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Abstract

Arboreal folivores are particularly vulnerable to the impacts of extreme climate change-

driven heatwaves and droughts as they rely on leaf moisture to maintain hydration. During

these increasingly frequent and intense weather events, leaf water content may not be

enough to meet their moisture requirements, potentially leading to large-scale mortality due

to dehydration. Water supplementation could be critical for the conservation of these ani-

mals. We tested artificial water stations for a threatened arboreal folivore, the koala (Phas-

colarctos cinereus), as a potential mitigation measure during hot and dry weather in New

South Wales, Australia. We provided ground and tree drinkers to koalas and investigated

changes in use with season, environmental conditions and foliar moisture. Our study pro-

vides first evidence of the regular use of free water by koalas. Koalas used supplemented

water extensively throughout the year, even during cooler months. Time spent drinking var-

ied with season and depended on days since last rain and temperature. The more days with-

out rain, the more time koalas spent drinking. When temperature was high, visits to water

stations were more frequent, indicating that in hot weather koalas need regular access to

free water. Our results suggest that future changes in rainfall regimes and temperature in

Australia have the potential to critically affect koala populations. Our conclusions can be

applied to many other arboreal folivorous mammals worldwide which rely on leaves for their

nutritional and water requirements. Artificial water stations may facilitate the resilience of

vulnerable arboreal folivores during heat and drought events and may help mitigate the

effects of climate change.

Introduction

Climate change affects the distribution and abundance of animal and plant species by modify-

ing climate regimes, and by causing changes in habitat quality and ecosystem structure [1, 2].

In Australia, a large number of taxa, including corals [3], mammals and birds [4–6], and plants
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[7] are already impacted by climate change related causes. Trees of the Eucalyptus genus,

which occupy the majority of Australian forests and woodlands [8], are predicted to undergo

significant changes in distribution [9, 10], and in chemical and nutritional leaf composition

[11–13] due to climate change. These changes will in turn affect many leaf eating mammals

that rely on these plants for their nutritional needs [11, 14, 15]. The koala (Phascolarctos ciner-
eus) is one such species.

Koalas are specialist folivorous marsupials native to Australia, which feed almost exclusively

on a relatively small number of Eucalyptus, Angophora and Corymbia species [16]. They are

widely but patchily distributed over their historical range in eastern Australia, and have been

experiencing drastic population declines and local extinctions [17, 18]. They are listed as

threatened at both State (Australian Capital Territory, New South Wales and Queensland) and

Commonwealth level. The decline of koalas is mostly attributed to habitat loss and fragmenta-

tion [19], diseases such as Chlamydia [20, 21], and mortality due to fire, attacks by dogs, and

vehicle collisions [22, 23]. However, they are also particularly vulnerable to the effects of cli-

mate change, suffering heat stress, and because the tree species they rely on are affected by

altered temperature and rainfall [24].

Koalas, like other folivores, mostly use dietary water derived from foliage to meet their

water requirements [25, 26]. Water content in leaves can be as important as nutrients for

koalas and is a key driver of foliage and tree selection [27, 28], especially in hot months [25,

29, 30]. Minimum leaf moisture thresholds required by koalas differ between seasons and are

higher in hotter conditions [30, 31], but leaf water is normally sufficient to meet koalas’ mois-

ture requirements [30, 32]. However, during periods of extreme and prolonged high tempera-

tures and dry conditions, leaf water content may not be enough to meet water needs of koalas

This often results in physiological stress [33, 34] and large-scale mortality due to dehydration

(as seen in [35, 36, 37]). Hence, during heatwaves and droughts, when koalas are limited by

the amount of water in the leaves that they eat, free water availability may play an essential role

for their survival. However, there is only anecdotal evidence of drinking behaviour in wild

koalas [38, 39, 40], and previous literature states that in normal circumstances koalas do not

need to drink [25, 41, 42].

Here, we investigate whether koalas would use artificial water stations, whether use varies

with seasons, environmental conditions (temperature and rainfall) or foliar moisture, and

whether ground or in-tree location for water stations is preferred by koalas. Understanding if

koalas access free water is fundamental to determine whether water supplementation can be

used as a potential climate change mitigation management tool to improve the resilience of

this and other threatened arboreal species during extreme hot and dry conditions.

