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Abstract

Generalized linear latent variable models (GLLVM) are popular tools for modeling multivari-

ate, correlated responses. Such data are often encountered, for instance, in ecological stud-

ies, where presence-absences, counts, or biomass of interacting species are collected from

a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of

computationally efficient estimation methods. For likelihood based estimation, several

closed form approximations for the marginal likelihood of GLLVMs have been proposed, but

their efficient implementations have been lacking in the literature. To fill this gap, we show in

this paper how to obtain computationally convenient estimation algorithms based on a com-

bination of either the Laplace approximation method or variational approximation method,

and automatic optimization techniques implemented in R software. An extensive set of simu-

lation studies is used to assess the performances of different methods, from which it is

shown that the variational approximation method used in conjunction with automatic optimi-

zation offers a powerful tool for estimation.

1 Introduction

High-dimensional multivariate abundance data, which consist of records (e.g. species counts,

presence-absence records, and biomass) of a large number of interacting species at a set of

units or sites, are routinely collected in ecological studies. When analyzing multivariate abun-

dance data, the interest is often in visualization of correlation patterns across species, hypothe-

sis testing of environmental effects, and making predictions for abundances. Classical methods

for analysing such data, including algorithmic-based approaches such as non-metric multidi-

mensional scaling (nMDS) and correspondence analysis (CA), are based on distance matrices

computed on some pre-specified dissimilarity measure [1]. As such, they often make wrong

assumptions for key properties of the data at hand (e.g. mean-variance relationship), which

can potentially lead to misleading inferential results [2, 3].
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An alternative approach that has gained considerable attention over the past several years is

generalized linear latent variable models (GLLVMs, [4]). GLLVMs start with the basic general-

ized linear model (GLM, [5]), classically used to model the impact of environmental covariates

on abundance of one species, and extend it by incorporating latent variables to model between

response correlation in a parsimonious manner. As the model makes explicit assumptions

concerning the response distribution, the mean-variance relationship can be correctly mod-

eled and verified using (for instance) residual analysis and model selection approaches. In the

context of multivariate abundance data, GLLVMs were first proposed by [6] for presence-

absence data, and [7] in a more general framework for model-based unconstrained ordination.

By adding covariates to the model, it can be used as a model-based approach to correspon-

dence analysis [8]. More recently, there has been an explosion in research on various exten-

sions of GLLVMs for joint analyses of multivariate abundance data, see [9–12] among many

others.

One of the main and long standing challenges with using GLLVMs is the lack of computa-

tionally efficient estimation methods. The need for fast and efficient estimation methods

evolves from the fact that modern data collection tools such as metabarcoding often result in

very large and high-dimensional datasets (for a recent review, see [13]), and current methods

are unable to fit GLLVMs for such data in reasonable amount of time. Specifically, many of the

standard methods proposed in the literature for fitting GLLVMs have a major drawback as

being either computationally very intensive with high-dimensional data e.g. the Expectation

Maximization algorithm [7, 14] and Bayesian Markov Chain Monte Carlo estimation [11, 15],

or are computationally impractical with a larger number of latent variables, such as Gauss-

Hermite quadrature [16–18]. In recent years, a number of approaches have been proposed in

the literature to overcome such issues, with two of the more prominent ones being the varia-

tional approximation method to approximate the likelihood in the case of binary, ordinal and

overdispersed count data [19], and the Laplace approximation method for responses from the

exponential family of distributions [20], which has recently been adapted specifically for over-

dispersed count and biomass data in ecology [21]; Note that the Laplace approximation can be

considered as a special case of adaptive quadrature with only one quadrature point. Both esti-

mation methods provide a closed form approximation to the marginal log-likelihood that can

then be maximized efficiently.

In this paper, we propose a framework for faster fitting of GLLVMs using either Laplace

approximation method or the variational approximation method. Our method utilizes the R
package TMB (Template Model Builder, [22]), which offers a general tool for implementing

complex random effect models through simple C++ templates. TMB is inspired by AD Model

Builder [23], which is a C++ language extension for solving optimization problems using auto-

matic differentiation [24]. With growing popularity, TMB has been used to estimate complex

non-linear models, e.g. for fitting mixed-effect models [25] and non-Gaussian state space

models [26]. The algorithms we propose in this article for efficient estimation of GLLVMs

have been recently implemented in the R package gllvm [27].

Another major contribution we make is to provide a new method for obtaining starting val-

ues for parameter estimation of GLLVMs. This is especially important for GLLVMs given

their complex mean and latent variable structures may cause the observed likelihood to be

multimodal (as discussed in [28]), and good starting values are therefore critical in order to

guarantee fast convergence and to avoid local maxima. Our proposed method is based around

fitting univariate GLMs to each species in order to obtain starting values for fixed parameters,

and then applying a factor analysis to the Dunn-Smyth residuals [29] from the fitted GLMs as

the basis for constructing starting values for the loadings and latent variables. We performed
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an extensive series of simulation studies to compare the performances of estimation algorithms

with and without TMB, and to compare various methods for constructing starting values. The

simulation studies showed that in most cases, the variational approximation method utilizing

TMB outperformed the other estimation algorithms: computation times were clearly faster

than those of the other methods, the empirical mean biases and mean squared errors of the

parameter estimates were smaller, and coverage probabilities of Wald-type confidence inter-

vals were closer to their nominal level. Our simulations also show that the proposed approach

for choosing starting values outperformed more standard methods such as random starting

values in terms of consistency of reaching the global maximum of the likelihood, regardless of

the data at hand.

The paper is organized as follows. In Section 2, we formulate a generalized linear latent vari-

able model suitable for joint modeling of abundance data, and review the most recently pro-

posed approximation methods. In Section 3, we explain how the estimation can be performed

using TMB and introduce different methods for obtaining starting values for estimation. In sec-

tion 4, we study the performances of our methods using several simulation studies. Section 5

concludes the paper.

