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Abstract

Aging and dopamine modulation have both been independently shown to influence the func-

tional connectivity of brain networks during rest. Dopamine modulation is known to decline

during the course of aging. Previous evidence also shows that the dopamine transporter

gene (DAT1) influences the re-uptake of dopamine and the anyA9 genotype of this gene is

associated with higher striatal dopamine signaling. Expanding these two lines of prior

research, we investigated potential interactive effects between aging and individual varia-

tions in the DAT1 gene on the modular organization of brain acvitiy during rest. The graph-

theoretic metrics of modularity, betweenness centrality and participation coefficient were

assessed in 41 younger (age 20–30 years) and 37 older (age 60–75 years) adults. Age dif-

ferences were only observed in the participation coefficient in carriers of the anyA9 geno-

type of the DAT1 gene and this effect was most prominently observed in the default mode

network. Furthermore, we found that individual differences in the values of the participation

coefficient correlated with individual differences in fluid intelligence and a measure of execu-

tive control in the anyA9 carriers. The correlation between participation coefficient and fluid

intelligence was mainly shared with age-related differences, whereas the correlation with

executive control was independent of age. These findings suggest that DAT1 genotype

moderates age differences in the functional integration of brain networks as well as the rela-

tion between network characteristics and cognitive abilities.
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Introduction

During alert but task-free states, the brain’s sensorimotor and higher cognitive systems display

organized temporal correlations between spontaneous fluctuations of brain activity in different

brain regions. Over the past decade, functional magnetic resonance imaging (fMRI) research

on the organized patterns of spontaneous brain activity suggests that resting-state functional

connectivity (rsFC) is a promising avenue for investigating the dynamics of coherent brain

activity patterns that are organized into distinct systems or networks (for a recent review see

[1]). The rsFC can be calculated using different methodologies, including: a seed-based

approach by selecting voxels in the regions of interests (ROI) as seeds for cross correlational

analyses (e.g., [2], [3]), independent component analysis (ICA; [4]), as well as the more recent

clustering methods (e.g., [5]). A multitude of factors have been shown to be associated with

interindividual differences in the patterns of rsFC, notably: brain maturation (for a review see

[6]), brain aging (for review see [7]), neuromodulation (e.g., [8]), and clinical conditions (for

reviews see [9], [10]).

Of particular relevance here are changes in rsFC during the course of aging. A range of pre-

vious studies have investigated the effects of aging on brain functional connectivity by measur-

ing age differences within networks using seed-based or ICA analyses. So far the most

consistent finding is the observation of reduced intranetwork functional connectivity among

regions in the default mode network (DMN) in older compared to younger adults (e.g., [11];

see [7], [12] for overviews). The DMN is a collection of brain regions, including posterior cin-

gulate cortex, precuneus, medial prefrontal cortex and the lateral parietal cortex [13], that are

known to implicate high-level cognitive processes, such as episodic memory and self-referen-

tial processing [10] and that are sensitive to age-related neurodegenerative processes [10, 14].

Of note, using a probabilistic ICA method Damoseaux et al. [11] showed reduced rsFC in the

DMN in older relative to younger adults and the strength of rsFC in the anterior DMN being

negatively correlated with age in older adults. Furthermore, age-related decreases in intranet-

work rsFC in the dorsal (DOR), ventral/saliency (VEN) attention, or somatomotor (SOM) net-

work have also been observed in several studies (e.g., [11], [15]). Of note, Betzel et al. [15]

investigated age-related differences both in intranetwork and internetwork rsFC in a lifespan

sample and found opposite results: while intranetwork connectivity decreased with age, inter-

network connectivity increased. Similarly, in other cross-sectional studies of internetwork

connectivity between the dorsal attentional network, DMN, and the frontoparietal control net-

work has been found to be increased in older compared to younger adults (e.g., [15], [16],

[17]), suggesting attenuated system segregation in old age [18]. However, other studies have

reported aging-related longitudinal decline of internetwork functional connectivity between

the executive control network and the DMN in the young-old age range (60 to 75 yrs; see

[19]), reduced internetwork connectivity between the DMN and dorsal attention network in

childhood as well as in old age [20], or no age differences in the connectivity between the

DMN and the frontoparietal control network [21]. Thus, unlike the evidence for aging-related

decrease in intranetwork rsFC, findings about effects of age on internetwork rsFC are less

consistent.

