note that only the TK and physicochemical parame-

ters are randomized in this analysis, the initial inputs (dose and study length; AC50) remain

specific to the original vector of chemicals. Predicted values for AED and internal concentra-

tion were then determined following Eqs 2 and 3. Various combinations of the assumptions in

the application of the PBTK model for IVIVE were evaluated, each producing a unique vector

of κPBTK and 10 unique vectors of κrand,i.

Forward and reverse dosimetry

The models employed in this work are phenomenological in that they are structured to repre-

sent the physical processes that have been observed experimentally. As such, if internal con-

centration (determined from external dose) were associated with AC50, then AED

(determined from AC50) may be expected to be similarly associated to external dose. To evalu-

ate this, we performed two separate comparisons (Fig 1, step 5a-b):
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a. Forward dosimetry: Evaluate the strength of the association between in vitro AC50 and pre-

dicted in vivo concentration (CPBTK) corresponding to dose as determined following Eq 2.

The association between CPBTK and the in vitro AC50 was compared with the association

between in vitro AC50 and the non-PBTK adjusted external dose values. To evaluate perfor-

mance relative to chance, the randomized results (Crand, i = 1:10) were predicted ten times

using TK for permuted (random) chemical identifiers and the associations between in vitro
AC50 and each Crand, i = 1:10 were determined.

b. Reverse dosimetry: Evaluate the strength of the association between in vivo dose and pre-

dicted external dose (AEDPBTK) determined following Eq 3. The association between these

doses was compared to the strength of the association between the non-PBTK adjusted in
vitro AC50 and dose. Again, to evaluate performance relative to chance randomized TK

result (AEDrand, i = 1:10) were calculated using the permuted chemical identities.

Fig 2. Diagram of the PBTK model in the httk R package. Q represents flow rates, Cl indicates hepatic clearance, k

indicates absorption rate [23].

https://doi.org/10.1371/journal.pone.0217564.g002
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Model selection

For each comparison of in vitro assay and in vivo endpoint, a series of univariate, orthogonal

regressions were performed for the standardized log10 transforms of the variables (Fig 1, step

6). First, all values (dose, AC50, CPBTK, Crand, i, AEDPBTK, AEDrand, i) were log10 transformed.

Values were then standardized by subtraction of the mean and division of the standard devia-

tion for the respective variable following Eqs 4 and 5. In this subsection, generic variables (y, x,

φ, and θ) are used to describe calculations. For forward dosimetry, the y-variable is log10 in
vitro AC50 and the x-variables are log10 transforms of CPBTK, Crand, i, and in vivo external dose.

For reverse dosimetry, the y-variable is log10 in vivo external dose and the x-variables are log10

transforms of AEDPBTK, AEDrand, i, and in vitro AC50.

�i ¼
yi � �y
sy

ð4Þ

yi ¼
xi � �x
sx

ð5Þ

The statistic used as the basis for the comparisons made in this work is the root mean

square error based on the orthogonal distance between a point and the regression line. Both

standardized variables are centered on zero and have a variance of 1, subsequently the orthog-

onal regression line is either φ = θ or φ = -θ. In either case, we can define a root mean square

error based on the orthogonal distance between a point and the φ = θ line, which we refer to as

the orthogonal root mean square error (ORMSE):

ORMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðð�i � yiÞ=

p
2Þ

2

n

s

ð6Þ

Effectively, the ORMSE serves as a representation of the association between the two vari-

ables (i.e., a lower ORMSE indicates a stronger, more quantifiably definable relationship). For

forward dosimetry, ORMSEs were determined between in vitro AC50 and CPBTK, between

AC50 and each of the ten sets of Crand, i, and between in vitro AC50 and external dose. For

reverse dosimetry, ORMSEs were determined between in vivo external dose and AEDPBTK,

between external dose and each of the ten sets of AEDrand, i, and between external dose and in
vitro AC50. As noted previously, Crand, i and AEDrand, i represent single sets of the ten random

results determined by parameterizing the PBTK model and other calculations using random

sampling from a distribution of chemicals.

Resulting ORMSE can be organized as in Fig 1, table iv. The ten separate sets of random

results allow for ten comparisons to be made for each in vitro assay and in vivo endpoint com-

parison. Note that the ORMSE between y = external dose and x = AC50 is equivalent to the

ORMSE between y = AC50 and x = external dose. The only values that change with evaluation

subset for a given in vitro-in vivo endpoint comparison are the ORMSE for the randomized

result. The forward and reverse dosimetry results were treated separately. For a given in vitro-
in vivo endpoint comparison, ORMSE were compared for each evaluation subset, and “wins”

were allocated to the predictor (PBTK, Rand., or Dose/AC50) with the lowest ORMSE (Fig 1,

step 7). The number of times a predictor had the smallest ORMSE were then counted (Fig 1,

step 8) and summarized per evaluation subset (Fig 1, table v). The medians and standard devi-

ations of the counts allocated to each predictor were then determined across the ten evaluation

subsets, again treating forward and reverse dosimetry separately (Fig 1, step 9). This process

(Fig 1, steps 3–9) was then repeated for every combination of assumption and concentration
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selection (internal concentration metric and in vitro distribution) of interest. An analogous

methodology was carried out for the POD level analysis, noting that doses in that case were

determined across in vivo response types.

Assumptions evaluated

In addition to understanding the overall impact of applying our high-throughput PBTK model

for IVIVE, we also evaluated the influence of some of the main assumptions in the application

of the high-throughput PBTK model. These include restrictive vs. nonrestrictive hepatic clear-

ance, selection of concentration from the PBTK model, and application of the Armitage model

[51] for distribution of chemicals in vitro. A list of the evaluated assumptions is included in S3

File.