2 Generalized linear latent variable models

Consider a sample of observations consisting of responses for m species collected at n sites,

such that yij denotes the response for species j = 1, . . ., m at site i = 1, . . ., n. A generalized lin-

ear latent variable model (GLLVM) regresses the mean response, denoted here as μij, against

a vector of d�m latent variables, ui = (ui1, . . ., uid)0, along with the vector of covariates

xi = (xi1, . . ., xik)0. That is,

gðmijÞ ¼ Zij ¼ ai þ b0j þ x0iβj þ u0iγj; ð1Þ

where βj and γj are vectors of species specific coefficients related to the covariates and latent

variables, respectively. It is the term u0iγj which captures the residual correlation across species

not accounted for by the observed covariates xi. Moreover, a key advantage of this type of

model is that it is capable of flexibly handling correlation across response variables in a parsi-

monious manner, with the number of parameters characterizing the correlation structure

growing linearly in the number of responses m. This allows GLLVMs to be feasibly fitted to

datasets with relatively large m, as often arises in practice [8].

We assume that the latent variables follow a multivariate standard normal distribution,

ui� Nd(0, Id), where Id denotes a d × d identity matrix. The assumption of zero mean and unit

variance is made in order to fix the locations and scales of latent variables. We also set all the

upper triangular elements of m × d matrix Γ = (γ1� � �γm)0 to be zero, that is, γij = 0 for j> i,
and constrain its diagonal elements, γii, to be positive in order to avoid rotation invariance and

to ensure parameter identifiability.

For the GLLVM defined in Eq (1), where the αi’s are assumed to be random row effects

(reflecting a nested sampling design, say), denote u�i ¼ ðai; u
0
iÞ
0
and γ�j ¼ ð1; γ

0
jÞ
0
and write the

model as gðmijÞ ¼ Zij ¼ b0j þ x0iβj þ u�i 0γ
�
j . Since the latent variables and random intercepts are

assumed to be independent, then u�i follows a multivariate normal distribution with mean zero

and block diagonal covariance matrix, Cσ2 = bdiag(σ2, Id), where bdiag(�) is the block diagonal

operator. Write the probability density function of N(0, Cσ2) as f ðu�i ; s
2Þ. To complete the for-

mulation, we assume that conditional on the latent variables u�i and parameter vector C, the

responses are independent observations from the exponential family of distributions with
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probability density function,

f ðyijjui;ΨÞ ¼ exp
yijaðZijÞ � bðZijÞ

�j
þ cðyij;�jÞ

( )

; ð2Þ

where a(�), b(�) and c(�) are known functions and ϕj is a species specific dispersion parameter.

Let Ψ ¼ ðβ0
0
; vecðBÞ0; vecðΓÞ0;F0; s2Þ denote the full vector of parameters in the GLLVM,

where β0 = (β01, . . ., β0m)0, B = (β1. . .βm)0, Γ = (γ1. . .γm)0, and F includes all other nuisance

parameters e.g. F = (ϕ1, . . ., ϕm)0. With the conditional independence of the responses given

the latent variables, we then obtain f ðyi; u
�
i ;ΨÞ ¼

Qm
j¼1

f ðyijju�i ;ΨÞf ðu
�
i ; s

2Þ as the joint distri-

bution. By integrating over latent variables u�i then, we obtain the following marginal log-likeli-

hood function for a GLLVM,

lðΨÞ ¼
Xn

i¼1

log ðf ðyij;ΨÞÞ ¼
Xn

i¼1

log
Z

Rdþ1

Ym

j¼1

f ðyijju
�

i ;ΨÞf ðu
�

i ; s
2Þdu�i

 !

: ð3Þ

For non-normal responses the above log-likelihood cannot be solved analytically. To over-

come the integral in Eq (3), we consider in the following section closed-form approximations

for the likelihood.

2.1 Approximations to the marginal likelihood of GLLVMs

Computationally, the most efficient likelihood based approaches for estimating GLLVMs

are methods which approximate the marginal likelihood in a closed form. Of these, the

most common and well known is the Laplace approximation method, which has been

used extensively in the statistical literature to approximate marginal likelihood functions

that cannot be resolved analytically [30]. The Laplace approximation can be easily

applied to a marginal likelihood lðCÞ ¼
Pn

i¼1
log
R
f ðyiju�i ;CÞf ðu

�
i Þ du

�
i with latent

variables u�i . By denoting Qðyi; u�i ;CÞ ¼ logff ðyiju�i ;CÞf ðu
�
i Þg=m, the likelihood can be

written as lðCÞ ¼
Pn

i¼1
log

R
expðmQðyi; u�i ;CÞÞ du

�
i . Assuming further that û�i maximizes

Qðyi; u�i ;CÞ, the Laplace approximation method applies a second order Taylor expansion

for Qðyi; u�i ;CÞ around the maximum û�i , and thus allows the integral to be performed in a

tractable manner (it resembles the normalization constant for a multivariate normal distri-

bution). For GLLVMs, the Laplace approximation was first proposed in [20], and extended

by [21] to handle important distributions arising in ecology such as the negative binomial,

Poisson, zero inflated Poisson and Tweedie distributed responses. For a model as defined in

Eq (1) with random row effects and responses yij coming from the exponential family of dis-

tributions with mean μij as defined in (2), the Laplace approximation of the marginal log-

likelihood function can be written as follows:

~lðΨÞ ¼
Xn

i¼1

 

�
1

2
log det fG Ψ; û�i

� �
g þ

Xm

j¼1

(
yij aðẐ ijÞ � bðẐ ijÞ

�j
þ cðyij;�jÞ

)

�
1

2
û�i
0C� 1

s2 û�i �
1

2
log det ðCs2Þ

!

;

where

GðΨ; û�i Þ ¼
Xm

j¼1

@
2
f� yij aðZijÞ þ bðZijÞg

@u�i 0@u�i

�
�
�
�
�
u�i ¼û

�
i

þ Cs2 ;
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Ẑ ij ¼ b0j þ x0iβj þ û�i
0γ�j , Cσ2 = bdiag(σ2, Id), û�i ¼ ðai; u

0
iÞ
0
and û�i maximizes

Qðyi; u
�
i ;ΨÞ ¼

1

m

 
Xm

j¼1

(
yijaðZijÞ � bðZijÞ

�j
þ cðyij;�jÞ

)

�
1

2
u�i
0C� 1

s2 u�i

�
1

2
log det ðCs2Þ

!

with respect to u�i . All quantities that are constant with respect to the parameters have been

omitted. Some further simplification of this expression is possible when the model is defined

using a canonical link function [21].