Other than aging, neuromodulation has also been shown to affect rsFC. Since neurotrans-

mitter systems (e.g., the monoamines) play a prominent role in affecting brain functions [22,

23], the question of whether rsFC may be modulated by the efficacy of neurotransmitter sys-

tems has also been explored. Of particular relevance here are initial findings from pharmaco-

logical, genotype and patient studies, which suggest that dopamine modulates the rsFC.

Regarding pharmacological investigations in healthy samples, using the seed-based approach,

a recent study by Farr et al. [24]showed that methylphenidate (MPH), a blocker of dopamine
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and norepinephrine transporters, altered rsFC between the dorsal striatum, the motor cortex,

the hippocampal memory circuit and the prefrontal cortex in younger adults. Specifically,

whereas a single dose of MPH (45 mg) increased connectivity between striatal regions and the

motor cortex as well as the hippocampal memory circuit, connectivity within the prefrontal

regions was reduced. By blocking dopamine and norepinephrine receptors, MPH increases

synaptic transmitter levels. The attenuation of striatal-frontal connectivity might result from

MPH shifting frontal dopamine/norepinephrine beyond the optimal level. As for studies in

clinical populations, another study by Yang et al. [25]explored the effects of levodopa on rsFC

in Parkinson’s (PD) patients, who characteristically suffer from nigrostriatal dopamine loss.

The results showed that, during the OFF medication state, the rsFC in striatal seed regions

(dorsal caudate, ventral putamen and dorsal putamen) was lower in PD patients compared to

healthy age-matched controls. Furthermore, dopamine medication had differential effects on

rsFC in PD patients: levodopa reduced the functional connectivity between ventral striatal

seeds with the ventral medial, dorsal frontal and orbitofrontal regions, whereas the connectiv-

ity between the dorsal striatal seeds with the primary and secondary motor regions was

increased. Relatedly, the regional rsFC between the midbrain and the putamen in PD patients

and demented patients with Lewy bodies had been shown to correlate positively with the avail-

ability of striatal dopamine transporters [26], suggesting that individual differences in the

availability of dopamine transporters may moderate the effects of dopamine pharmacology on

rsFC. These initial findings notwithstanding, thus far pharmacological studies on this topic are

still scarce and the currently available results are too heterogeneous to determine systematic

effects of dopamine modulation on rsFC. In this context, individual variations in dopamine

genes, which could moderate pharmacological effects, need to be considered as well.

Indeed, another line of research explored the effects of individual differences in the varia-

tions of dopamine transporter gene on rsFC [8, 27]. Of note, the human dopamine transporter

gene (DAT1) displays a polymorphic 40-base pair (bp) variable number of tandem repeats

(VNTR). The 40-bp VNTR element is repeated between 3 and 13 times, with the highest fre-

quency in the 9-repeat and 10-repeat form [28]. Variations in the DAT1 VNTR polymorphism

have been related to the efficacy of dopamine reuptake from the synaptic cleft back to the pre-

synaptic terminals. The 10-repeat homozygotes are associated with higher striatal dopamine

transporter density than the 9-repeat homozygotes, resulting in lower levels of extrasynaptic

dopamine in 10-repeat homozygotes [29, 30]. In a study of younger adults by Gordon et al. [8],

dorsal caudate seeded rsFC with the insula, dorsal anterior cingulate cortex, and the dorsal lat-

eral prefrontal cortex have been found to be stronger in the A9 homozygotes and A9/A10 car-

riers (i.e., in anyA9 carriers) than in the A10 homozygotes of the DAT1 gene.

Taken together, to date studies about dopamine genotype effects on rsFC are still scarce

and the effects of dopamine pharmacological interventions are rather differential, which is, in

part, due to the non-linear dose-response relationship of dopamine signaling [31] as well as

individual differences in genotype and/or age. During the course of aging, various facets of the

dopamine systems (e.g., availabilities of receptors and transporters) decline gradually and sub-

stantially (see [32] for review). Of particular relevance here is a clear age-related decline in

dopamine transporter binding in striatal regions (caudate and putamen) from early to late

adulthood (e.g. [33, 34]). Age-related loss of dopamine transporter has been found to be asso-

ciated with aging-related memory deficits (e.g. [33, 35]). Furthermore, variations in the DAT1
VNTR polymorphism were found to interact with other dopamine genes and were associated

with individual differences in sequence learning [36] and serial memory [37]. Compared to

carriers of the A10 allele, older DAT1 A9 homozygotes learned more about the sequential

structure during sequence learning [36] and recalled more correctly during serial recall [37].