Restrictive vs nonrestrictive hepatic clearance

Hepatic clearance is influenced by the effective rate of desorption of a chemical from the

plasma protein to which it is bound [52]. When this rate is relatively slow, the clearance is

dependent on the fraction of unbound chemical in the plasma (fup) and therefore considered

restrictive. When the desorption rate is fast, the clearance is independent of fup and termed

nonrestrictive. In the PBTK model, restrictive clearance may be accounted for by multiplying

the intrinsic hepatic clearance, Clint, by fup. For limited sets of chemicals with known in vivo
clearance, assuming nonrestrictive clearance may potentially provide more accurate results,

although certain chemicals (e.g., warfarin) are known to be metabolized under restrictive

clearance [19, 52].

Selection of concentration from the PBTK model

The PBTK model produces concentration vs. time profiles for each tissue/compartment in the

model. Different concentrations taken at different times may either be more or less indicative

of the conditions that lead to an observed in vivo response [28] and either more or less relatable

to an in vitro AC50 value. Mean and maximum concentrations were extracted from the solu-

tion of the PBTK model for the venous plasma concentration and the tissue plasma concentra-

tion from each tissue compartment in the model. The mean concentration is equivalent to the

area under the concentration vs. time curve divided by the time-length of the dosing. When

comparing predicted in vivo concentration (e.g., in plasma) with in vitro AC50, it may also be

preferable to compare concentrations from similar compartments. AC50 may either be 1)

assumed to be a nominal concentration directly comparable to CPBTK, or 2) assumed to be sim-

ilar to a free concentration so that CPBTK should be converted to a free concentration by multi-

plying CPBTK by fup. Furthermore, in cases where a model of the distribution of chemical in
vitro is incorporated in the interpretation of in vitro results, it may be that the in vitro free con-

centration should be compared to the predicted in vivo unbound concentration, fup�CPBTK.

Distribution in in vitro cell-based assays

The distribution of a chemical in an in vitro environment results in different concentrations

for different assay compartments (cells, water, lipids, proteins). The concentration in a particu-

lar assay compartment may be better associated with bioactivity in vivo than the nominal con-

centration (total amount per total well volume). This is particularly true for cell-based assays

where there is more material (cells, serum) available for chemical binding. For in vitro cell-

based assays, we evaluated an updated version of the in vitro distribution model by Armitage

et al. 2014 [51]. Updates include absorption to the walls, distinction between storage and
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membrane lipids in the cells, and changes in methods to estimate membrane concentrations.

Assay well geometry, media volume, and cell volume were taken from values reported by

Corning [53] that correspond to the assay footprint (i.e., well number). Other descriptors of

assay components, including fetal bovine serum (FBS) and cell content (lipid, protein, and

water fractions), are taken as averages of those values reported by Armitage. The values for

water solubility and Henry’s law constant used were from experimental values in EPI Suite

[48] if available or predictions from OPERA [49]. The aqueous phase concentration estimated

from the Armitage model was used for subsequent comparisons. For a given in vitro-in vivo
comparison, corresponding aqueous phase concentrations were calculated for each in vitro
result. A factor was then defined by the aqueous concentration divided by the nominal AC50.

The result for including the in vitro distribution model was then given by the concentration

from the PBTK model divided by the factor, thereby producing a unique κPBTK for the given

set of assumptions.

Results

Since the propensity for bioactivity is proportional to chemical concentration, TK frames the

dose-response relationship and associated hazard characterization by linking external expo-

sures (theoretical or relevant, depending on the scenario) to resultant internal concentrations.

This work evaluates varying sets of IVIVE assumptions by examining the impact of a PBTK

model on the association between in vitro bioactivity and in vivo toxicity data. In vitro HTTK

parameters of fup and Clint were measured for 65 new chemicals and analyzed jointly with data

from the literature for 97 chemicals. For the data considered, TK parameters, in vitro AC50,

and in vivo doses were simultaneously available for 84 chemicals. Forward and reverse dosime-

try results were determined using the PBTK model for each set of assumptions, and compari-

sons were made using a regression analysis. Two different in vivo data sets were used for the

basis of this analysis: the endpoint level data containing 80 chemicals with doses corresponding

to observed responses for 106 specific endpoints (68 pathological responses and 3 study types),

and the POD level data containing 84 chemicals where effects had been aggregated into a sin-

gle point of departure per chemical (the minimum LOEL-LOAEL taken across all available

pathologies, studies, and study types). For the endpoint level data, different in vitro assay–in
vivo endpoint combinations had different numbers of chemicals that were both active in vitro
and that had a particular in vivo endpoint observed; 2787 endpoint combinations had at least 5

chemicals, while 48 combinations had at least 20. For the comparisons made between the POD

level data and in vitro assay endpoints, there were 69 comparisons with at least 5 chemicals

that were active in vitro and in vivo, while 17 comparisons had at least 20 chemicals.

For each chemical, time dependent mean and maxima plasma and tissue concentrations

were determined by the PBTK model for a dose of 1 mg/kg/day for various study lengths.

Model linearity of the ratio of internal concentration to external dose for a given time-point

allowed for extrapolation to various dosing scenarios and evaluation of forward and reverse

dosimetry. Comparisons were made based on the ORMSE of the standardized log10 transforms

of the variables; depending on the direction of the dosimetry, AC50 (forward) or dose (reverse)

was compared vs the PBTK result (internal concentration or AED) relative to a randomized

result (internal concentration or AED) and the untransformed value (dose or AC50). While

other parameters could have been selected, ORMSE was deemed appropriate as a basis for the

broad evaluation in this work. Results were compiled by the number of times a variable

(PBTK, random, or untransformed) had the lowest ORMSE from each in vitro assay and in
vivo endpoint comparison.