When using Laplace approximations, the estimation is performed by maximizing ~lðΨÞ with

respect to C, and Qðyi; u�i ;CÞ with respect to u�i . The estimates û�i are then used as predictions

of the latent variables. Furthermore, asymptotic standard errors for Ĉ and û�i are computed as

the negative Hessian matrix obtained as part of the estimation process. These may form the

basis for performing statistical inference for the model parameters and evaluate prediction

errors for the latent variables, both of which will be examined empirically in the simulation

studies in Section 4.

Another method which allows us to derive a closed form approximation for the marginal

likelihood is the variational approximation method. The idea of variational approximations

originates from machine learning research, where it is often used to approximate probability

densities [31]. More recently, the method has gained considerable traction in Bayesian data

analysis for efficiently approximating posterior densities [32, 33]. The variational approxima-

tion method is also applicable in likelihood based contexts for approximating an intractable

marginal likelihood [34], although it is less frequently used in this context. Furthermore, the

large sample properties of estimates and inference obtained using the variational approxima-

tion method are not thoroughly studied and remain a topic of future research [33].

The main idea behind likelihood based variational approximations is to approximate the

posterior distribution of the random effects i.e., f ðu�i jyi;ΨÞ by a simpler distribution in order

to get a closed form (or almost closed-form) expression for the marginal log-likelihood. This

so called variational likelihood is a strict lower bound to the marginal log-likelihood, and is

then treated as the new objective function on which to base estimation and inference. In prac-

tice, for a marginal log-likelihood function lðCÞ ¼
Pn

i¼1
log
R
f ðyiju�i ;CÞf ðu

�
i Þ du

�
i , the varia-

tional approximation approach make use of Jensen’s inequality to construct this lower bound,

Xn

i¼1

log
Z

f ðyiju
�

i ;ΨÞf ðu
�

i Þdu
�

i ¼
Xn

i¼1

log
Z �

f ðyiju�i ;ΨÞf ðu
�
i Þqðu

�
i jξÞ

qðu�i jξÞ

�

du�i

�
Xn

i¼1

Z

log
�
f ðyiju

�
i ;ΨÞf ðu

�
i Þ

qðu�i jξÞ

�

qðu�i jξÞdu
�

i ;

for some variational density qðu�i jxÞ with variational parameters ξ. Critically, the logarithm

can be brought inside the integral, thereby making integration easier for the exponential family

of distributions. By maximizing the variational log-likelihood with respect to both the model

parameters C and variational parameters ξ, we see that maximizing the variational likelihood

is equivalent to minimizing the Kullback-Leibler divergence between the true posterior,

f ðu�i jyi;CÞ, and the proposed variational density qðu�i jxÞ.
The variational approximation method was applied to the estimation of GLLVMs by [19]

and it was shown that it is optimal in some sense to choose, as variational densities q(�), inde-

pendent normal distributions for the latent variables for each observational unit. Following on
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from this, for our GLLVM model in Eq (1) with random row effects we choose qðu�i jxu�i Þ ¼

Ndþ1ðai;AiÞ for i = 1, . . ., n, where xu�i
¼ ðai; vecðAiÞ

0
Þ
0
, Ai ¼ bdiagðAai

;Aui
Þ and Aui

is an

unstructured d × d covariance matrix. For responses coming from the exponential family of

distributions with the canonical link function, this leads to the variational approximation of

the GLLVM log-likelihood as follows:

‘ðΨ; ξÞ ¼
Xn

i¼1

Xm

j¼1

� yij~Z ij � Eq�fbðZijÞg
�j

þ cðyij; �jÞ

�

þ
1

2

Xn

i¼1

log det ðAiÞ � trðC� 1

s2 AiÞ � a0iC
� 1

s2 ai � log det ðCs2Þ
� �

;

where ~Z ij ¼ b0j þ x0iβj þ a0iγ
�
j , Cσ2 = bdiag(σ2, Id) and ai and Ai are the mean and the covariance

matrix of a variational density, respectively. All quantities constant with respect to the parame-

ters have been omitted. Notice the lower bound includes the expectation term Eq�{b(ηij)},
which is not guaranteed to have a closed form for any distribution form the exponential family.

Through reparameterization of the GLLVM, fully explicit forms for ‘ðΨ; xÞ can be derived for

some common occurring responses in multivariate abundance data, such as binary, ordinal

and overdispersed count responses [19].

One attractive feature of likelihood based variational approximations is that the estimated

means of the variational distributions, â i, i = 1, . . ., n, provide a natural predictor for the latent

variables u�i , while the estimated covariance matrices Âi along with the assumed variational

density qðu�i jxÞ can be used as the basis for constructing prediction intervals [34]. Both quanti-

ties are obtained directly from the maximization procedure. Furthermore, asymptotic standard

errors for the model parameters can be obtained by using the block inverse matrix of the nega-

tive Hessian of ‘ðΨ; xÞ, (see also [35]).

3 Implementation

Two advances are made in this paper, which enable faster, more reliable fitting of GLLVMs

than previous implementations of Laplace or variational approximations. First, we write soft-

ware to make use of automatic differentiation software in the TMB package [22]. Secondly, we

make strategic choices for the starting values of the parameters in the GLLVM, in order to

improve speed and stability of the estimation algorithms. Our simulations presented later

demonstrate that these changes improve speed by an order of magnitude, as well as improving

reliability by increasing the accuracy of the estimates.

3.1 Implementation with TMB
The closed form approximate marginal log-likelihoods proposed in the previous section are

often maximized using some gradient-based optimization algorithms. This presents a computa-

tional challenge as it means that the gradient functions need to be calculated for each response

distribution and specific model separately. To overcome this, we use Template Model Builder

(TMB) for fitting GLLVMs. TMB is a general R package for fitting non-linear mixed effects and

latent variable models based on AD Model Builder, which is a C++ language extension for solv-

ing statistical optimization problems using automatic differentiation techniques [23]. To per-

form optimization using TMB in general, the complete log-likelihood for the model of interest is

written in C++, from which TMB employs the C++ library ‘CppAD’ to efficiently construct

functions for calculating the associate gradient and Hessian. These functions written can then

be called from R, and can be straightforwardly passed into gradient based optimization methods

Efficient estimation of GLLVMs
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such as optim() or nlminb(). After optimization, the Hessian matrix is obtained as a side

product and can be used to calculate standard errors for parameters. Note however initializa-

tion of the model and the choice of starting values must be done in R.