Taken together, although the aforementioned studies have shown that aging and genetic

Dopamine gene by age interactions in resting-state networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0215849 May 8, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0215849


variations independently impact rsFC, thus far how aging, which is associated with reduced

dopamine transporter variability, might interact with dopamine transporter genotype in influ-

encing spontaneous brain functional connectivity has not yet been explored. Thus, the main

aim of this study is to investigate potential interactive effects of aging and the DAT1 genotype

on rsFC in an adult age comparative sample by taking a graph theoretical approach.

In studies involving multiple cohorts as in the case of age comparative samples, the applica-

bility of seed-based and independent component analyses are rather limited, because age-

related differences in the regions of interests at the structural and functional level as well as in

the numbers of extracted independent components render it difficult to directly compare

groups [38]. In recent years, graph theory based approaches have been fruitfully applied to

analyze and characterize structural and functional brain networks. Graph theory provides a

wide range of metrics for characterizing different properties of networks, such as their ten-

dency to form modules (modularity), within and between-module connectivity, characteristic

path length, local and global efficiency, as well as hub architecture (see [1] for review). These

measures can be used to quantify individual differences in brain functional connectivity that

are related to age, genetic variations, clinical conditions or their interactions. For instance,

Brier et al. [39] employed graph theoretical analyses to study age- and dementia-related differ-

ences in rsFC and found an age-related decrease in modularity. Furthermore, participation

coefficient, which quantifies how evenly distributed a node’s connections are across a set of

modules (see [1]), was associated with a clinical dementia rating, with lower participation coef-

ficient being associated with greater dementia severity. Extending the prior studies reviewed

above, in this study we investigate potential effects of DAT1 genotype on adult age differences

in rsFC in healthy younger and older adults. Given consistent findings of age-related decrease

in intranetwork connectivity (e.g., [11], [15]), it is expected that the graph-theoretical metrics

characterizing the modular architecture of rsFC would be altered in aging brains and such

effects would interact with DAT1 genotype.

Methods

Subjects

The study sample consists of 41 younger adults (17 male, age range: 20–33 years, mean age:

26.44 ± 3.15 SD) and 37 older adults (21 male, age range: 60–73 years, mean age: 66.38 ± 3.43

SD). Subjects were recruited from the participant pools of the Center for Lifespan Psychology,

Max Planck Institute for Human Development in Berlin, Germany (for a previous report on

structural brain measures of this dataset, see FitzGerald et al. [40]. All subjects were right-

handed (as assessed by the Oldfield Questionnaire [41]: LQ> 80). None of the subjects

reported cardiovascular pathology, psychotropic medication usage, history of neurological or

psychiatric episodes or substance abuse. A further exclusion criterion was the current intake of

medication that could interact with the dopamine system. In addition, subjects were instructed

not to drink alcohol, coffee or smoke prior to the experiment. Ethic approval in accordance

with the Helsinki declaration was granted by the ethics committee of the Charité, University

Medicine Berlin. Participants provided written informed consent prior to study participation

and were paid € 10 per hour of the experiment.

Cognitive measures

Prior to the imaging session, measures of basic cognitive abilities were assessed in a behavioral

assessment session. Of relevance here, the identical-pictures test [42] and a German variant of

the spot-a-word test [43] for characterizing the sample characteristics were assessed. As

expected, performance on the identical-pictures test was lower in older than in younger adults
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(t(71) = 9.03, p< 0.001), whereas performance on the spot-a-word test was higher in older than

in younger adults (t(72) = -2.58, p< 0.05). This observed dissociation between adult age gradi-

ents of basic processing speed and verbal ability in our sample is consistent with data from

population-based lifespan samples [44]. Furthermore, general cognitive ability was assessed by

the Raven’s test [45] and executive control function was assessed by a variant of the Stroop

task [46].