Evaluating in vitro-in vivo extrapolation assumptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0217564 May 28, 2019 14 / 33

https://doi.org/10.1371/journal.pone.0217564


Example regression

To illustrate features of the regressions, an example analysis is demonstrated assuming nonre-

strictive hepatic clearance in the PBTK model, as well as using the total mean venous plasma

concentration and the nominal AC50. The results from the Attagene assay endpoint, ATG_PX-

RE_CIS_up, characterizing the regulation of the pregnane X receptor transcription factor

response element in HepG2 cells [54], were compared with the endpoint level in vivo data

from chronic studies for systemic, non-neoplastic, liver pathology. Outside of this example,

each in vivo endpoint was compared with every in vitro assay endpoint for the complete analy-

sis; more than 750,000 regressions were made in total across all the analyses. For the example

case, regressions of the standardized, log10 transformed variables are shown in Fig 3 for for-

ward dosimetry (a-c) and reverse dosimetry (d-f). A lower ORMSE indicates a stronger associ-

ation. The lowest ORMSE in the forward solution comparison is achieved using the PBTK

model (Fig 3A). However, for the AED comparison, the lowest ORMSE is for random (Fig

3E). As expected, the ORMSE is the same for AC50 vs dose in the forward dosimetry compari-

son and dose vs AC50 in the reverse dosimetry comparison (Fig 3C and 3F); in these latter two

comparisons, the points are mirrored around the y = x line, so the orthogonal distance to y = x

does not change.

For the PBTK and random results, the difference between the forward dosimetry and

reverse dosimetry results is not a simple switching of the axis. Rather, the comparisons of AC50

vs concentration are distinct from those for dose vs AED. In Fig 3A (AC50 vs CPBTK), there is a

possible outlier near x = -4 and y = -2 (all variables were standardized and log10 transformed,

as described in Methods); in the corresponding reverse dosimetry plot (Fig 3D), this is the

point at y = -4 and x = 2. If this point were omitted, the trends with respect to ORMSE would

be similar for the forward and reverse comparisons. However, this would be a subjective alter-

ation; instead our interest is in evaluating the effect of TK in general across comparisons of a

large range of assay endpoints and in vivo effects. A broad comparison among various in vitro
and in vivo data should mitigate the influence of any outliers; the example regression shows

results for only one of the comparisons that were made, and only one of the ten sets of random

results.

Fig 4 shows the distribution of ORMSE for the endpoint level analysis with the assumptions

of nonrestrictive clearance and mean total plasma concentration across all comparisons of in
vitro assay and in vivo endpoint. For demonstrative purposes, the random results in this case

are median values from the 10 sets of results. Results are restricted to those comparisons hav-

ing at least 5 different chemicals. The distributions for the forward and reverse solutions are

identical for dose (forward solution comparison) or AC50 (reverse solution comparison).

Results are also similar between the forward and reverse solutions for the random result, but

differences are apparent between forward and reverse dosing for the PBTK result and are par-

ticularly noticeable for those comparisons with greater than 20 chemicals. In that case, the

reverse dosimetry result (median ORMSE: 0.87) is shifted towards slightly higher values of

ORMSE than the forward dosimetry result (median ORMSE: 0.80). Relative to the random

result (median ORMSE: 0.91 for forward and reverse,� 20 chemicals), the PBTK result is

slightly lower in either case. The PBTK result is also slightly lower than the comparison of

untransformed dose and AC50 (median ORMSE: 0.90,� 20 chemicals). Similar trends are

observed for the corresponding POD level analysis across all the assays in Fig 5. For compari-

son based on at least 20 chemicals, the reverse result again appears shifted towards higher val-

ues of ORMSE (median: 0.94) than the forward solution (median ORMSE: 0.88). The example

analysis for the assumption set of nonrestrictive clearance with mean total plasma concentra-

tion suggests differences in the results for forward dosimetry and reverse dosimetry. To
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determine if these differences occur in general, the analysis was extended across various previ-

ously described combinations of assumptions and dose metrics.

Evaluating results across all assumption sets

For the endpoint level data, ORMSE values were determined for the forward and reverse

dosimetry comparisons for each in vitro assay endpoint and in vivo endpoint. For the POD

level data, ORMSE were determined for each assay endpoint. The number of times a variable

yields the lowest ORMSE were counted for the forward and reverse dosimetry results using

both the endpoint level in vivo data and POD level in vivo data following the methods outlined

in Fig 1, step 7–8. Following those methods for the example results in Fig 3, in the forward

dosimetry comparison a win would be counted for the PBTK result while, in a separate set of

counts for reverse dosimetry, a win would be counted for AC50. Fig 3 included values for 1 of

the 10 sets of random results, wherein the TK were randomized. In the following results, com-

parisons were made for each separate set of random results, so that a total of 10 sets of compar-

isons were made. Medians and standard deviations were then determined from these counts.

The results of applying the analyses across all combinations of assumptions and concentra-

tion selection are shown in Figs 6 and 7 for comparisons based on at least 20 different chemi-

cals. Figs 6 and 7 represent the results of more than 15,600 comparisons across assumptions, in

Fig 3. Example regressions of the standardized, log10 transforms of variables. Results are shown for forward

dosimetry (CPBTK, Crandom, Dose; a-c, respectively) and reverse dosimetry (AEDPBTK, AEDrandom, AC50; d-f,

respectively) from the endpoint level analysis for the in vitro assay endpoint of ATG_PXRE_CIS_up and the in vivo
effect of systemic, nonneoplastic liver pathology from chronic studies. The dashed lines along y = x are the best fit lines

for the standardized variables and the corresponding ORMSE (orthogonal root mean square error) are also reported;

units are dimensionless.

https://doi.org/10.1371/journal.pone.0217564.g003
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vivo endpoints (for the endpoint level analysis), and in vitro component endpoints. The

assumptions evaluated include clearance (restrictive and nonrestrictive), internal concentra-

tion selection (mean or max; total venous plasma, free venous plasma, or tissue), and estima-

tion of the free concentration in the in vitro bioactivity assay using the model by Armitage

et al. [51]. Results for comparisons based on at least 5 different chemicals are available in S1

Fig and S2 Fig. In the endpoint level analysis, study types were evaluated separately and then

the counts were compiled in Figs 6 and 7. A breakdown of the results for the endpoint level

analysis by study type is available in S3 Fig, S4 Fig, S5 Fig, and S6 Fig, and these results exhibit

similar trends. Across all comparisons, minimal differences were observed between selection

of the mean or maximum in vivo concentration. As such, the results for use of the Armitage in
vitro disposition model are only shown in combination with the mean venous plasma

concentration.

