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Abstract

Nuclear security is a critical concept for public health, counter-terrorism efforts, and national

security. Nuclear radioactive materials should be monitored and secured in near real-time to

reduce potential danger of malicious usage. However, several challenges have arose to

detect the anomalous radioactive source in a large geographical area. Radiation naturally

occurs in the environment. Therefore, a non-zero level of radiation will always exist with or

without an anomalous radioactive source present. Additionally, radiation data contain high

levels of uncertainty, meaning that the measured radiation value is significantly affected by

the velocity of the detector and background noise. In this article, we propose an innovative

approach to detect anomalous radiation source using mobile sensor networks combined

with a Poisson kriging technique. We validate our results using several experiments with

simulated radioactive sources. As results, the accuracy of the model is extremely high when

the source intensity is high or the anomalous source is close enough to the detector.

Introduction

Nuclear weapons, bombs, as well as radiological dispersal devices are threats to national secu-

rity and human health. However, detecting anomalous radioactive sources over a large geo-

graphical area has several challenges. First, radiation naturally occurs in the ground, building

materials, and cosmic rays. Therefore, a non-zero level of radiation will always exist, which

presents the problem of detecting a radioactive source with a low signal-to-noise ratio (SNR).

Here, the radiation source is the anomalous radiation signal and the background radiation is

the noise.

Additionally, radiation data contain high levels of uncertainty. The GPS location of the

detector is only accurate within 1 to 3 meters, and the measured radiation value is significantly

affected by the velocity of the detector, background noise, shielding materials, weather
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conditions, and the distance to the radiation source. For instance, SNR decreases dramatically

as the distance from the radiation detector to actual sources increases. For this investigation,

two types of radiations are considered: naturally occurring background radiation and anoma-

lous radioactive sources (e.g., 137Cs and 60Co). Examples of natural background radiation are

the radiation emitted from soil, rock, and buildings. Anomalous radioactive sources include

nuclear weapons, dirty bombs, or the precursors to such weapons.

Various types of methods have been developed to estimate background radiation and detect

radioactive sources. Reinhart [1] developed an integrated system for gamma-ray spectral map-

ping and anomaly detection. A temporal anomaly detection algorithm has been developed to

perform source injection simulation. The kriging method was used to interpolate the radiation

level of the areas that have missing data. Tansey et al. [2] presented a method called multi-scale

spatial density smoothing based on a recursive dyadic partition of the sample space and shared

much in common with other multi-scale methods, such as wavelets and Polya-tree priors.

Heuvelink and Griffith [3] introduced a space-time kriging approach to characterize the vari-

ability of radiation data using the monthly averaged gamma dose rates collected during a

5-year period. In this study, the space-time variable of interest was treated as a sum of indepen-

dent stationary spatio-temporal components, which led to a sum-metric space-time variogram

model. Various methods based on maximum likelihood estimation (MLE) have been proposed

under different circumstances. For example, Morelande et al. [4] analyzed the estimation prob-

lem for multiple radioactive sources using a MLE method. Zhao et al. [5] implemented MLE

with grid search to estimate source intensity and location. Zheng et al. [6] developed methods

based on MLE to estimate the spatial and temporal distribution of background radiation using

mobile sensor networks. Additionally, other methods, such as Bayesian methods [7–9], mean

of estimators and mean of measurements [10], Markov Chain Monte Carlo sampling [11], and

least squares estimation [12] were also proposed. However, the approaches mentioned above

mostly used the predefined structure of sensor networks to calculate the background radiation

levels. The fixed radiation sensor networks such as traditional radiation portal monitors often

suffer from the inverse square law of the radiation, whereby the source intensity falls off as 1/r2

when the distance between detector and radioactive source increases. This problem becomes

more challenging when the source is moving across space and time. Therefore, the mobile

detector sensor network should be introduced, so that the detector can be placed closer to the

moving source [5, 13–15].