Genotyping

Saliva samples were taken from subjects using the Oragene DNA sample collection kit (ON,

Canada). DNA was extracted from these saliva samples using standard techniques. TaqMan

probes for the genotyping were designed and synthesized by Applied Biosystems (Foster City,

CA, USA). We selected the variable number of tandem repeats (VNTR) polymorphism of the

dopamine transporter gene DAT1 (also known as SLC6A3) based on previous studies showing

associations between these polymorphisms of the DAT1 gene and functional brain connectiv-

ity during task and rest in younger adults [8, 27]. We restricted the sample to include 9-repeat

(A9) and 10-repeat (A10) allele carriers only. As the frequency of the A9/A9 group is very low,

we compared two DAT1 genotype groups: carriers with at least one A9 allele (i.e, the anyA9

genotype, which included A9/A9 and A9/A10; n = 41) and A10 homozygotes (A10/A10;

n = 37). The number of participants with these two genotypes seprated by age groups are as

follows: n = 23 (YA) and n = 18 (OA) for anyA9 and n = 18 (YA) and n = 19 (OA) for A10

homozygotes. The observed allele frequencies in our sample did not deviate significantly from

the Hardy-Weinberg equilibrium (χ2 < 0.05; p> 0.05).

Imaging protocols

Magnetic resonance imaging (MRI) was performed using a 3 tesla Siemens Trio Tim whole

body scanner (Erlangen, Germany) at the Charité Benjamin Franklin Campus. Resting-state

functional MRI (rsfMRI) data were obtained using a T2�-weighted echo-planar imaging

sequence (TR = 2500, TE = 30 ms, FA = 80˚, FOV = 1296 x 1296 mm, aquisition matrix: 72 x

72, voxel dimensions: 3 x 3 x 3 mm). 36 slices were acquired in an interleaved descending

order for whole brain coverage. A run of resting-state imaging resulted in 180 volumes and

took 7.5 minutes. In addition, a high-resolution 3D T1-weigthed magnetization-prepared

rapid gradient-echo (MPRAGE) image (TR = 1550 ms, TE = 2.34 ms, FA = 9˚, FOV = 244 x

244 mm, acquisition matrix: 256 x 256, voxel dimensions = 1 x 1 x 1 mm) was acquired for

normalization to template space.

Preprocessing of resting-state fMRI

Preprocessing of resting-state fMRI data was carried out using SPM 12 (http://www.fil.ion.ucl.

ac.uk/spm/; Wellcome Trust Centre for Human Neuroimaging, UK) and FSL (https://fsl.

fmrib.ox.ac.uk/fsldownloads_registration; FMRIB, Oxford, UK). All functional data were

slice-time corrected using SPM’s Fourier phase shifting interpolation, followed by head

motion correction with unwarping based on the gradient field map. The T1-weighted image

was coregistered to the mean functional image and segmented into grey matter and white mat-

ter images. The segmented images were used to normalize the functional images to the stan-

dard space of the Montreal Neurological Institute (ICBM 152 MNI template) via SPM’s

DARTEL toolbox. Functional images were resampled to the original acquisition resolution of

3 mm cubic voxels and spatially smoothed (8 mm full width at half maximum Gaussian ker-

nel). Additional head-motion correction was performed using FSL’s ICA-AROMA, a data-

driven method to identify and remove motion-related independent components from the
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fMRI data. The preprocessed functional data were then detrended and subjected to a bandpass

filter which attenuated signal below 0.009 Hz and above 0.08 Hz in voxel timecourses. Voxel-

wise regression was used to remove the effects of the mean white matter signal and the mean

cerebrospinal fluid signal from the data. Since head motion can have particularly detrimental

effects on functional connectivity estimations by introducing spurious correlations between

timecourses of rsfMRI data [47], an additional voxelwise outlier censoring procedure as

described by Aurich et al. [48] was applied to the data. Outlier time points are based on the sig-

nal intensity of individual voxels across the time series. To this end the median m(v) and the

median absolute deviation MAD(v) are calculated for each voxel. Then an intensity range for

each voxel is defined by [m(v)—a � MAD(v); m(v) + a � MAD(v)], where a = Q-1(0.01/N) �

(π/2)1/2 and Q is the inverse Gaussian cumulative distribution function and N is the length of

the time series. Voxels outside this intensity range are considered outliers. The total amount of

outlier voxels in the brain is calculated for each time point. If a given time point is marked as

an outlier in at least 10 percent of voxels, then this time point is removed for all the voxels in

the brain for that subject. Over all subjects, the total percentage of voxels removed from the

data by this procedure is 0.03 percent.