Materials and methods

Study site

The study was conducted on a private property, ‘Dimberoy’ (31˚07’33.2”S, 150˚00’38.3”E),

near the town of Gunnedah, on the Liverpool Plains, in New South Wales, Australia. The Gun-

nedah region is characterised by a dry, sub-humid climate with a mean annual maximum tem-

perature of 26˚C, and mean annual rainfall of 620.4 mm, where winter is usually the driest part

of the year [43]. However, the area has recently experienced extended hot and dry summers

[43]. In 2006, a state-wide community survey showed that koala populations in the Gunnedah

region were the only in the State to show a significant increase in occupancy [44]. However,

in 2009 koalas started declining in the area, with many deaths attributed to heatwaves and

droughts [35]. The property were the study was conducted is an agricultural farm of about

2100 ha used mostly for grazing cattle. The remnant vegetation consists of open woodland
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patches of mature Eucalyptus trees dominated by poplar box (E. populnea) and lower numbers

of tumble-down redgum (E. dealbata), white box (E. albens) and yellow box (E.melliodora).

Koalas in north-west New South Wales live mostly on privately owned agricultural land. Dim-

beroy has a large free-ranging population of resident koalas.

Experimental set-up

Ten pairs of water stations were positioned at different sites throughout the property, away

from available free water sources (at least 400 m). Sites were at least 500 m apart (based on

mean koala home range size at the property, unpublished data) to maximise the chances of dif-

ferent koalas visiting the sites and hence ensure independence. Within each site, each water

station pair consisted of a ground drinker positioned at the base of a tree, and a tree drinker

mounted in the fork of a neighbouring tree at a height of approximately 1.5 m. All trees were

heavily used (measured as numbers of koala scats at base of tree) food trees (i.e. eucalypt) and

each station pair was set up in trees of the same species.

Each drinker consisted of an automatic refilling drinking bowl (Bainbridge Nylon Auto-

matic Drinking Bowl) with an approximate capacity of 3 L, connected to a water tank (up to

220 L). An adjustable valve maintained a constant level of water in the bowl to provide water

ad libitum. A ScoutGuard infrared heat-in-motion sensing cameras (model SG560K) was

attached 1 m above the drinker facing downwards to record visits (operational hours: 1800–

0800 hours) by koalas for a year (March 2016—March 2017). We used JWatcher [45] to quan-

tify number of visits and time spent drinking (head down, lapping from the bowls at the water

stations) by koalas.

We measured air temperature at the trees using Thermochron iButtons (DS1921G; Dallas

Semiconductor, Dallas, Texas, USA) attached to the tree trunks at breast height (~1.3 m) on

the southwest side of the trees (because this aspect is least exposed to incident solar radiation).

The iButtons recorded air temperature data with ± 1 ˚C accuracy every hour. We obtained

maximum daily ambient temperature, mean daily relative humidity and mean daily wind

speed from the Gunnedah Airport weather station (www.bom.gov.au). Rainfall quantity (i.e.

daily amount of rain and monthly amount of rain), and frequency (i.e. days since last rain)

data was obtained from the property rainfall chart records.

Leaf sampling

To determine seasonal variation in moisture level of different species of eucalypt leaves at the

study site, we collected leaves from 53 trees in both cool (September 2016) and hot months

(February 2017 and March 2017). Collection of leaves in winter (when rain was most abun-

dant) had to be abandoned due to flooding. Individual trees sampled were restricted to those

Eucalyptus species selected by koalas for food at the study site [46]: E. populnea (N = 22), E.

dealbata (N = 10), E. albens (N = 9) and E.melliodora (N = 12).

Leaf moisture (% fresh weight) was determined following Ellis et al. [25]. For each tree, we

removed about 8 g of mature (fully expanded and developed) leaves from the lower third of

the canopy and weighted them to the nearest 0.01 g to determine fresh weight using a digital

scale. Water content was determined after drying leaves in a forced air oven at 50˚C (to pre-

vent the loss of volatile oils) for 5 days [47]. Water content is represented as (weight loss/fresh

weight) x100%.

Ethical statement

All specific permissions required for the activities conducted in the study, including sampling

procedures and experimental manipulations, and permission to work with threatened species,
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were approved by the University of Sydney Animal Ethics Committee (#2016/955) and con-

ducted under the NSW National Parks and Wildlife Service Scientific License SL101687. The

land owner gave permission to conduct the study on his property.

Statistical analysis

We used the proc glimmix procedure in SAS (SAS 9.4) to test if position of the water stations

(ground or tree) and season had an overall effect on number of visits and time spent drinking
per visit in separate models. We then tested the effect of climate variables on time spent drink-
ing per visit by running another model including factors related to rainfall and temperature

(i.e. days since last rain, tree temperature and wind). We used a generalized linear mixed effects

model (GLMM) with a poisson distribution and loglink function for count (visit) data, and

GLMMs with a lognormal distribution and identity link function for behavioural data. Site
and drinker (nested within site) were the random factors in all three models. We used Tukey-

Kramer tests for post-hoc comparisons.