For the forward dosimetry comparison (Fig 6), the endpoint level analysis suggests that in

general, using the PBTK model for IVIVE better clarifies the association between in vitro bio-

activity and in vivo toxicity data than either the random result and untransformed dose.

Improvements in performance appear greater when nonrestrictive clearance is assumed, or

when the free plasma concentration is used with restrictive clearance. Utilizing the Armitage

model to estimate the free in vitro concentration performs well when combined with the selec-

tion of the in vivo mean free venous plasma concentration (res.-free-vein-mean-Armitage).

Similar trends are observed in the POD level analysis, although the differences between counts

are smaller. For the reverse dosimetry comparisons shown in Fig 7, the trends in the endpoint

Fig 4. Distributions of ORMSE for the endpoint level analysis. Results are for the assumption set of nonrestrictive

clearance and mean total plasma concentration. The number of unique chemicals in the comparison are indicated by

fill color. The ORMSE for the random result are median values across the ten sets of results. Figure panels show results

for combinations of different ORMSE results and dosimetry: a) PBTK-Forward Dosimetry, b) Random-Forward

Dosimetry, c) Dose or AC50-Forward Dosimetry, d) PBTK-Reverse Dosimetry, e) Random-Reverse Dosimetry, and f)

Dose or AC50-Reverse Dosimetry.

https://doi.org/10.1371/journal.pone.0217564.g004
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level analysis differ from those observed for forward dosimetry. The counts for PBTK with

restrictive clearance are slightly higher relative to those with nonrestrictive clearance, while the

highest counts are achieved when comparisons are made using the in vivo mean free venous

plasma concentration in combination with the in vitro free concentration predicted by the

Armitage model (res.-free-vein-mean-Armitage). For the reverse dosimetry POD level analy-

sis, the random result produced higher counts for certain assumptions, but these exhibit large

deviations.

In general, the PBTK results performed better for the endpoint level analyses than the POD

level analyses. For the endpoint level analysis comparisons versus assay results were made for

specific in vivo endpoints and study types, whereas for the POD level analysis doses were taken

as the minimum across study types and pathology for a given chemical. It would be expected

that trends may be stronger across a specific endpoint as opposed to comparisons across differ-

ent pathologies and different study types, as in the POD level analyses. Separately from the

determination of ORMSE, variances for log10 transformed AC50 as well as variances for log10

transformed dose were determined for each comparison made in the two separate analyses for

an arbitrary assumption set. Table 1 shows the medians of these variances determined for all

comparisons of in vitro assay endpoint and in vivo endpoint (endpoint level analysis) and com-

parisons of in vitro assay endpoints to POD data (POD level analysis). While the variance in

AC50 was similar in either analysis, the variance in dose was larger for the POD level.

PBTK performs better than the randomized result and the untransformed result in general

for the endpoint level analysis. However, given the limitations of the available chemical-

Fig 5. Distributions of ORMSE for the POD level analysis. Results are for the assumption set of nonrestrictive

clearance and mean total plasma concentration. The number of unique chemicals in the comparison are indicated by

fill color. The ORMSE for the random result are median values across the ten sets of results. Figure panels show results

for combinations of different ORMSE results and dosimetry: a) PBTK-Forward Dosimetry, b) Random-Forward

Dosimetry, c) Dose or AC50-Forward Dosimetry, d) PBTK-Reverse Dosimetry, e) Random-Reverse Dosimetry, and f)

Dose or AC50-Reverse Dosimetry.

https://doi.org/10.1371/journal.pone.0217564.g005
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specific data, an optimal set of assumptions for IVIVE among those evaluated in Figs 6 and 7

cannot be clearly identified. The assumptions that appear to perform best include restrictive

clearance with free mean or free max venous plasma concentration, nonrestrictive clearance

with total mean or max tissue concentration, and restrictive free mean venous plasma concen-

tration in vivo combined with estimation of the free concentration in vitro by the Armitage

model. Prior work [27] has been based on only one set (httk v1.8) of these assumptions

(restrictive clearance; total steady-state concentration which is analogous to the total mean

Fig 6. Allocated counts from the forward dosimetry method. Counts compare in vitro AC50 with predicted in vivo concentration for the endpoint level

analysis (top row) and POD level analysis (bottom row) as a function of the assumptions used in application of the PBTK model. Counts are from assay-

effect pairs with at least 20 unique chemicals and are median values from the 10 sets of comparisons. The error bars are plus or minus two standard

deviations from the 10 comparisons. Labels on the x-axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestrictive), in vivo concentration

selection (tot.–total, free, vein, tis.–tissue, mean, max), and use of the Armitage disposition model to estimate the free concentration in vitro.

https://doi.org/10.1371/journal.pone.0217564.g006
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Fig 7. Allocated counts from the reverse dosimetry method. Counts compare in vivo dose with predicted AED from in vitro toxicity assay results for the

endpoint level analysis (top row) and POD level analysis (bottom row) as a function of the assumptions used in application of the PBTK model. Counts are

from assay-effect pairs with at least 20 unique chemicals and are median values from the 10 sets of comparisons. The error bars are plus or minus two

standard deviations from the 10 comparisons. Labels on the x-axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestrictive), in vivo
concentration selection (tot.–total, free, vein, tis.–tissue, mean, max), and use of the Armitage disposition model to estimate the free concentration in vitro.

https://doi.org/10.1371/journal.pone.0217564.g007

Table 1. Median of variances for log10 transforms of AC50 and dose by analysis level.