For models involving random effects, TMB uses the Laplace approximation method. As a

result, we can straightforwardly adapt it for maximizing the Laplace approximation of the

GLLVM log-likelihood in Section 2.1 based on the following steps:

1. Write the complete log-likelihood for the responses and latent variables in C++ using the

TMB model template and compile it.

2. Set initial values for the model parameters and the latent variables in R; see Section 3.2.

3. Create the TMB object using TMB::MakeADFun() with data, initial values and the objec-

tive function as input, specifying the names of the parameters to be integrated out of the

likelihood using argument random in TMB::MakeADFun(). The Laplace approxima-

tion method will then be automatically applied to the complete likelihood, and gradient and

Hessian functions for the marginal log-likelihood will be constructed.

4. Optimize the objective function using optim() or nlminb() in R.

5. Calculate the Hessian matrix in R using optimHess(), from which the standard errors

for the model parameters as well as prediction errors for the latent variables can be

obtained.

Notice that the initialization in Step 2 is crucial for the model fitting as poor initial values

may yield to convergence problems. We return to the selection of starting values in Section

3.2.

Since TMB allows maximization of any likelihood function, it can also be used to optimize

the variational approximation to the marginal log-likelihood for GLLVMs. In this case, we can

treat the variational parameters ξ as additional model parameters and maximize the variational

approximation to the log-likelihood based on the following steps:

1. Write the variational approximation lower bound for the log-likelihood in C++ using TMB
model template and compile it.

2. Set initial values for the model parameters and the variational parameters in R; see Section

3.2.

3. Create the TMB object using TMB::MakeADFun() with data, initial values and the objec-

tive function as input. The gradient and Hessian for the variational approximated log-likeli-

hood will then be automatically calculated using TMB::MakeADFun().

4. Optimize the objective function using optim() or nlminb() in R.

5. Calculate the Hessian matrix in R using optimHess(), from which standard errors for

the model parameters as well as prediction errors for the latent variables may be obtained

by applying block inversion for the negative Hessian matrix.

Finally, for all the implementations we considered, we parameterized any dispersion

parameters and variance components in terms of their log transformed values in to avoid

boundary issues in estimation and inference i.e. log(σ), log(ϕ), and so on.

3.2 Starting values

With GLLVMs and models involving a large number of latent random effects, the impor-

tance of selecting the initial values of model parameters is particularly important. When the
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observed likelihood function is multimodal, maximization algorithms can often end up in

local maxima if the initial values for parameters are not sufficiently close enough to the global

maximum. A widely used strategy to work around this issue is to use several random starting

values and to pick up the solution with highest log-likelihood value. In case of complex mod-

els and large datasets however, the use of several random starting values may however be too

time consuming.

We propose a new data driven method for constructing initial values for parameters in a

GLLVM. In this approach, we first fit a GLM, gðEðyijÞÞ ¼ b0j þ x0iβj, to each response variable

(species), from which the obtained estimates of β0j and βj are used as starting values for the

fixed parameters in the GLLVM. Starting values for latent variables ui and their loadings γj are

then constructed by applying factor analysis to the Dunn-Smyth residuals [29] from the fitted

GLMs. Furthermore, the matrices of starting values for the latent variables and the loadings

obtained via factor analysis are rotated so that the upper triangle of the loading matrix is zero,

so as to adhere to the parameter identifiability constructed below Eq (1). As starting values for

the random row effects, we use a vector of zeros. The key idea underlying this approach to con-

structing starting values lies in the Dunn-Smyth residuals, which are defined for the observa-

tion yij as

rij ¼ F� 1ðzijFijðyijÞ þ ð1 � zijÞF�ij ðyijÞÞ; ð6Þ

where F and Fij are the cumulative distribution functions of the standard normal distibution

and the response variable, respectively, F�ij is the limit as Fij is approached from the negative

side, and zij is a random variable generated from the standard uniform distribution. Dunn-

Smyth residuals have the attractive property that if model assumptions are correct, then the

residuals are exactly normally distributed. The normality of the residuals motivates us to use

the classical factor analysis on the residuals from the fitted GLMs, in particular, because they

contain information regarding the residual correlation across species not accounted for by

the observed covariates. For the remainder of this article, we will refer to this method for con-

structing starting values as res.

An extension to the above method is resX, where the starting values are obtained in a sim-

ilar fashion as in res, with the crucial difference being that resX uses X sets of starting values

for the latent variables. These are obtained by “jittering” starting values by adding random var-

iation from a normal distribution to the latent variables obtained using res. In our simulation

studies we use a jitter variance of 0.22 and X = 3 sets of starting values (we will thus refer to this

approach as res3 in Section 4). With X sets of starting values, which only differ in the latent

variables (the starting values for the B, Γ, and Φ remain the same), the estimation procedure

then proceeds as we would with random starting values. That is, a GLLVM is fitted using those

X different sets of starting values, and the fit with the highest log-likelihood value is then con-

sidered the best fitting GLLVM for that dataset.

In the simulation studies in the following section, we will compare res and res3 to two

alternative and common methods for constructing starting values: 1) a method referred to as

zero, where we use zero initial values for all parameters; 2) a method referred to as random,

where we simulate initial values for latent variables from a multivariate standard normal distri-

bution, while (as previously) a GLM is fitted to each response variable against environmental

variables and latent variables to get starting values for fixed parameters and loadings. Note that

the difference between random and res/res3 is that the latter makes use of the residual

information from the multivariate GLM to directly construct the starting values for the latent

variables and loadings, while the former simulates these randomly.
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4 Simulation studies

We performed a series of simulation studies to compare the performance of different model

fitting algorithms with and without automatic differentiation using TMB, using either the

Laplace approximation or variational approximation, and with different starting value strate-

gies (res, res3, zero, random). For fitting algorithms without automatic differentiation,

we implemented both the Laplace and variational approximations in plain R code by manually

defining their respective approximate likelihoods and their gradient functions. Details of the

simulation design are given below.

4.1 Simulation designs

We considered GLLVMs with multivariate count and binary data, and based our simulation

studies on two real datasets: the first dataset consists of abundances of testate amoebae in Finn-

ish peatlands [36], and the second dataset consists of abundances of bird species in Indonesia

[37].