Node definition and functional connectivity graph

The calculation of (functional) connectivity networks (i.e. “graphs”) requires the definition of

network nodes. In large-scale brain networks, these nodes typically represent non-overlapping

portions of functionally or anatomically defined brain regions. We used a publicly available

whole-brain atlas that is subdivided into 200 regions (http://ccraddock.github.io/cluster_roi/

atlases.html). These regions of interest (ROI) were generated using a data-driven method

which subdivides resting-state fMRI data into clusters based on functional similarity of voxels

[49]. The method allows a varying number of ROIs, whereby a 200-ROI parcellation scheme

keeps the balance between anatomic variability (too few ROIs would combine anatomically

distinct regions) and interpretability (too many ROIs might produce neighboring clusters with

low distinctiveness). Nodes were assigned to one of seven large-scale cortical networks defined

by Yeo et al. [50] (see Fig 1), which are calculated based on intrinsic functional connectivity.

The purpose of this assignment was to investigate network specific effects of graph-theoretic

metrics alongside examinations of whole-brain networks. Functional connectivity graphs were

Fig 1. Cortical networks. Maps with the a-priori assignment of the 200 nodes to partitions of seven networks (from

Yeo et al. [50]).

https://doi.org/10.1371/journal.pone.0215849.g001
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estimated by computing pairwise zero-lag Pearson correlations between the average time series

of each of the 200 ROIs with the average time series of all other ROIs, excluding autocorrela-

tions. The resulting correlation coefficients were then transformed into z scores using the

Fisher z(r) transformation in order to normalize their distribution. In this paper we focus only

on the positive correlations, while the negative ones were set to 0. Functional networks can

either be weighted (the strength of connections is retained) or unweighted (a binary or “adja-

cency” matrix in which nij = 1 denotes a connection between nodes i and j, whereas nij = 0

indicates the absence of such a connection) [51]. We opted for unweighted graphs as they can

be more easily interpreted [52].

After obtaining the correlation matrices for each of the participants, we used a binary graph

method similar to Brier et al. [39] to obtain an unweighted graph for each of the subjects. Spe-

cifically, the corresponding correlation matrices were thresholded such that correlation coeffi-

cients exceeding the threshold were set to 1, while those values that did not reach threshold

were set to 0. Rather than setting a fixed threshold (T) and applying it to the correlation coeffi-

cients, we varied T over a range of values. The values for T were chosen such that every sub-

ject’s network had identical average degree centrality (K). Degree centrality is a nodal

parameter that is defined as the the number of edges (E) that are connected to a specific node,

while K is the average degree centrality across all nodes. In order to create networks that have

a specific K, proportional thresholding was used (see [39] for further details). Specifically, the

range of K was set from 6 to 90, meaning that the number of edges (E) varied from 3–45% of a

fully connected graph with 200 nodes.

Grapth-theoretic metrics

All graph-theoretic metrics measures were computed using the Brain Connectivity Tool-

box ([53], https://sites.google.com/site/bctnet/). In light of results from the prior study by

Brier et al. [39], we focused specifically on 3 metrics: modularity (Q), participation coefficient

(PC), and betweenness centrality (BC).

Modularity. The degree to which a network structure can be decomposed into separate

nonoverlapping subsets of nodes is expressed in a single statistic called modularity (Q) and

computed by the following equation:

Q ¼
X

i2M

½Cij � ð
X

j2M

CijÞ
2
�

where i and j are different modules in the set of all modules M, and C is the proportion of exist-

ing connections between two modules. Nodes within a particular module are more densely

connected to each other than to nodes outside that module. Consequently, computing mod-

ules requires finding the partition that maximizes the ratio between within-group edges and

between-group edges [51, 53]. Several algorithms exist that use initially an arbitrary module

structure and optimize it using an iteration procedure. Some of them allow hierarchical mod-

ules, where smaller node communities can be nested in larger ones [54] while others are able

to detect overlapping community structures, where nodes can be members of several different

modules at once [55]. In this study we focused on the subdivision of graphs into nonoverlap-

ping, unweighted and undirected modules (cf. [39]). For computing modularity, we initialized

the modules to be identical to the seven cortical networks by Yeo et al. [50] (see Fig 1), while

the algorithm re-assigns the nodes to different modules depending on the edge distribution.