Jeong et al. [16] developed structural similarities of the surface networks to identify radia-

tion level changes. The structural similarities over time provided moderate correlations for the

radiation level changes, and the results indicated that there were statistically significant differ-

ences between each month’s radiation levels. However, it is difficult to understand whether

this difference comes from background fluctuations or radioactive materials. Therefore, more

research needs to be done to analyze the correlation between background radiation and other

uncertain factors. The geographically weighed correlation method has been applied to a small

number of radiation data sets to observe the correlation between radiation level measures and

detectors’ velocities [17]. However, the t value of the model was missing and there was no justi-

fication of the statistical significance of the results. Furthermore, other factors such as weather

condition variables were not considered. Jeong et al. [18] developed a similarity measuring

approach where cosine, Jaccard, and Euclidean distance similarity measures were used in

anomalous radiation detection. They assumed that the presence of an anomalous source

should be suspected if a radiation measure differed from the background. The similarity (or

dissimilarity) measures between two independent measurements were represented as two sets

of vectors. However, the overall similarity measures did not present high correlations between

2013 and 2014 and the accuracy of the similarity measure was not discussed in the research.

Radiation detection using Poisson kriging and mobile sensor networks
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Later, various types of spatial algorithms such as the Getis-Ord local statistic (G�), a novel

robust version of the Getis-Ord local statistic (r-G�), and a traditional Local Indicators of Spa-

tial Association (LISA) approach, have been applied to radiation data [19]. Results were com-

pared by using receiver operating characteristic (ROC) curves over traditional approaches.

Kriging is a geostatistical interpolation method that uses the given measurements to esti-

mate measurements at positions where data were not collected [20]. There are several com-

monly used kriging models, including ordinary kriging, simple kriging, and universal kriging.

For radiation detection, all measurements are integers, and the signals are assumed to follow

the Poisson distribution of the expected radiation level. In this case, the often-used Gaussian

assumption is not suitable for modeling radiation data because the radiation count for certain

detectors could have relatively low mean values. Also, for radiation data, it is more important

to estimate the radiation level, which can be represented as the average radiation count rate,

then simply interpolating using measured data. Therefore, it is more reasonable to use the

Poisson kriging approach [1]. Monestiez et al. [21] proposed the Poisson kriging to model the

spatial distribution of Balaenoptera physalus (a kind of whale) using the sparse count data.

McShane et al. [22] developed a similar model to analyze the spatially correlated count data.

Recently, Bellier et al. [23] extended Poisson kriging to nonstationary hierarchical model for

count data. Since then, Poisson kriging has been applied to count data for different areas,

including cholera and dysentery incidence [24], cancer [25, 26], and wildlife population

[21, 23].

This study employed the Poisson kriging method to estimate nuclear radiation distribution

and identify anomalous radioactive sources using data collected by mobile sensor networks.

The performance of the proposed algorithm is demonstrated using the experimental data with

simulated radioactive sources.

Background and methodology

Radiation transport model

There are two types of radiations involved in this study. The background radiation (b) and

radiation comes from radioactive sources (s). Nuclear radiation can be measured by various

detectors, which are in integer format (counts per second, or cps). The measured radiation

count rate is assumed to follow the Poisson distribution [27]. The probability of a detector col-

lects m counts in a unit time with expectation λ is expressed as:

pðx ¼ mÞ ¼
l
m

m!
� e� l; ð1Þ

where λ represents the average radiation count rate at a given position. Variable λ is in the

form of λ = b + s. Variable s is equal to zero when there are no radioactive sources present, and

it is mainly influenced by the shielding materials and distance between the actual source and

detector. Variable b is influenced by many factors, such as the surrounding buildings and

weather condition. Typically, b is the function of location r and time t. When the time interval

considered is not long, b can be assumed to be constant around location r.

Poisson kriging and semi-variogram

Kriging is an interpolation method that is used to predict spatial attributes at unknown times

and locations [28]. Poisson kriging was originally developed based on the population weighted

semi-variogram estimators and used to analyze the count data [21]. Compared with ordinary

kriging, Poisson kriging assumes the data follows Poisson distribution. The semi-variogram

γ(ri, rj) was first defined by Matheron [29] as half the average squared difference between

Radiation detection using Poisson kriging and mobile sensor networks
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points ri and rj separated at distance h.

gðri; rjÞ ¼
1

2
VarðXðriÞ � XðrjÞÞ; ð2Þ

where X(�) is the measured value and Var(�) is the variance.