The first simulation setup was based on the testate amoebae data [36], which consist of

counts of m = 48 testate amoebae species measured from n = 263 sampling sites across six

peatlands in southern and central Finland. Two environmental variables, water pH and water

temperature, were also recorded at each sampling site. We conducted simulation studies based

on the original count data as well as based on binary data obtained by converting counts to

presence-absences. As mean models, we used log ðmijÞ ¼ b0j þ x0iβj þ u0iγj for counts and

F� 1ðmijÞ ¼ b0j þ x0iβj þ u0iγj for presence-absences, where xi includes the values for the two

covariates recorded at site i, and ui includes two latent variables. Notice that with two-dimen-

sional latent variables, GLLVMs can be used as a model-based ordination method as described

in [7]. The parameters for the true model used to simulate multivariate abundance data were

obtained by fitting a negative binomial (Bernoulli) GLLVM to the real data, consisting of

counts (presence-absences) of observed amoebae species. To study the effect of sample size on

performance, we constructed nested subsets of size n = 50, 120, 190 and 260 randomly sam-

pling from the sites and used parameters of the fitted model, which corresponded the sites in

subsets, to generate datasets of the desired sizes. We generated K = 500 datasets for each value

of n, and for each dataset we fitted GLLVMs using the four starting value strategies and both

approximation methods with and without automatic differentiation.

The second simulation setup was based on Indonesian bird data [37], which consists of

counts of m = 177 bird species measured from n = 37 sites in Central Kalimantan, Indonesia.

We conducted a simulation study for the original count data as well as for the binary data

obtained by converting counts to presence-absences. We used log ðmijÞ ¼ b0j þ u0iγj for counts

and F� 1ðmijÞ ¼ b0j þ u0iγj for presence-absence data, with parameters for the true model based

on a negative binomial GLLVM fitted to the count data and a Bernoulli GLLVM fitted to the

binary data. In this simulation study, we varied the number of species, that is, we used four

different numbers of randomly selected species, m = 30, 60, 100 and 140. As in the previous

setup, the parameters for the true model were obtained by fitting a negative binomial (Ber-

noulli) GLLVM to the data in the case of counts (presence-absences), and the parameters that

corresponded the species in each subset were used obtain a dataset of the desired size. For each

value of m, we generated K = 500 datasets, and for each dataset we fitted GLLVMs using four

different starting value strategies and both approximation methods with and without auto-

matic differentiation.

In addition to the above two simulation setups, we included another design based on

the Indonesian birds data, where we added a random row effect to the simulation model.
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Specifically, the true mean models were given by log ðmijÞ ¼ ai þ b0j þ u0iγj for counts and

F� 1ðmijÞ ¼ ai þ b0j þ u0iγj for presence-absence data, where αi is a random effects assumed to

follow a normal distribution with zero mean and variance 0.25. We fitted these models with

random row effects using TMB only. The reason for this is that the plain R implementations of

[21] do not cater for random row effects, and other simulations had already demonstrated that

the TMB implementation is more computationally efficient.

Note that the first simulation setup, based on a dataset with a large sample size, varied n,

while the second simulation setup, based on a dataset with a species rich community (large m),

varied m. Hence we looked at the effects of varying each of sample size and of number of

responses, but do so one simulation at a time. These simulations were computationally inten-

sive, with a total running time across all simulations of 5 weeks on a Intel Xeon E7-8837

(2.67GHz) processor with 25 CPUs.

4.2 Overdispersed counts

We being by presenting the results from negative binomial GLLVM under the first simulation

design, and compared variational approximation and Laplace approximation methods imple-

mented with and without TMB, using the starting value method res; see Section 4.4 for the

reason behind this choice of starting value approach. Fig 1 plots the median computation

times, and demonstrates that the variational approximation method implemented using TMB
was substantially faster than the other estimation methods. The TMB implementation of the

Laplace approximation method was also faster than the plain R implementation for the small-

est sample size.

The results in Table 1 suggest that the advantages in computation time did not come at the

cost of estimation and inferential accuracy. In fact, the average biases across all species and

root mean squared errors tended to be smaller for the variational approximation method com-

pared to the Laplace approximation method. With very small n, the differences between the

two approximation methods were particularly noticeable. For both methods, the estimates

for log-dispersion parameters were comparably biased when the sample size was very small.

When the sample size increased, the variational approximation method in particular per-

formed better, with differences between the two variational approximation implementations

becoming very small. For the Laplace approximation method, although the differences in aver-

age biases were small, the differences in coverage probabilities and mean confidence interval

widths were comparably larger than its variational counterpart. Furthermore, the implementa-

tion which did not use TMB tended to provide overly narrow confidence intervals for almost

all parameters.

In order to evaluate the performance of the estimated latent variable loadings, ĝ j, and pre-

dicted latent variables, û i, we list in Table 2 the mean Procrustes errors between the estimated

and the true values ([28], Chapter 8.4). These are scaled according to the sample size and num-

ber of species to make comparisons easier. Results indicated that for small n, compared to the

Laplace approximation method, the variational approximation method produced smaller Pro-

crustes errors for both latent variables and loadings. As expected, the difference between Pro-

crustes errors based on different methods decreased when n increased.

In addition to the results presented in Tables 1 and 2, we also evaluated the acurracy of

competing models by adapting the variation explained based on cross-validation (denoted

here as VE), as proposed in [38, 39], for our text with simulated binary and count data. Specifi-

cally, for each simulation setup we compared the predictive performance of the correponding

GLLVM to the null model i.e, a model including only an species-specific intercept only, using
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the formula

VEk ¼ 1 �

Xn

i¼1

Xm

j¼1

jm̂
ðkÞ
ij � mijj

Xn

i¼1

Xm

j¼1

jm̂
ðkÞ
ij;null � mijj

;

where for the kth simulated dataset with k = 1, . . ., 500, the quantities m̂
ðkÞ
ij and m̂

ðkÞ
ij;null ¼ g � 1ðb̂0jÞ

denote the predicted means from the fitted GLLVM and from a null model, respectively. The

true means, which were used to generate the training datasets, are denoted by μij. Because we

are using simulated data and therefore can generate multiple training datasets, as opposed to a

real application where we only have the one realized dataset, then there is less motivation to

use cross-validation when calculating VE i.e, the natural variation across folds can be well

Fig 1. Median computation times for negative binomial GLLVMs. Times for the plain R (gray) and the TMB
implementations (black) for the variational approximation (VA, solid line) method and the Laplace approximation (LA,

dashed line) method for a negative binomial GLLVM with two covariates and two latent variables. The simulation setup was

based on testate amoebae data.

https://doi.org/10.1371/journal.pone.0216129.g001
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accounted by the natural variation across simulated datasets. Also, note because we are work-

ing with discrete data, then we choose to calculate VE based on the predicted mean scale μij
rather than on the response scale. The median VE values for negative binomial GLLVMs fitted

to counts simulated based on amoebae dataset are listed in Table 3. The results indicate that

the predictive accuracy improves as the number of sites increases. The accuracy is slightly

higher when the variational approximation method is used. Further, when n> 50, the Laplace

approximation method using the R implementation gives clearly lower VE values than the

method using the TMB implementation.