Climatic pairs of variables with a Pearson coefficients > ± 0.5 were considered proxies of

one another and only one was included in our third model [48]. We chose to use days since
last rain (and not other variables related to quantity of rain) to account for the lag effect of rain

[34] and because rainfall is patchy in the Liverpool Plains region (BOM 2018). We used tem-
perature at the tree (and notmaximum daily ambient temperature) because one of the strategy

used by koalas to thermoregulate is to select cooler trees when temperature is high [49] and

dissipate heat by hugging the tree trunks [50, 51].

Finally, we used a GLMM with gaussian distribution and identity link function to test

whether leaf moisture at the study site varied between tree species, season and with the interac-

tion tree species x season. Tree ID was included in the model as a random factor.

Results

Mean annual (March 2016—March 2017) rainfall during our study was 637 mm, with rain

more abundant in winter than in any other season (Fig 1a) but less frequent than in autumn

and spring (Fig 1b). Mean annual maximum temperature was 26.2˚C (BOM 2018). However,

summer maximum daily temperatures (Fig 2a) were often above 40˚C (highest daily tempera-

ture recorded was 45.6˚C in February 2017) and summer night-time temperatures frequently

exceeded 30˚C (BOM 2018). Temperature at the tree (Fig 2b) was highly correlated withmaxi-
mum daily temperature (r = 0.97; P< 0.0001) but was always lower.

Behaviours at water stations

All water stations were used extensively by koalas throughout the year (605 visits in total). Of

these, 401 visits resulted in koalas drinking. Koalas always visited the drinkers alone, except for

females carrying a young (Fig 3) and the latter never drank. Koalas spent 56% of the total time

at the water stations engaged in drinking behaviour. The rest of the time was spentmoving
(16%), vigilant (9%), investigating the stations (5%) and in other less frequent behaviours such

as self-grooming, scratching and calling for mates (14%).

Numerous other animals visited the drinkers, including sugar gliders (Petaurus breviceps),
feathertail gliders (Acrobates pygmaeus), brushtail possums (Trichosurus vulpecula) at tree

drinkers and echidnas (Tachyglossus aculeatus), Eastern grey kangaroos (Macropus gigante-
ous), hares (Lepus europaeus), feral cats (Felis catus) and red foxes (Vulpes vulpes) at ground

drinkers, though the latter was also detected in trees [52].

The cost of climate change on koalas

PLOS ONE | https://doi.org/10.1371/journal.pone.0216964 May 29, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0216964


Seasonal effect on visits

Number of visits by koalas depended on season (F3,11 = 20.12; P< 0.0001) but not on position
of the drinker (F1,11 = 0.02; P = 0.968), though there was a significant effect of the interaction

position x season (F3,11 = 6.18; P = 0.010). In summer, koalas visited the drinkers more (total

number of visits) than in any other season (Fig 4a) but mean number of visits to ground and

tree drinkers varied depending on the season (Fig 4b).

Time spent drinking per visit by koalas depended on season (F3,349 = 4.70; P = 0.0031).

There was no overall effect of position of the drinker (F1,349 = 0.18; P = 0.671) but there was a

significant position x season interaction (F3,349 = 6.85; P = 0.0002). Total time spent drinking

(cumulative) was greater in summer than in other seasons (Fig 5a) but koalas’ preference for

drinkers’ position varied with season (Fig 5b).

Fig 1. Mean ± SE seasonal rainfall obtained from the Dimberoy weather station between March 2016 and March

2017; (a) quantity (i.e. amount of rain) and (b) frequency (i.e. days since last rain).

https://doi.org/10.1371/journal.pone.0216964.g001
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Weather effect on visits

Time spent drinking per visit by koalas depended on days since last rain (F1,344 = 7.80;

P = 0.005) and temperature at the tree (F1,344 = 4.95; P = 0.027) but not on position of the

drinker (F1,344 = 0.44; P = 0.506) and wind (F1,344 = 0.49; P = 0.484). Koalas spent more time

drinking per visit when rain was infrequent and when temperature at the tree was lower

(Table 1).