For radiation measurements, let random observation Xr be the count rate measurement at

location r. There exists some underlying distribution Yr which represents the expected value of

Xr. In other words, Yr represents λ in Eq 1 at position r. The goal of Poisson kriging is to esti-

mate the distribution of Y instead of simply interpolating X. Given latent variable Yr, measured

radiation count rate Xr is assumed to follow the Poisson distribution:

XrjYr � PoissonðYrÞ: ð3Þ

Further, Yr is assumed to be a positive random field honoring order two stationarity [21],

which has the mean μr and variance s2
r . To simplify the problem, μr and s2

r are assumed to be

constant (For the case of using a non-constant mean, the trend can be estimated first and the

problem is still solvable [23]). Then we get:

E½Yr� ¼ m ð4Þ

E½Y2
r � ¼ m

2 þ s2 ð5Þ

E½XrXr0 jY� ¼ dr;r0Yr þ YrYr0 ; ð6Þ

where δr, r0 is the delta function (1 if r = r0 and 0 otherwise).

For Poisson kriging, considering two locations r and r0, Xr is assumed to not interact with

Xr0 directly, and Yr are connected with Yr0 only through their covariance. The covariance func-

tion CY(r, r0) = Cov(Yr, Yr0) for Y is assumed to depend only on the distance ||r − r0|| between

two locations:

CYðr; r0Þ ¼ E½ðYr � mÞðYr0 � mÞ� ¼ E½YrYr0 � � m
2: ð7Þ

Traditionally, it is more common to use semi-variogram instead of covariance to model the

correlation. The semi-variogram function for X is defined as gXðr; r0Þ ¼ 1

2
E½ðXr � Xr0 Þ

2
�. Thus,

the semi-variogram function for Y can be calculate as:

gYðr; r0Þ ¼ gXðr; r0Þ þ dr;r0m � m: ð8Þ

From Eq 8, the covariance function and semi-variogram function of Y can be estimated

using the formula:

CYðr; r0Þ ¼ s2 � gYðr; r0Þ: ð9Þ

For radiation detection with multiple detectors, suppose that there are n measurements

X1, X2, � � �, Xn from different locations r1, r2, � � �, rn, the estimate of Y0 for unmeasured location

r0 is assumed to be the linear combination of available measurements X1, X2, � � �, Xn:

Ŷ 0 ¼
Xn

i¼1

liXi: ð10Þ

Then the problem becomes finding λ1, λ2, � � �, λn such that Eq 10 works as the optimal esti-

mator so that the estimator Ŷ 0 is unbiased and the squared estimation error ðŶ 0 � Y0Þ
2

is

Radiation detection using Poisson kriging and mobile sensor networks
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minimized. The following n + 1 equations can be derived:

Xn

i¼1

li ¼ 1 ð11Þ

Xn

j¼1

ljCYði; jÞ þ limþ a ¼ CYði; 0Þ for i ¼ 1; 2; � � � ; n; ð12Þ

where α is the Lagrange multiplier.

Eqs 11 and 12 can be written in matrix format Ax = b. A is a (n + 1) by (n + 1) matrix, and x
and b are both column vectors with (n + 1) elements, which are shown below:

A ¼

C11 þ m C12 � � � C1n 1

C21 C22 þ m � � � C2n 1

C31 C32 � � � C3n 1

..

. ..
. . .

. ..
. ..

.

Cn1 Cn2 � � � Cnn þ m 1

1 1 � � � 1 0

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð13Þ

x ¼ ðl1; l2; l3; � � � ; ln; aÞ
T ð14Þ

b ¼ ðC10;C20;C30; � � � ;Cn0; 1Þ
T
; ð15Þ

where for simplicity, CY (i, j) is denoted by Cij.

The key to solving the Poisson kriging problem is to calculate the covariance function Cij.

Since Cij = σ2 − γY (i, j), the semi-variogram function γY (i, j) can be first estimated in order

to estimate Cij. Semi-variogram function γY (i, j) is assumed to be determined by the distance

h = ||ri − rj|| only. Based on Eq 8, the semi-variogram function of Y can be calculate from the

semi-variogram of X. Here, Eq 16 is used to estimate γX (h).