Table 1. Average biases, root mean squared errors (RMSE), coverage probabilities of 95% confidence intervals and mean confidence interval widths (CI) for negative

binomial GLLVM estimates based on the plain R and the TMB implementations for the variational approximation and the Laplace approximation methods. The

true model parameters were obtained by fitting a negative binomial GLLVM with two environmental covariates for the testate amoebae data with counts of m = 48 species

recorded at n = 50, 120, 190 and 260 sites. Parameter β0 refers to the species specific intercepts, βpH and βtemp to the coefficients of water pH and water temperature and log

ϕ to the log transformed dispersion parameters.

n VA-TMB LA-TMB

Bias RMSE Cover CI Bias RMSE Cover CI

50 β0 -0.32 0.85 0.94 3.09 -0.92 2.24 0.93 5.14

βpH -0.03 0.63 0.95 2.44 0.01 0.90 0.95 2.94

βtemp 0.02 0.73 0.93 2.76 -0.05 0.97 0.93 3.31

log ϕ -0.38 0.67 0.92 2.35 -2.80 5.12 0.95 76.72

120 β0 -0.05 0.49 0.94 1.78 -0.33 0.99 0.95 2.53

βpH -0.04 0.40 0.95 1.55 -0.01 0.46 0.95 1.67

βtemp 0.02 0.37 0.96 1.48 0.00 0.46 0.96 1.65

log ϕ -0.06 0.36 0.94 1.48 -0.59 1.57 0.95 5.13

190 β0 0.03 0.40 0.92 1.36 -0.19 0.62 0.96 1.80

βpH -0.04 0.32 0.95 1.20 -0.01 0.34 0.95 1.27

βtemp 0.01 0.30 0.97 1.24 0.00 0.36 0.96 1.34

log ϕ 0.02 0.30 0.93 1.16 -0.24 0.62 0.95 1.81

260 β0 0.07 0.36 0.91 1.15 -0.13 0.46 0.96 1.46

βpH -0.04 0.27 0.96 1.05 -0.02 0.29 0.96 1.10

βtemp 0.01 0.25 0.97 1.05 0.01 0.29 0.97 1.11

log ϕ 0.06 0.28 0.91 0.99 -0.15 0.36 0.95 1.24

VA-R LA-R

50 β0 -0.31 0.85 0.95 3.15 -0.94 2.34 0.84 4.60

βpH -0.03 0.63 0.95 2.48 -0.00 0.86 0.72 2.18

βtemp 0.02 0.73 0.94 2.80 -0.05 0.98 0.67 2.19

log ϕ -0.38 0.67 0.93 2.42 -1.44 2.39 0.51 3.27

120 β0 -0.05 0.49 0.95 1.79 -0.31 0.97 0.89 2.17

βpH -0.04 0.40 0.95 1.56 -0.02 0.48 0.79 1.54

βtemp 0.02 0.37 0.96 1.49 0.00 0.46 0.81 1.61

log ϕ -0.06 0.36 0.95 1.49 -0.40 0.86 0.56 0.85

190 β0 0.03 0.40 0.92 1.37 -0.18 0.60 0.91 1.55

βpH -0.04 0.32 0.95 1.20 -0.02 0.39 0.77 1.22

βtemp 0.01 0.30 0.97 1.24 -0.00 0.39 0.79 1.30

log ϕ 0.02 0.30 0.93 1.17 -0.21 0.48 0.58 0.63

260 β0 0.07 0.36 0.91 1.15 -0.12 0.45 0.89 1.26

βpH -0.04 0.27 0.96 1.05 -0.03 0.39 0.71 1.04

βtemp 0.01 0.25 0.97 1.05 0.01 0.34 0.77 1.11

log ϕ 0.06 0.28 0.91 0.99 -0.13 0.35 0.59 0.53

https://doi.org/10.1371/journal.pone.0216129.t001

Efficient estimation of GLLVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0216129 May 1, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0216129.t001
https://doi.org/10.1371/journal.pone.0216129


The simulation results based on the negative binomial GLLVMs fitted for Indonesian bird

data, with and without random row effect are given in S2 Appendix. Broadly speaking, they

returned similar conclusions to those reported above. However, for both methods the log stan-

dard deviations of the random row effects were highly biased when the number of species was

m = 30 but accuracy improved substantially with larger m. In addition, the predictive accuracy

improves when the number of species increases.

4.3 Binary responses

Below we use the second simulation design to compare the performance of both approxima-

tion methods implemented with and without TMB for GLLVMs with binary responses. As pre-

viously, starting values obtained via the res method.

Fig 2 presents the computation times of various methods used to fit GLLVMs to binary

responses. Similar to the simulation involving overdispersed counts, the variational approxi-

mation method implemented using TMB was substantially faster than all the other methods for

all considered cases. It was also interesting to note that the median computation times for the

Laplace approximation method implemented using TMB scaled very poorly with increasing n.