AAC50 DDose

Endpoint Level 00.21 00.46

POD Level 00.17 00.77

https://doi.org/10.1371/journal.pone.0217564.t001
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concentration used here) which has been shown to be slightly inferior to other assumptions

for forward-dosimetry in Fig 6 but more equivocal for reverse-dosimetry (Fig 7) and remains a

plausible option. Using those set of conditions, Wetmore, et al. demonstrated the potential to

use TK for IVIVE to compare lowest in vivo doses with the lowest AED estimated from in vitro
bioactivity data [27]. Both httk v1.8 [23] and Wetmore et al. [20] include a correction by Kil-

ford et al. [37] for the fraction of chemical bound in the in vitro clearance assays [55]. Analo-

gous comparisons produced in our current work are shown in Fig 8 for four of the assumption

sets. The log10 transforms of the lower 10th percentile POD (POD10) per chemical vs the lower

10th percentile AED (AED10) predicted from the in vitro toxicity assay are plotted with

assumptions as indicated in the titles of the sub-plots. Corresponding RMSE of the log10 trans-

formed variables and ORMSE of the standardized log10 transformed variables are reported.

Additional figures for the other assumption sets and mean concentration are available in S7

Fig. In this exercise, it would be desirable for dose and AED to be highly associated and for

AED to be less than the corresponding dose, the argument being that the in vitro assays should

be more sensitive to the initial perturbation that may cause an adverse effect. Using the in vivo
mean free venous plasma concentration with the free in vitro concentration from the Armitage

Fig 8. Plots of the log10 transforms of the 10th percentile dose from POD level in vivo data vs the 10th percentile

AED using the PBTK model, determined with a time scale of the corresponding lowest dose. Each point

corresponds to a particular chemical. Results are for the assumption set of total mean concentration, and are otherwise

indicated by the panel labels: a) restrictive clearance with in vivo mean total venous plasma concentration, b) restrictive

clearance with in vivo mean free venous plasma concentration, c) restrictive clearance with in vivo mean free venous

plasma and free concentration in vitro predicted by the Armitage model, d) nonrestrictive clearance with mean tissue

concentration. The dashed lines are y = x lines. Corresponding RMSE and ORMSE (the latter defined for the

standardized variables) are also reported.

https://doi.org/10.1371/journal.pone.0217564.g008
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model (Fig 8D) has a significantly lower RMSE. While this might be preferable in terms of pre-

dicting the mean, the restrictive clearance results using mean total plasma concentration (8a)

are more conservative (i.e., they rarely underestimate the POD10). Additionally, in this exercise

Fig 8A has a slightly lower ORMSE, indicating a potentially stronger association despite a

greater RMSE. Lower RMSE alone suggests improved accuracy of the mean, but in this case

does not correspond with improvements in association.

Lastly, it is useful to understand if model performance depends on the type of chemical. As

a simple evaluation, we can examine the association between physical chemical properties and

residual error. Importantly, this also serves as an evaluation of model bias. The models in this

work are based on input parameters including fup, Clint, the octanol-water partition coefficient

(logP), the dissociation constant (logD), and molecular weight (MW). As a final test, we evalu-

ate the association between these parameters and the residuals from the comparison of the

log10 transforms of POD10 vs AED10 for each model. For this test, we use the absolute value of

the Pearson’s correlation coefficent, |COR|, separately determined between the residuals and

each parameter. Results are represented by the heatmap shown in Fig 9, where brighter colors

correspond to higher values for |COR|. Under ideal circumstances, the model should accu-

rately account for the relationship between the chemical, the parameter, and the outcome

(AED10) such that |COR| should be low. However, Fig 9 shows that |COR| is high for certain

combinations of model and input parameter. Comparisons relative to the 10th percentile log10

AC50 values are included for reference. For assumptions that performed poorly in previous

tests, we generally see little correlation with the different input parameters. This is true for the

base set of assumptions of restrictive clearance with mean total venous plasma concentration.

However, the residuals for those models that performed well appear to exhibit some depen-

dence on the input parameters. For the mean or max free in vivo plasma concentration with

restrictive clearance, the residuals appear to be highly correlated with fup, logP, and logD. This

suggests that the model using these assumptions may not fully account for the differences in

binding between the in vitro and in vivo systems. However, using the Armitage model to esti-

mate the free concentration in vitro has lower correlation between the residuals and the

parameters of fup, logP, and logD. Using nonrestrictive clearance exhibits higher values for |

COR|, particularly for Clint, across the different combinations of assumptions. This holds for

nonrestrictive clearance with mean or max tissue concentration.

Discussion

Understanding our ability to use in vitro and in silico methods to quantitatively predict known

doses exhibiting pathological effects in vivo is a prerequisite to estimating toxic doses for

chemicals without in vivo toxicological data. In this work, the application of a PBTK model to

clarify the association between in vitro bioactivity and in vivo toxicity data [11, 13, 27] was

evaluated across a broad range of chemicals, in vitro assays, in vivo endpoints, and modeling

assumptions. Evaluations were carried out for two analysis levels: 1) each specific in vivo end-

point was compared with each in vitro high-throughput screening assay component endpoint

and 2) POD determined across pathologies and study types were compared with each in vitro
high-throughput screening assay component endpoint. For both analysis levels (endpoint level

and POD level, respectively), results were compared for forward dosimetry and reverse dosim-

etry. In the endpoint level analysis, both the forward and reverse dosimetry results demon-

strated an improved performance when using the PBTK model. This strongly suggests that

applying toxicokinetic models elucidates the association between in vitro bioactivity and in
vivo toxicity data, particularly when study type and specific effect are considered.
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The analyses presented here were designed to clarify the association between in vitro bioac-

tivity and in vivo toxicity data. Results are not meant to suggest prediction of a particular in
vivo endpoint by a specific in vitro assay component endpoint. Rather, improved performance

in general indicates that incorporating TK would be beneficial when extrapolating quantitative

results from models that rely on an ensemble of assay results, such as the estrogen receptor

pathway model of Judson et al. that used 18 different ToxCast assays [8]. Furthermore, in vitro
bioactivity and in vivo toxicity data in this work were restricted to positive only results. While