ĝXðhÞ ¼
1

NðhÞ

X

i;j

1

2
ðXi � XjÞ

2

� �

Idij�h

; ð16Þ

where N(h) = ∑i,j Idij � h. Idij � h is the indicator function which is 1 when the distance between

ri and rj is roughly equal to h. Otherwise, this indicator function is equal to 0. From Eq 8, the

semi-variogram function γY (h) can be easily inferred.

Eq 16 gives discrete estimates of ĝXðhÞ. To get a continuous estimate, a semi-variogram

model can be fitted based on the calculated ĝXðhÞ using nugget model, spherical model, expo-

nential model, Gaussian model and so on. In this research work, we use exponential model

and the equation is illustrated below:

ĝXðhÞ ¼ c0 þ c 1 � exp �
h
a

� �� �

; ð17Þ

where parameters c0, c, and a are determined using the measured data.

Radiation detection using Poisson kriging and mobile sensor networks
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Experiments and data

In this research work, two types of data were generated: background radiation data and radio-

active source data. Background radiation data were measured using radiation detectors and

radioactive source data were simulated using GADRAS (Gamma Detector Response and Anal-

ysis Software, developed and maintained by Sandia National Laboratories [30, 31]).

The radiation detector used in this research work is called Discreet Dual Detector (D3S

detector) [32], which is designed to detect gamma-ray. D3S detector is a thallium activated

cesium iodide (CsI(Tl)) scintillation detector. The dimension of the D3S detector is 132mm ×
80mm × 23.5mm and its weight is 237 g. It has a 1,450 mAh Lithium polymer battery, which

can last around 12 hours. The D3S detector has the gamma-ray detection range from 30 keV

to 3 MeV, and it has 7% resolution at 662 keV. The sensitivity of the detector is 550 cps/μSv/h
for 137Cs and the maximum throughput for gamma channel is 10,000 cps. D3S detector can

collect radiation data and then transmit the data wirelessly to other devices through Bluetooth.

In addition to radiation detector, a smart phone (e.g., Samsung Galaxy S6) was used to collect

measured data from D3S detector as well as recording information such as GPS information

and corresponding timestamps. In this work, a mobile software application was developed by

the research group [6, 33] to connect the smart phone to the Amazon cloud, which enables

near-real time data collection and processing. For example, the data is collected every second

and transmitted into the cloud with some latency (e.g., around 10 minutes using current appli-

cation. But this can be improved in the future).

The experiment was conducted at the engineering campus of the University of Illinois at

Urbana-Champaign. The entire experimental region is around 500 × 400 m2 large. The experi-

ment was conducted on December 8th, 2017. The data were collected in the morning from

9:30 to 12:00 and in the afternoon from 14:30 to 15:30, and there was no actual radioactive

source placed in the experimental region due to safety concerns. During the experiment, vol-

unteers were required to put the D3S detectors in their pockets and walked in the normal

walking speed (around 1.4 m/s) along the designated paths. The figure shows the experimental

area and walking paths is published elsewhere [5] and redrawn here as shown in Fig 1. The fig-

ure also shows the measured background radiation data. Clearly, background radiation level

gets increasing when the detector approaches buildings. Three typical high background radia-

tion regions are denoted using dotted rectangles A, B, and C. The background radiation level

is lower when the detector is approaching other places, such as grasslands and parking lots.

The recorded data include the following attributes: detector’s ID, latitude and longitude of the

position, radiation count rate (cps), and the corresponding timestamps. The measured data

consists of 21, 883 data points in total.

For the radioactive source data, GADRAS was used to simulate the influence of radioactive

sources. In the GADRAS simulation, a radioactive source is placed on the ground and a detec-

tor is placed 1 meter above the ground, which is consistent with the fact that detectors were

put inside volunteers’ pockets during the experiment. In this work, 137Cs was chosen as the

simulated radioactive source and GADRAS simulated the radiation count rate for D3S detec-

tor at multiple different distances. The source intensities varied from 100 μCi to 2,000 μCi. The

information on source intensity and its corresponding radiation count rate (cps) measured

when the detector is 1 meter away from the source is shown in Table 1.