Hence, it functions as a default starting decomposition that can be rejected in cases where the

graph edges don’t support this modular decomposition.
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Participation coefficient. After a graph has been partitioned into modules, the nodes of a

module can be characterized by how they are connected within the module as well as with

other modules. To this end, the participation coefficient (PC) compares the number of links of

a node i to other nodes in the set of modules s ðksi
Þ with it’s number of links within its own

cluster (κi):

Pi ¼ 1 �
XnM

s¼1

ð
ksi

ki
Þ

2

If the value of PC is close to 1, the connections distribute evenly across modules, whereas

if the value is close to zero, most connections are only within its own module. The interme-

diate values of PC can be used to heuristically characterize the role of a node as peripheral,

connector or kinless [56]. In our analyses, the PC values were averaged either across the

whole brain or within each of the seven YEO networks to obtain global and subnetwork-

based measures.

Betweenness centrality. Several metrics of centrality exist which assess the importance

of a node for functional integration within a network. Nodes with high centrality interact

with many other nodes within a network and therefore potentially function as hubs for the

given network. Betweenness centrality (BC) is an important measure in this regard since it

captures the degree to which a node lies on the shortest path between any two given nodes.

A node with high values of BC participate in a large number of shortest path in a network.

Thus, a node with high BC potentially controls the flow of information in a network, since a

significant amount of information passes through it [57]. For any given node v BC is

defined as follows:

BCðvÞ ¼
X

s;t:s6¼v6¼t

dstðvÞ

where δst(v) denotes the fraction of the shortest paths between the nodes s and t that pass

through node v: dst vð Þ ¼
lstðvÞ
lst

. For calculating BC, the functional connectivity correlation

matrices were binarized (with a value of 1 for each correlation coefficient > 0) and BC val-

ues were averaged as it was done for PC.

Statstical data analyses

To test for potential interactions between age and genotype on rsFC, subjects were split into

groups based on age (YA = young adults, OA = old adults), genotype (anyA9 and A10/A10

allele carriers of the DAT1 gene) and the factorization of the two between-subject factors. We

calculated Q, PC and BC for every subject and statistically tested for differences between

groups using one-way and two-way analyses of variance (ANOVA). As these tests are carried

out separately for every level of node-degree (with K ranging from 6 to 90), we corrected for

multiple comparisons using the false discovery rate (FDR) correction [58] to get an adjusted

significance level of p< 0.05. Relations between graph-theoretical metrics with behavioral per-

formance were evaluated using Kendall’s tau(b) rank correlations.

Results

As an overview, results for the metric PC showed significant age x genotype interactive effects

after FDR correction and are presented in details with follow-up analyses and corresponding

figures below. Results for the other two metrics (Q & BC) did not show any significant effects

after FDR correction, and are thus only briefly described below.

Dopamine gene by age interactions in resting-state networks
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Modularity: Effects of age and genotype

Differing from our hypothesis, at the whole-brain level we found no difference in Q between

groups, neither for age (YA vs. OA) nor for genotype (anyA9 vs. A10/A10). None of the p-val-

ues survived FDR correction for any level of K (see S1 and S2 Figs for analyses of main and

interactive effects, respectively).

Betweenness centrality: Effects of age and genotype

Similar to results found for Q, at the whole-brain level BC did not differ between groups, nei-

ther for age (YA vs. OA) nor for genotype (anyA9 vs. A10/A10). None of the p-values survived

FDR correction for any level of K (see S3 and S4 Figs for analyses of main and interactive

effects, respectively).