Leaf moisture

Mean leaf water content at the study site was 53% fresh weight and did not change with season
(F1,68 = 2.14; P = 0.148), did not vary significantly between species (F3,68 = 1.56; P = 0.208; E.

albens 52%, E. dealbata 52%, E.melliodora 54%, E. populnea 53%), and was not influenced by

the interaction season x species (F3,68 = 2.13; P = 0.104).

Fig 2. Seasonal variation in temperature; mean (± SE) (a) maximum daily temperature (source: BOM 2018) and

(b) mean (± SE) air temperature (measured with iButtons) at koala food trees at the study site.

https://doi.org/10.1371/journal.pone.0216964.g002
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Discussion

Our study is the first to document the use of free water by koalas, suggesting that water supple-

mentation may help this arboreal folivore during extreme weather events. We show that koalas

visit artificial water stations extensively and that the use of free water depends on rainfall and

temperature. Water stations are used more in hot and dry periods, suggesting that free water

may be needed by koalas in extreme climatic conditions.

Koalas showed no clear preference for ground or tree drinkers and used both throughout

the year. However, number of visits and time spent drinking at ground and tree drinkers var-

ied with season. For example, in spring koalas spent more time drinking at ground water sta-

tions than at those in trees, while in autumn the pattern was reversed (Fig 5b). This might

be because koalas prefer to rest in different position in the trees across seasons. In warmer

weather, koalas can often be found at the base of trees to escape the heat [53], while in cooler

conditions they spend more time in the higher tree canopy [50]. Hence, koalas might have

accessed drinkers opportunistically and selected the most convenient position (ground or tree)

depending on seasonal encounter rate.

Water stations also attracted other herbivores and carnivores, including feral animals like

hares, cats and foxes. To reduce the likelihood of these species gaining access to water and to

minimise the risk of predation on the ground, we suggest providing water above ground in

future supplementation studies targeting arboreal species such as koalas.

In summer, when temperature was high and water loss more acute and rapid than in other

seasons, the use of both tree and ground drinkers increased. Total number of visits (Fig 4a)

and total time spent drinking (Fig 5a) doubled compared to other seasons. However, time

spent drinking per visit (Fig 5b) was comparatively greater in spring (at ground drinkers) and

Fig 3. Koalas drinking from tree (left) and ground (right) artificially supplemented water stations at Dimberoy.

https://doi.org/10.1371/journal.pone.0216964.g003
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in autumn (at tree drinkers) than in summer (at either locations). This is because koalas

employed different behavioural strategies to obtain water depending on temperature. In sum-

mer, when temperature was extreme, they drank for a shorter duration at each visit but visited

more frequently, while in autumn and in spring, they had comparatively longer drinking ses-

sions but visited water stations less often (Figs 4 and 5).

Frequent access to free water may be fundamental for koalas to assist thermoregulation

when temperatures are high. Koalas reduce evaporative cooling from the respiratory tract,

which accounts for their greatest water loss [54], by using tree trunks to dissipate heat and

thermoregulate [50]. However, the hotter the temperature, the harder would be for koalas to

achieve adequate conductive heat loss; and the more water koalas lose through evaporative

cooling, the more water they will need to meet water requirements. Hence, the capacity of

koalas to thermoregulate in extreme heat might depend exclusively on the availability of water

(free or as leaf moisture) [32].

The longer between rain events, the more time koalas spent drinking per visit. This may

suggest that when rain is scarce, leaf moisture might not always be sufficient to meet water

Fig 4. Seasonal visits to water stations by koalas; (a) total number of visits (cumulative) and (b) mean number of

visits to ground and tree drinkers. Values are Least Squares Means (± SE). Different letters indicate significant

differences.

https://doi.org/10.1371/journal.pone.0216964.g004
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needs. Eucalyptus foliage normally contains over 50% water but this depends on water avail-

ability to the tree (rainfall and surface water) [28] and koalas prefer leaves with high moisture

content [33]. The mean percentage of water in leaves in our study (53% fresh weight) was

below the 55–65% preference level identified for koalas, under which foliage (including the

Fig 5. Time spent drinking by koalas in different seasons; (a) total time (cumulative) and (b) mean time per visit

at ground and tree drinkers. Values are Least Squares Means (± SE). Different letters indicate significant differences.

https://doi.org/10.1371/journal.pone.0216964.g005

Table 1. Generalized linear mixed effects model testing the effect of weather variables (wind, temperature and rainfall) and position of the drinkers on time koalas

spent drinking per visit. Asterisk (�) indicates significance.