Table 4 lists the average biases, root mean squared errors, 95% coverage probabilities and

mean confidence interval widths for estimates of the GLLVM without random row effects

from different estimation methods. As in the case of overdispersed counts, the number of spe-

cies did not have much effect on the estimates of species specific intercepts, β0. The variational

approximation method performed better overall in each of the considered cases, producing

less biased estimates, smaller root mean squared errors and coverage probabilities closer to

the nominal coverage level of 95%. By contrast, the estimates based on the Laplace approxima-

tion were severely biased, especially when the sample size was small. When m increased, the

biases became smaller for both methods and the coverage probabilities approached to the

nominal 95% level when the Laplace approximation were used. Results for the scaled mean

Procrustes errors in Table 5 showed that errors were tended to be smaller when the variational

Table 2. Scaled mean Procrustes errors of predicted latent variables and estimated latent variable loadings for negative binomial GLLVM estimates based on the

plain R and the TMB implementations for the variational approximation and the Laplace approximation methods. The true model parameters were obtained by fitting

a negative binomial GLLVM for the testate amoebae data with counts of m = 48 species recorded at n = 50, 120, 190 and 260 sites.

n VA-TMB LA-TMB VA-R LA-R

LVs Loadings LVs Loadings LVs Loadings LVs Loadings

50 0.256 0.346 0.296 0.497 0.256 0.347 0.328 0.489

120 0.198 0.198 0.208 0.296 0.198 0.198 0.219 0.276

190 0.185 0.147 0.189 0.213 0.185 0.148 0.213 0.195

260 0.177 0.118 0.179 0.150 0.177 0.119 0.216 0.135

https://doi.org/10.1371/journal.pone.0216129.t002

Table 3. Median VE values of negative binomial GLLVMs for 500 simulated datasets using the plain R and the

TMB implementations for the variational approximation and the Laplace approximation methods. The datasets

were based on a negative binomial GLLVM fitted for the testate amoebae data with counts of m = 48 species recorded

at n = 50, 120, 190 and 260 sites.

n VA-TMB LA-TMB VA-R LA-R

50 0.27 0.19 0.27 0.21

120 0.48 0.43 0.42 0.29

190 0.53 0.50 0.53 0.35

260 0.56 0.54 0.56 0.39

https://doi.org/10.1371/journal.pone.0216129.t003
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approximation method was used in estimation compared to the Laplace approximation

method. As in the simulation settings with overdispersed counts, the mean Procrustes errors

for latent variables predictions decreased with an increasing number of species m.

Variation explained was computed for Bernoulli GLLVMs as in Section 4.2, and the

median VE values are listed in Table 6. Based on the results, differences in predictive accura-

cies improve with increasing m. The variance explained is substantially lower for the Laplace

approximation method compared to the variational approximation method when number of

species is small, but equally good for large m.

Supporting information S2 Appendix reports results for simulations based on the Indone-

sian bird dataset with a random row effect, and for simulations based on the testate amoebae

Fig 2. Median computation times for Bernoulli GLLVMs. Times for the plain R (gray) and the TMB implementations (black) for the variational

approximation (VA, solid line) method and the Laplace approximation (LA, dashed line) method for a Bernoulli GLLVM with two latent variables. The

left plot is for the model without row effects and right one with random row effects. The simulation setup was based on the Indonesian birds data.

https://doi.org/10.1371/journal.pone.0216129.g002

Table 4. Average biases, root mean squared errors (RMSEs), coverage probabilities of 95% confidence intervals and mean confidence intervals widths (CI) for

GLLVM estimates based on the plain R and the TMB implementations for the variational approximation and the Laplace approximation methods. The true model

parameters were obtained by fitting a Bernoulli GLLVM with probit link function for the Indonesian birds data with presence-absences of m = 30, 60, 100 and 140 species

recorded at n = 37 sites.

m VA-TMB LA-TMB

Bias RMSE Cover CI Bias RMSE Cover CI

30 β0 0.05 0.29 0.93 1.27 -4.43 18.24 0.73 5.22

60 β0 -0.03 0.30 0.98 1.55 -0.22 7.77 0.89 5.23

100 β0 -0.03 0.35 0.96 1.55 -0.05 5.37 0.92 3.19

140 β0 -0.03 0.39 0.96 1.57 -0.04 1.04 0.92 2.07

VA-R LA-R

30 β0 0.05 0.29 0.93 1.27 -0.01 0.46 0.81 1.31

60 β0 -0.03 0.30 0.98 1.54 -0.14 0.67 0.83 1.57

100 β0 -0.03 0.35 0.96 1.55 -0.12 0.95 0.84 1.69

140 β0 -0.03 0.39 0.96 1.56 -0.10 0.94 0.83 1.49

https://doi.org/10.1371/journal.pone.0216129.t004
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data when converted to presence-absence data. Results were broadly similar to those reported

for β0 in Table 4, with the variational approximation leading to more accurate and precise esti-

mates, while the Laplace approximation method tended to produce severely biased estimates

particularly at small sample sizes. For both approximation methods, the log standard devia-

tions of the random row effects were biased when the number of species m was small.

4.4 Starting value comparisons

To study the sensitivity of model fitting results to starting values, we compared the perfor-

mances of four starting value selection strategies explained in section 3.2. As a global perfor-

mance measure, we used the log-likelihood values obtained from res3 as a reference level,

and compared differences between this and the three other methods (res, zero, random).

Boxplots of the differences in log-likelihood values are given in Fig 3 for negative binomial

GLLVMs fitted for the Testate amoebae data with n = 260 sites and m = 48 species, and for

Bernoulli GLLVMs fitted for the Indonesian bird data with n = 37 sites and m = 140 species.

When the TMB implementation of the variational approximation method was used the differ-

ences between the log-likelihood values based on res3 and the other three methods were rela-

tively small. The biggest differences were seen when the Laplace approximation method and

the variational approximation method were implemented without TMB and applied to binary

data. The full results with simulated datasets of different sizes may be found in S3 Appendix.

In all of the considered cases, res3 and res were consistently among the best starting

values strategies giving the highest log-likelihood values, while the performances of zero and

random depended strongly on the simulation setup.