After the simulation, the sources were put into the originally measured background radia-

tion data. For instance, we put the sources into the experimental region at 10 different ran-

domly selected locations, which were denoted by numbers from 1 through 10 in Fig 1,

covering the high background area and low background area. For each experiment, we

injected one simulated radioactive source at the corresponding location. To test the

Radiation detection using Poisson kriging and mobile sensor networks
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performance of the proposed algorithm under different cases, the simulated radioactive source

were put at 3 different distance (1 m, 5 m, and 10 m) from the walking paths. So, for each

source location, there were 15 different scenarios in total (5 different source intensities and 3

different distances). The detailed locations of the injected radioactive sources are listed in

Table 2.

We used the data that were collected during the afternoon to inject radioactive sources. Fig

2 shows the measured count rate within a certain distance from the source has increased sig-

nificantly. The radiation level of the data that is far away from the source remains the same.

Results and discussion

Nuclear radiation estimation

According to Tobler’s first law, “everything is related to everything else, but near things are
more related than distant things” [34]. Our experiments indicate that the data follows Tobler’s

first law well. For instance, Fig 3 illustrates the semi-variogram of the collected background

Fig 1. Illustration of experimental area, background radiation measurements, and radioactive source locations.

Three relatively high background regions, namely the Nuclear Radiation Laboratory (A), the Alma Mater statue (B),

and the Church (C) are denoted using dotted rectangles.

https://doi.org/10.1371/journal.pone.0216131.g001

Table 1. Simulated source intensity in counts per second.

Source Intensity D3S Count Rate

100 μCi (3.7 × 106 Bq) 127 cps

300 μCi (1.11 × 107 Bq) 380 cps

500 μCi (1.85 × 107 Bq) 626 cps

1,000 μCi (3.7 × 107 Bq) 1,220 cps

2,000 μCi (7.4 × 107 Bq) 2,354 cps

https://doi.org/10.1371/journal.pone.0216131.t001

Radiation detection using Poisson kriging and mobile sensor networks
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radiation data, where the x-axis represents the distance between radiation data points, and the

y-axis represents the semi-variogram value. Using the background radiation data collected in

the morning as shown in Fig 1, a series of discrete estimates of semi-variogram values are

obtained, then an exponential model (Eq 17) can be fitted.

Fig 3 shows that the semi-variogram value increases with small data distances, which indi-

cates strong correlation between radiation measurements. As the distance increases, the

correlations decreases and the fitted line tends to saturate. This is also consistent with the

expectation that as the distance becomes large enough, there is almost no correlation between

two locations.

Based on the fitted semi-variogram from Fig 3 and the background radiation measurements

shown in Fig 1, the Poisson kriging was used to produce the interpolation kernel density sur-

face. The result is illustrated in Fig 4, which provides the smooth distribution of background

radiation levels. The lighter color (e.g., yellow color) represents a greater radiation level.

Table 2. Locations of injected radioactive sources.

Source No. Distance to Walking Paths

1 m 5 m 10 m

1 55.87, 196.93 59.95, 200.48 64.97, 205.15

2 54.77, 328.80 58.59, 324.80 63.70, 320.02

3 310.66, 330.58 306.74, 326.58 301.81, 321.24

4 446.81, 331.36 442.98, 328.36 441.54, 323.47

5 450.64, 281.66 447.15, 285.66 442.30, 290.77

6 172.72, 245.41 176.12, 243.41 180.37, 241.52

7 86.49, 23.57 86.49, 27.69 86.57, 32.69

8 360.92, 50.48 358.12, 53.26 354.88, 56.82

9 453.70, 179.14 450.38, 176.58 446.47, 173.80

10 167.96, 204.49 171.44, 206.16 175.36, 209.16

Source locations are shown with two numbers, meaning the location (in meters) in West-East direction and South-

North direction corresponding to Fig 1.

https://doi.org/10.1371/journal.pone.0216131.t002

Fig 2. Illustration of synthetic source injection.

https://doi.org/10.1371/journal.pone.0216131.g002
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Fig 3. Semi-variogram plot of background radiation measurements.

https://doi.org/10.1371/journal.pone.0216131.g003

Fig 4. Poisson kriging estimation of background radiation distribution.

https://doi.org/10.1371/journal.pone.0216131.g004
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Anomalous source detection

The goal of the research work is not only to estimate background radiation levels based on the

radiation data collected using mobile sensor networks, but also to identify the location of the

anomalous radiation source. In real cases, two types of data are available: the historical back-

ground radiation data where no radioactive sources are present and the newly collected data

which might contain radioactive sources. To identify the anomalous radioactive sources, this

work implements a two-step method. First, the distribution of the background radiation of the

study area is estimated using Poisson kriging model. In the second step, we inserted the radio-

active sources in the study area and the newly collected data will contain the information of

the radioactive sources, from which, the anomaly score can be defined to identify the radioac-

tive sources.