Variable Estimate SE df t P

Intercept 0.444 0.297 5 1.49 0.195

Position of the drinker -0.125 0.187 344 -0.67 0.506

Wind -0.009 0.012 344 -0.70 0.485

Temperature at tree -0.020 0.009 344 -2.22 0.027�

Days since last rain 0.038 0.013 344 2.79 0.006�

https://doi.org/10.1371/journal.pone.0216964.t001
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four Eucalyptus species sampled here) is rejected in captivity [29, 30]. Koala deaths have been

reported in Queensland when leaf moisture fell below 51% fresh weight [31], indicating that

there might be minimum leaf water threshold levels required for koalas to sustain their water

requirements and these will likely vary with climatic conditions. Leaf moisture in our study,

although not extremely low, did not appear to adequately meet these requirements when tem-

perature was high and rain was infrequent, as water stations were used extensively by koalas.

Leaf moisture did not vary between species nor did it change between cool and hot months.

It is possible that we have missed subtle changes in leaf moisture as this was only measured

three times in a year. However, we consider this unlikely as other studies have found little

seasonal variation in leaf moisture over one year [55] and a lag effect (up to six months) of

rainfall on leaf water content [56]. Nevertheless, in future studies, we recommend measuring

foliar moisture more often throughout the year to ensure that finer changes (if existent) can be

detected.

Many koalas at the study site are affected by Chlamydia pecorum [57], a bacterial infection

that causes urinary and reproductive disease in koalas [58]. It is unknown whether the disease

influences their drinking behaviour but koalas have been observed drinking profusely when

unwell [59]. We could not identify individual koalas at drinkers, hence, it was not possible to

link drinking behaviour to disease status. In future studies, it would be beneficial to determine

koalas’ identity so the effect of disease on drinking behaviour can be tested.

Our findings suggest that when temperature is high and rain scarce, koalas intensify their

drinking behaviour to sustain their increased water requirements as a strategy to cope with

extreme weather conditions. Heatwaves and droughts are becoming increasingly common and

severe in Australia [60] and climatic warming is predicted to have severe effects on plants [61]

and fauna [62], especially in eastern Australia, where koalas are distributed [16]. Our results

support previous research suggesting that rising temperatures and lack of rainfall likely play a

pivotal role in koalas’ decline [63, 64].

Similar results may be expected for many arboreal folivorous animals which rely on leaves

for their nutritional and water requirements. For example, the distribution of another special-

ist tree-dwelling folivore, the green ringtail possum (Pseudochirops archeri), is limited by the

duration and severity of extreme weather events and the availability of free water and leaf

moisture, with range contractions, population declines and extinctions predicted with climate

change [65]. Similarly, climatic changes such as drier and prolonged dry seasons, limit repro-

duction and survival of Milne-Edwards’ sifaka (Propithecus edwardsi), a folivore lemur from

Madagascar [66]. Hence, climate change could reduce the capacity of many folivores to persist

in their original distribution range.

Based on our results, one mechanism for these contractions is the increased need of water

to sustain water requirements. Arboreal folivorous mammals like the koala, are limited in their

food intake by leaf toxins [30, 67], which in turn affect their water intake in the form of foliar

moisture. Hence, they simply cannot eat more leaves if they need more water. Increased CO2

emissions are predicted to increase the level of phenolics and tannins in plants [68, 69], includ-

ing in Eucalyptus leaves [70], further reducing the capacity of koalas to gain enough foliar

water. Therefore, supplementing free water might represent one of the ways to reduce the det-

rimental effects on koala’s food trees expected with climate change.

Conclusions

We have shown that koalas use supplemented water extensively throughout the year and in

particular if temperature is high or rain infrequent. Our results overturn previous understand-

ing of how koalas stay hydrated in the face of a changing climate. Artificial water stations have
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been identified as a powerful tool for maintaining biodiversity in arid zones [71] including in

Australia [72], although they may also attract and favour feral species [52]. Our study demon-

strates that they may also represent a practical management tool for the conservation of vul-

nerable arboreal folivores experiencing water deficient conditions. Provision of supplementary

water sources may be identified as a basic need to help these animals survive through long dry

and hot spells, when ground water is non-existent or when rainfall events are widely separated,

but benefits have to be considered against costs related to non-target species. The next step is

quantification of the potential benefit of water stations as a mitigation tool against heat-stress

during heatwaves and droughts. Longer-term monitoring is required to determine if water

supplementation can maintain populations throughout periods of extreme weather. Future

studies should include measurement of water turnover rates and explore how free water avail-

ability affect animal’s health.
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