In addition to the differences in log-likelihood values illustrated in Fig 3 for Bernoulli

GLLVMs and in S3 Appendix for negative binomial GLLVMs, we also list for binary responses

of the Indonesian bird data the average biases, root mean squared errors, 95% coverage proba-

bilities and mean confidence interval widths for species specific intercept estimates as well as

Table 5. Scaled mean Procrustes errors of predicted latent variables and estimated latent variable loadings for GLLVM estimates based on the plain R and the TMB
implementations for the variational approximation and the Laplace approximation methods. Values are scaled with the number of sites and number of species for

comparisons. The true model parameters were obtained by fitting a Bernoulli GLLVM with probit link function for the Indonesian birds data with presence-absences of

m = 30, 60, 100 and 140 species recorded at n = 37 sites.

m VA-TMB LA-TMB VA-R LA-R

LVs Loadings LVs Loadings LVs Loadings LVs Loadings

30 0.556 0.122 0.615 0.140 0.556 0.122 0.615 0.173

60 0.185 0.098 0.204 0.160 0.185 0.098 0.204 0.141

100 0.129 0.095 0.144 0.130 0.129 0.095 0.144 0.139

140 0.098 0.091 0.109 0.121 0.098 0.091 0.109 0.126

https://doi.org/10.1371/journal.pone.0216129.t005

Table 6. Median VE values of Bernoulli GLLVMs for 500 simulated datasets using the plain R and the TMB imple-

mentations for the variational approximation and the Laplace approximation methods. The datasets were based on

a Bernoulli GLLVM with probit link function fitted for the Indonesian birds data with presence-absences of m = 30,

60, 100 and 140 species recorded at n = 37 sites.

m VA-TMB LA-TMB VA-R LA-R

30 0.23 0.08 0.24 0.08

60 0.30 0.28 0.30 0.26

100 0.34 0.30 0.31 0.31

140 0.36 0.35 0.36 0.36

https://doi.org/10.1371/journal.pone.0216129.t006
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scaled mean Procrustes errors of predicted latent variables and estimated latent variable load-

ings for all methods included in comparisons in S3 Appendix.

Overall, these findings suggest that res and res3 were the best strategies for choosing

starting values. All methods res, zero and random have been implemented as different

options (with the same names) in the R package gllvm with res as the default.

5 Discussion

In this article, we studied two closed form approximations (the Laplace approximation and

variational approximation) for the marginal log-likelihood of a generalized linear latent vari-

able model. We showed how the closed form approximations can be implemented efficiently

using automatic optimization techniques implemented in R with the help of the package TMB.

In addition, a new method for choosing the starting values for our estimation algorithms was

proposed. The performances of the two approximation methods and different starting values

strategies were compared using several simulation studies for overdispersed count and binary

data, which are often encountered in biological and ecological studies. Results indicated that

for both response types the variational approximation implementations tended to outperform

the Laplace approximation implementations, both in terms of computation speed and estima-

tion and inferential accuracy. These findings are congruent with the results of Hui et al. [7],

where the performance of the variational approximation method was compared to the Laplace

approximation method and the MCEM algorithm for count and binary data, and also to

Gauss-Hermite Quadrature in the case of binary data. However, more comprehensive compar-

isons between the variational approximation method and other estimation methods, eg. the

Gauss-Hermite Quadrature, would be useful and interesting in the future.

Fig 3. Differences in log-likelihood value when strategies res, zero and random are compared to res3. The true models were based on negative

binomial GLLVM fitted for the Testate amoebae data with n = 260 sites and Bernoulli GLLVM fitted for the Indonesian bird data with m = 140 species.

A negative value means that performance of the corresponding starting value strategy is worse than that of res3. Notice that columns have different

scales.

https://doi.org/10.1371/journal.pone.0216129.g003
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The Laplace approximation method implemented without automatic optimization showed

the poorest performance in all of the considered cases. The differences between the TMB and R
implementations, especially with the Laplace approximation, are most likely due to the differ-

ences in the optimization algorithms. In the R implementation we used a block-coordinate

optimization in which we cycled between iterative updates of one of regression coefficients,

latent variables and nuisance parameters, until convergence. We postulate that this led to a less

targeted exploration of the parameter space with an increased chance of getting trapped in a

local maximum. In the case of binary data, the variational approximation implementations

performed substantially better than their Laplace approximation counterparts. This supports

earlier findings that the Laplace approximation method often performs poorly with highly dis-

crete responses [40].

All simulation studies further showed that we can obtain more accurate predictions of

the latent variables by increasing the number of species, m. For the Laplace method this is

explained by the asymptotic error, which is known to be of order O(m−1) [41]. Although not

proven here, we conjecture that for the variational approximation method, the asymptotic

error is O(m−1); see also the heuristic proof of consistency in [19]. However, more accurate

estimates for model parameters can be obtained only by increasing the sample size, n.

Another way to of obtaining more accurate estimates and inferential for the parameters in a

GLLVM is by introducing structure that allows us to borrow strength across species (response)

in order to estimate regression and/or loading parameters. Not only does this decrease the

number of parameters in the model, it also means that these new parameters are a function of

n and m, and thus accuracy of their estimation and inference should improve when either the

number of sites and/or species increases. An examples is using functional traits in order to

mediate the species environment relationships (sometimes called a “fourth corner model”,

[42]): the resulting fourth corner coefficients parameters are then common to all species and

estimation should improve as both a function of n and m both. Fourth corner models with

latent variables can also be fitted using the R package gllvm, which implements both the

Laplace and variational approximation methods.

Comparison of computation times clearly indicate that the TMB implementation of the vari-

ational approximation method is much faster than that both implementations of the Laplace

approximation, with the difference becoming greater when the data are higher-dimensional.

There are a number of reasons for this: first, we specified the variational approximation of the

likelihood directly in C++, while for a Laplace approximation we only specified the integrand,

and asked the TMB package to use automatic differentiation to calculate a Laplace approxima-

tion. This automation of the Laplace approximation offers considerable flexibility, and makes

it relatively easy to fit some quite complex models, because the joint likelihood in the integrand

is usually relatively easy to derive. However, it seems that not specifying a fully closed form

(approximated) marginal log-likelihood comes at a computational cost. Another reason for

a difference in computational time is that all variational parameters are handled like fixed

parameters, which makes estimation faster than dealing with random effects. The other possi-

ble reason for more rapid growth in computation time for the Laplace approximation method,

when m increases, comes from the complexity of the approximation itself, where there is a

term log detfGðΨ; û�i Þg, where GðΨ; û�i Þ has dimension m, and so computing its determinant

has a complexity that grows at a rate O(m3).

Overall, our findings suggest present a strong case for the use of the variational approxima-

tion method as a primary method for performing likelihood based estimation and inference in

GLLVMs. Because it is relatively accurate and very quick, variational approximation on TMB
provides a platform for upscaling analyses to large datasets. To date we have used the software

to fit a dataset of size 174 × 985 in 61 minutes. In future work, we plan to generalize GLLVMs,
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as well as the gllvm package, so that it can handle spatial and or temporal correlation inher-

ent in the data, as well as offer some data-driven forms of order and variable selection (see for

example [43]).
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