TK may suggest that an AED associates with an in vivo dose, TK will not convert a negative

assay hit to a positive one or vice-versa. Although there was a general observation of improved

performance for the PBTK model in the endpoint level analysis, there was dissimilarity in the

trends observed with respect to the different assumption sets. There were also differences in

the results between the endpoint level and POD level analyses. The ambiguity of the trends

with respect to association (i.e., Figs 6 and 7) when examining various assumptions and dose

metrics suggested the potential of a range of possible results in different applications of TK. In

Fig 9. Heatmap of correlation between residuals and input parameters. Residuals are from comparisons of log10

POD10 and log10 AED10 for each assumption set. The absolute value of the Pearson’s correlation coefficient (|COR|)

was determined between the residuals and each input parameter. Labels on the x-axis indicate assumption set: for

clearance (res.–restrictive, nres.–nonrestrictive), concentration selection (tot.–total, free, vein, tis.–tissue, mean, max),

use of the Armitage disposition model to estimate the free concentration in vitro, and direct comparison to 10th

percentile AC50 values.

https://doi.org/10.1371/journal.pone.0217564.g009

Evaluating in vitro-in vivo extrapolation assumptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0217564 May 28, 2019 23 / 33

https://doi.org/10.1371/journal.pone.0217564.g009
https://doi.org/10.1371/journal.pone.0217564


some cases, untransformed in vivo dose was associated with in vitro AC50 (nonzero counts for

dose and AC50 in Figs 6 and 7). This may be a reflection of the fact that doses are often selected

to reflect the amount of chemical that can be tolerated by the test animal [56]. Additionally,

the relatively higher counts for random in the POD level analysis may be due to the selection

of minimum AED. We did observe, however, that using TK yielded a stronger association

more often than it did not. Finally, subsequent analysis comparing residuals with input param-

eters suggested that several of the model assumptions had certain pronounced biases. Collec-

tively, utilizing restrictive clearance with the mean free venous plasma concentration and

estimation of free concentration in vitro using the Armitage model appeared to perform

slightly better in terms of 1) the ability to clarify the association between in vitro bioactivity

and in vivo data (Figs 6 and 7), 2) accuracy (i.e., RMSE) of AED10 extrapolation relative to

POD10 (Fig 8), and 3) relatively lower dependence on input parameters (Fig 9).

The metrics evaluated

The ORMSE of the standardized log10 transforms was selected as the statistical parameter for

the basis of the comparisons made in this work to 1) enable comparison between forward and

reverse dosimetry, 2) allow comparison across data with different units, and 3) elucidate the

association between the in vitro bioactivity and in vivo toxicity data. As in the example regres-

sion in Fig 3, the ORMSE may be sensitive to outliers. However, as we carried out the analysis

across a range of assay endpoints, in vivo effects, and chemicals, we expect this effect was mod-

erated, as evidenced by the general observation of improved performance with the PBTK result

for the endpoint level analysis. Furthermore, we also used ten sets of randomized results as

additional references for comparison of the performance of the application of the PBTK

model. If the performance across all in vitro and in vivo comparisons were due to small differ-

ences in ORMSE, then the randomized result would perform similarly to the PBTK result.

However, this was not observed to be the case for the endpoint level analysis. Standard param-

eters such as R2 and RMSE are y-oriented and would be less comparable between forward and

reverse dosimetry. Evaluating the total sum of squares of the residuals would be dimensional

and would not necessarily be relatable to the strength of an association. Another alternative to

using RMSE would be to represent the uncertainty in the measured in vitro bioactivity and in
vivo toxicity data via bootstrapping or another methodology, but this would require an a priori
understanding of the uncertainty at different levels of the data.

As the example regression in Fig 3 showed, the comparison of AC50 and CPBTK in the for-

ward dosimetry result is separate from the comparison of in vivo dose and AEDPBTK in the

reverse dosimetry result. From Eq 1, we see that the values of CPBTK and AEDPBTK are

inversely related, that CPBTK is a function of the dose and the study length (i.e. dosing regi-

men), and that AEDPBTK is a function of AC50 and the corresponding study length of interest.

The residuals of the log10 transforms are therefore equal and opposite (Eqs 7 and 8).

log
10
AC50;j � log

10
CPBTK;j ¼ residualj ð7Þ

log
10
dosej � log

10
AEDPBTK;j ¼ � residualj ð8Þ

As such, the total sum of squares would be equivalent for both comparisons. However, any

statistic that accounts for the distribution of the variables (e.g., the variance, ORMSE of stan-

dardized variables) will likely differ. In this work, we are more concerned with the latter as our

focus is on association. While related, CPBTK and AEDPBTK will produce separate sets of results

in their comparisons, unless the residuals between variables approach zero. Importantly, the

basic relationship between dose and concentration suggests the need to compare results for
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both forward and reverse dosimetry when evaluating any model applied for quantitative

IVIVE.