More specifically, for position r, using the historical background radiation data, the esti-

mated background radiation level is denoted by Yb
r . After suspicious data are collected, the esti-

mated radiation level from Poisson kriging based on the newly measured data is denoted by

Yn
r . The difference between the estimation from newly measurements and from background

data is used to define the anomaly score:

ScoreðYn
r ;Yb

r Þ ¼ Yn
r � Yb

r : ð18Þ

Eq 18 simply uses the difference between new estimation and background radiation estima-

tion to define anomaly score. It works when the background radiation distribution is smooth.

However, in real cases, the high fluctuation areas always exist. Therefore, a more robust anom-

aly score needs to be developed based on the SNR. In SNR, the square root of background radi-

ation level is used as the estimation of noise level, and the difference between new estimation

and background radiation level is used as the estimation of signal strength. The anomaly score

is then defined as:

ScoreðYn
r ;Yb

r Þ ¼
Yn

r � Yb
rffiffiffiffiffi

Yb
r

p : ð19Þ

To test the proposed method, considering the case where a simulated radioactive source

with 100 μCi source intensity is injected 1 meter away from walking paths as denoted by num-

ber 1 in Fig 1. After adjusting the collected data as described in Fig 2, Poisson kriging is applied

and the estimated radiation distribution is shown in Fig 5, where the injected radioactive

source is denoted by the red cross.

Compared with Fig 4, the significant difference appears at the location where the simulated

source location is. However, in Fig 5, although the hot spot area around the injected source is

identified, the high background radiation regions make it hard to correctly identify the radio-

active source purely based on the difference between Fig 5 and Fig 4. To make more robust

decisions, the anomaly score defined in Eq 19 is computed and the distribution of the anomaly

score is shown in Fig 6. The actual source location is denoted by the red cross and the esti-

mated source location based on maximal anomaly score is denoted by the black triangle.

Through calculating SNR, the influence of high background radiation region is mostly elimi-

nated, and the radioactive source is correctly located.

Error analysis

Previous sections demonstrates the application of Poisson kriging for nuclear radiation distri-

bution estimation and anomalous radioactive source identification using an example case.

Here, we developed comprehensive test cases to evaluate the performance of the model. The
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137Cs source with 5 different intensities (100 μCi, 300 μCi, 500 μCi, 1,000 μCi, and 2,000 μCi)
was added to 10 randomly selected locations in the study area as shown in Fig 1. The distance

to the walking paths varied from 1 m to 10 m. We choose the model’s source identification

accuracy to evaluate its performance. The source identification accuracy is calculated accord-

ing to the given distance threshold. When the distance of the estimated source location from

the actual source location is smaller than the distance threshold, the source is assumed to be

correctly identified. In this study, we defined three distance threshold values (5, 10, and 20

meters). For each distance threshold scenario, we calculated the source identification accuracy.

The results are illustrated in Tables 3, 4, and 5.

As expected, the performance of the proposed method is dramatically influenced by source

intensity and the distance of radioactive source from the walking paths. When the source is

close enough or the source intensity is high enough or both, the identification accuracy could

reach 100%. However, when the source intensity is low or the distance of radioactive source

from the walking paths is too large, radioactive sources cannot be easily identified.

Discussion

In this work, Poisson kriging is not only used for background radiation levels estimation, but

also for radioactive source identification. The performance of the proposed framework is ana-

lyzed using a small mobile sensor network and experimental data with simulated radioactive

source. The results indicate that the proposed algorithm can find the radioactive source with

high accuracy if the source is close enough to the walking paths (e.g., less than 5 meters away)

or if the radioactive source is strong enough (e.g., 500 μCi or above). For cases where the radio-

active source is placed 5 meters away from the walking paths, the number of successful cases

Fig 5. Poisson kriging estimation with synthetic source injection. The 100 μCi137Cs source is injected 1 meter away from the

walking path, which is denoted using a red cross.

https://doi.org/10.1371/journal.pone.0216131.g005
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increases rapidly when the source intensity increases. The model yields poor performance

when the source is placed more than 10 meters away from the walking paths. In these cases,

the local hot spot areas around the radioactive sources can always be identified, which provide

important prior information for further investigation.

On the other hand, there are several uncertainty factors involved in this study, which might

cause the error of the results. The radiation level that is measured using a mobile sensor is sig-

nificantly affected by the weather condition, detector’s shielding condition, and moving speed.

The correlation between those factors and the background radiation level is not analyzed in

this work. Also, the current Poisson kriging model assumes that the background radiation

level has the same mean value among the study area. A more advanced hierarchical model [23]

can also be used to avoid the uniform mean assumptions.

The main focus of the article is to develop a method that can be used to detect anomalous

radioactive source. In this article, the proposed method was tested using a small mobile sensor

Fig 6. Anomalous source localization from Poisson kriging model. The background color corresponds to the anomaly score

calculated using Eq 19. The injected source was denoted by red cross and the estimated source location was denoted by black

triangle.

https://doi.org/10.1371/journal.pone.0216131.g006

Table 3. Source identification accuracy with 5 meters distance threshold.

Configuration Distance to the Walking Path

1 m 5 m 10 m

Source Intensity 100 μCi (3.7 × 106 Bq) 80% 0% 0%

300 μCi (1.11 × 107 Bq) 100% 40% 0%

500 μCi (1.85 × 107 Bq) 100% 50% 20%

1,000 μCi (3.7 × 107 Bq) 100% 60% 30%

2,000 μCi (7.4 × 107 Bq) 100% 70% 30%

https://doi.org/10.1371/journal.pone.0216131.t003
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network. The data collection and transmission processes were done in near real-time. In the

future, the computational complexity should be considered and the optimal threshold for

anomalous source identification should be determined using more experimental data. Also,

this algorithm should be implemented in a way that it can run parallel processes and perform

big geospatial data computing at cloud in real-time.

Conclusion

The goal of the project is to detect anomalous radioactive sources (e.g., nuclear bombs or

weapons) using mobile sensor networks. There are several innovations involved in this

research work. The data streams that are collected through continuous interaction between

time and space require real-time (or near real-time) analytics and response. In contrast, most

spatial analysis methods and computing framework have not pursued this goal, thus reducing

their effectiveness in decision support contexts and motivating research conducted to improve

the performance of data-intensive geospatial analysis. In this research work, we developed

an intelligent mobile sensor network, in which the radiation streaming data collected using

mobile sensors in every second are automatically transferred to the cloud in the form of geo-

tagged streaming data in near real-time. In the second step, we developed a novel spatial algo-

rithm based on Poisson kriging to detect the anomalous radiation source. We have conducted

experiments with simulated radioactive sources to test the proposed method’s performance.

The results indicate that the proposed algorithm can correctly capture the spatial distribution

of nuclear radiation levels and find the anomalous radiation source with extremely high accu-

racy under certain conditions.
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Table 4. Source identification accuracy with 10 meters distance threshold.

Configuration Distance to the Walking Path

1 m 5 m 10 m

Source Intensity 100 μCi (3.7 × 106 Bq) 90% 20% 10%

300 μCi (1.11 × 107 Bq) 100% 90% 20%

500 μCi (1.85 × 107 Bq) 100% 100% 40%

1,000 μCi (3.7 × 107 Bq) 100% 100% 50%

2,000 μCi (7.4 × 107 Bq) 100% 100% 60%

https://doi.org/10.1371/journal.pone.0216131.t004

Table 5. Source identification accuracy with 20 meters distance threshold.

Configuration Distance to the Walking Path

1 m 5 m 10 m

Source Intensity 100 μCi (3.7 × 106 Bq) 90% 20% 10%

300 μCi (1.11 × 107 Bq) 100% 90% 20%

500 μCi (1.85 × 107 Bq) 100% 100% 50%

1,000 μCi (3.7 × 107 Bq) 100% 100% 90%

2,000 μCi (7.4 × 107 Bq) 100% 100% 100%

https://doi.org/10.1371/journal.pone.0216131.t005
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