The influence of the evaluated assumptions

Although this work demonstrates the potential of TK to elucidate the association between in
vitro bioactivity and in vivo toxicity data, it was unclear which specific set of assumptions in

the application of TK for IVIVE yielded an optimal result in Figs 6 and 7. For ease of reference,

the results in Figs 6 and 7 are summarized in Fig 10 by the fraction that the PBTK result was

selected over the random result and untransformed values (i.e., ratio of counts for PBTK in

Figs 6 and 7 to the corresponding total count per dosimetry, analysis level, and assumption

set). Of the assumptions evaluated, selection of either the mean or maximum in vivo concen-

tration seemed to have little influence on performance. While there were clear differences

between the results for the other layers of the assumptions, trends in the forward dosimetry

results were not always corroborated by the reverse dosimetry results. Those sets of assump-

tions that consistently performed well include restrictive clearance with free venous plasma

concentration, restrictive clearance with free venous plasma in vivo concentration combined

with free in vitro concentration predicted by the Armitage model, and nonrestrictive clearance

with tissue concentration.

Free concentration in vivo is generally assumed to be the relevant concentration for effect-

ing a biological response; however, this should be specific to the local active site and as such

may be intracellular and subject to active transport or other processes [57]. In this work, we

have only evaluated the free concentration in venous plasma, in part due to the perfusion lim-

ited assumption of our model. Furthermore, we have only evaluated the free (aqueous phase)

in vitro concentration as many of the evaluated assays are not cell-based. Even for comparison

with a given assay endpoint, the relative prevalence of various types of binding sites in vivo and

in vitro may differ and result in differences in the fraction of free chemical. Despite these quali-

fications, using the free in vivo concentration with restrictive clearance and the nominal in
vitro concentration performed reasonably well, likely because many of the in vitro assays evalu-

ated are not cell-based and have limited material available for binding. A more accurate result,

particularly for cell-based assays, may be expected if the in vitro concentration were corrected

for nonspecific binding by using an in vitro disposition model. For restrictive clearance, this

expectation was corroborated by our results which demonstrated improved performance

when using free in vivo concentration in combination with the Armitage model to estimate

free in vitro concentration [51]. Furthermore, the analysis of residuals (Fig 9) showed that

using the free in vivo concentration alone exhibited bias in the results with respect to binding

related parameters of fup, logP, and logD. However, this bias appeared to be reduced when

using free in vivo concentration and free in vitro concentration.

This differs from the conclusions proposed in the work by Casey et al. [58], which evaluated

the use of TK to extrapolate the ER pathway model [8] and compared results relative to OECD

guideline uterotrophic in vivo data. Based on direct comparison of log10 RMSE between mod-

els, the authors concluded that using either a steady state free plasma concentration (in vivo)

or the in vitro intracellular concentration predicted by the Armitage model provided a more

accurate result for this specific pathway. However, lower RMSE indicates improved accuracy

of the mean, but does not necessarily imply a stronger association or that the model is more

informative. Our results instead suggest the possibility that using the mean free plasma con-

centration with restrictive clearance is one of several options exhibiting mild improvements in

association over other model assumptions/selections when applied across a broad range of in
vitro and in vivo data. Furthermore, we observed additional improvement when using free in
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vivo concentration in combination with free in vitro concentration, which might be considered

a theoretically more justifiable comparison.

Nonrestrictive clearance with tissue concentration also appeared to perform well in terms

of clarifying the association between in vitro bioactivity and in vivo toxicity data (Fig 10). How-

ever, high values for |COR| were observed for several input parameters (Fig 9), particularly

with respect to Clint. This trend was observed for other combinations of assumptions with non-

restrictive clearance. As such, the results call into question the suitability of using nonrestric-

tive clearance as a broad assumption. It should be noted that restrictive and nonrestrictive

clearance are the two limits of an equilibrium assumption made to simplify dynamic binding,

mass transport, and reaction processes that occur during hepatic clearance. Further under-

standing of the dependence of the rates of those processes on the chemical may provide more

representative results.

Implications for future work

The results of this work demonstrate that TK improves our ability to elucidate the association

between in vitro bioactivity and in vivo toxicity data when evaluations are made per specific in
vivo endpoints and study types. Therefore, in vitro bioactivity results should be translated

Fig 10. Heatmap summarizing results previously shown in Figs 6 and 7. The fraction of counts for which the PBTK

model was selected is indicated by color, with brighter shades indicating a higher fraction of selection. Labels on the x-

axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestrictive), concentration selection (tot.–total,

free, vein, tis.–tissue, mean, max), and use of the Armitage disposition model to estimate the free concentration in
vitro.

https://doi.org/10.1371/journal.pone.0217564.g010
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using TK for IVIVE when developing machine learning and other statistical models for pre-

dicting in vivo toxicity. This potential suggests that improvements to the understanding of TK

for environmental chemicals would be beneficial to enabling new approach methods. In this

work, the assumptions were evaluated based on application across all the data; there was no

selection made based on the particular assay or in vivo effect. In general, it appeared that using

restrictive clearance with free in vivo venous plasma concentration and free in vitro concentra-

tion performed well. Although this was somewhat less conservative than the base set of

assumptions (restrictive clearance with mean total plasma concentration, Fig 8A), if uncer-

tainty were extrapolated it may be reasonable to select a lower bound (e.g., the 5th percentile)

as a more conservative estimate of POD. Additionally, for certain in vitro assays or in vivo end-

points, some assumptions may work better than others, particularly with respect to concentra-

tion selection and use of an in vitro disposition model. Variation of those assumptions based

on relevancy to the assay in question may be reasonable. Similarly, it may be possible to vary

certain assumptions based on chemical. This may particularly be applicable to nonrestrictive

and restrictive clearance, which should vary by chemical.

We have shown that PBTK clarifies the association between in vitro screening assays and in
vivo toxicity. Using restrictive clearance with free in vivo venous plasma concentration and

free in vitro concentration appeared to perform as well as or better than other model assump-

tions. While in that case the residual error was somewhat less dependent on the input parame-

ters, there remained some bias–this suggests the potential for model improvement. Based on

the performance afforded by PBTK, other methods to further improve the accuracy and

understanding of TK should be pursued [59], particularly with respect to chemical-specific TK

parameters. For example, this work assumed 100% fraction absorbed in the gut and no gut

metabolism–a better understanding of oral bioavailability would be beneficial. Differences

were observed in the performance of restrictive and nonrestrictive clearance, although they

were not consistent between forward and reverse dosimetry. Restrictive and nonrestrictive

clearance are two limits of a potential range of off-binding rates of an absorbed chemical from

protein. Where available, in vitro methods could be used to measure these and other toxicoki-

netic parameters. Further evaluation of both forward and reverse dosimetry is important to

fully understand the relationship between in vitro bioactivity and in vivo toxicity data.

This work evaluated applying toxicokinetics for rat to predict doses for which in vivo effects

may be observed in rat. The PBTK model used here can be scaled to human by using human

physiological parameters and human specific in vitro or in silico determined toxicokinetic

parameters (i.e., Clint and fup). Human specific data have already been collected for hundreds

of chemicals [12, 19]. Thus, the IVIVE principles evaluated here may be applied to humans.

Ultimately, AED for humans can then be compared with predicted rates of exposure to pro-

vide an estimate of chemical risk [2, 5, 17–21].

Supporting information

S1 Fig. Allocated counts from forward dosimetry for comparisons with at least 5 chemi-

cals. Counts compare in vitro AC50 with predicted in vivo concentration for the endpoint level

analysis (top row) and POD level analysis (bottom row) as a function of the assumptions used

in application of the PBTK model. Counts are from in vivo-in vitro pairs with at least 5 unique

chemicals and are median values from the 10 sets of comparisons. The error bars are plus or

minus two standard deviations from the 10 comparisons. Labels on the x-axis indicate assump-

tion set: for clearance (res.–restrictive, nres.–nonrestrictive), concentration selection (tot.–

total, free, vein, tis.–tissue, mean, max), and use of the Armitage disposition model to estimate
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the free concentration in vitro.

(TIFF)

S2 Fig. Allocated counts from reverse dosimetry for comparisons with at least 5 chemicals.

Counts compare in vivo dose with predicted AED from in vitro toxicity assay results for the

endpoint level analysis (top row) and POD level analysis (bottom row) as a function of the

assumptions used in application of the PBTK model. Counts are from in vivo-in vitro pairs

with at least 5 unique chemicals and are median values from the 10 sets of comparisons. The

error bars are plus or minus two standard deviations from the 10 comparisons. Labels on the

x-axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestrictive), concentra-

tion selection (tot.–total, free, vein, tis.–tissue, mean, max), and use of the Armitage disposi-

tion model to estimate the free concentration in vitro.

(TIFF)

S3 Fig. Allocated counts from forward dosimetry for comparisons with at least 5 chemicals

by study type. Counts compare in vitro AC50 with predicted in vivo concentration for the end-

point level analysis (top row) and POD level analysis (bottom row) as a function of the

assumptions used in application of the PBTK model. Counts are from in vivo-in vitro pairs

with at least 5 unique chemicals and are median values from the 10 sets of comparisons. The

error bars are plus or minus two standard deviations from the 10 comparisons. Labels on the

x-axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestrictive), concentra-

tion selection (tot.–total, free, vein, tis.–tissue, mean, max), and use of the Armitage disposi-

tion model to estimate the free concentration in vitro. Results are separated by study type:

chronic (CHR), subchronic (SUB), and developmental (DEV).

(TIFF)

S4 Fig. Allocated counts from reverse dosimetry for comparisons with at least 5 chemicals

by study type. Counts compare in vivo dose with predicted AED from in vitro toxicity assay

results for the endpoint level analysis (top row) and POD level analysis (bottom row) as a func-

tion of the assumptions used in application of the PBTK model. Counts are from in vivo-in
vitro pairs with at least 5 unique chemicals and are median values from the 10 sets of compari-

sons. The error bars are plus or minus two standard deviations from the 10 comparisons.

Labels on the x-axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestric-

tive), concentration selection (tot.–total, free, vein, tis.–tissue, mean, max), and use of the

Armitage disposition model to estimate the free concentration in vitro. Results are separated

by study type: chronic (CHR), subchronic (SUB), and developmental (DEV).

(TIFF)

S5 Fig. Allocated counts from forward dosimetry for comparisons with at least 20 chemi-

cals by study type. Counts compare in vitro AC50 with predicted in vivo concentration for the

endpoint level analysis (top row) and POD level analysis (bottom row) as a function of the

assumptions used in application of the PBTK model. Counts are from in vivo-in vitro pairs

with at least 20 unique chemicals and are median values from the 10 sets of comparisons. The

error bars are plus or minus two standard deviations from the 10 comparisons. Labels on the

x-axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestrictive), concentra-

tion selection (tot.–total, free, vein, tis.–tissue, mean, max), and use of the Armitage disposi-

tion model to estimate the free concentration in vitro. Results are separated by study type:

chronic (CHR), subchronic (SUB), and developmental (DEV).

(TIFF)
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S6 Fig. Allocated counts from reverse dosimetry for comparisons with at least 20 chemicals

by study type. Counts compare in vivo dose with predicted AED from in vitro toxicity assay

results for the endpoint level analysis (top row) and POD level analysis (bottom row) as a func-

tion of the assumptions used in application of the PBTK model. Counts are from in vivo-in
vitro pairs with at least 20 unique chemicals and are median values from the 10 sets of compar-

isons. The error bars are plus or minus two standard deviations from the 10 comparisons.

Labels on the x-axis indicate assumption set: for clearance (res.–restrictive, nres.–nonrestric-
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