Participation coefficient: Effects of age and genotype

At the whole-brain level, although younger age or carrying the DAT1 genotype A10/A10 nom-

inally was associated with higher PC than older age or carrying the genotype anyA9 respec-

tively, these effects did not reach significance after FDR correction across all K levels (see S5

Fig). Crucially, however, the age x genotype interaction yielded significant effects, showing

that the age effect on PC was observed in carriers of the DAT1 anyA9 genotype that is associ-

ated with a higher extrasynaptic dopamine level: specifically, higher levels of PC were observed

for younger than older anyA9 carriers at the lower K range, whereas such effects were not pres-

ent in the A10/A10 carriers (Fig 2A). We thus followed up these effects with an additional two-

way ANOVA analysis using the averaged PC (over K levels between 35 and 45) as the depen-

dent variable and the factors age group (YA vs. OA) and DAT1 genotype (anyA9 vs. A10/A10)

as between-subject factors. The results showed significant effects (see Fig 2B) for age group

(f(1,74) = -4.95, p< 0.05), DAT1 genotype (f(1,74) = 5.16, p< 0.05) and the age x DAT1 interac-

tion (f(1,74) = 5.31, p< 0.05).

In order to explore whether this effect is present throughout the brain or is restricted to cer-

tain subnetworks, the same statistical comparisons were carried out on the 7 YEO cortical par-

cellation networks. Results revealed that the effect of significantly higher PC for younger

anyA9 carriers was specific to the default mode network (Fig 3) and was not found for any of

the 6 other YEO parcellation networks (S6 Fig). A two-way ANOVA for the DMN network,

with PC averaged across the same K range and factors as the whole-brain analysis described

above, yielded significant effects of age group (f(1,74) = 4.07, p< 0.05) and the age x DAT1
genotype interaction (f(1,74) = 4.42, p< 0.05), but not for the factor DAT1 (Fig 3).

Relations between participation coefficient and cognition

To explore whether the graph-theoretic metric PC has cognitive relevance, we correlated the

averaged PC (over the K range from 35 to 45) with the following cognitive variables: scores on

the Raven’s matrices test [45] as a measure of general cognitive ability and the performance

(accuracy and reaction time) from the incongruent color naming condition of the Stroop task

[46] as an indicator of executive control. As anticipated, both cognitive tests revealed age-

related differences with higher scores on the Raven’s test for younger than for older subjects

(t(73) = 8.68, p< 0.001) as well as more accurate (t(72) = 2.50, p< 0.05) and faster responses

(t(72) = -10.33, p< 0.001) on the Stroop task in younger compared to older adults.

Correlations were computed separately for all four combinations of age and gene groups

Some of the data used for the correlations did not follow a normal distribution, therefore the

non-parametric Kendall’s tau (b) rank correlation was applied. We opted for Kendall’s tau

Dopamine gene by age interactions in resting-state networks
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rather than Spearman’s rho as the former has been shown to be more robust and efficient than

the latter method [59]. FDR corrections were applied as appropriate. None of the calculated

correlation coefficients reached significance after correction. This lack of significant findings

might be due to the small sample size in each of the four groups.

Therefore, in the next step, we merged the data from younger and older subjects and carried

out the same correlations of PC with the above mentioned variables separately for the two

allele types. These tests yielded a significant correlation between PC and Raven’s matrices

score in anyA9 carriers (r = 0.3486, p(FDR) = 0.0072) but not in A10/A10 carriers (Fig 4). None

of the other correlation coefficients reached significance after correction. However, this rela-

tion is largely associated with age-related declines in general cognitive abilities and the effect

was eliminated after controlling for the effects of age (p> 0.05). As for the relation between

PC and individual differences in excutive control function, interestingly individual differences

in PC correlated positively with the accuracy of Stroop task performance in the incongruent

Fig 2. Interactions between age and DAT1 genotype on participation coefficient (PC): Whole brain. (A) The right

panels plot the log of p values as a function of K while the horizontal black line indicates the FDR corrected p = 0.05.

(B) Effects shown with averaged PC (over the K range from 35 to 45) as the independent variable and the factors age

and gene. Abbreviations: FDR, false discovery rate; K, average node-degree; OA, old adults; YA, young adults.

https://doi.org/10.1371/journal.pone.0215849.g002

Fig 3. Interactions between age and DAT1 genotype on participation coefficient (PC): DMN network. (A) The

right panels plot the log of p values as a function of K while the horizontal black line indicates the FDR corrected

p = 0.05. (B) Effects shown with averaged PC (over the K range from 35 to 45) as the independent variable and the

factors age and gene. Abbreviations: DMN, default mode network; FDR, false discovery rate; K, average node-degree;

N, number of nodes within subnetwork; OA, old adults; YA, young adults.

https://doi.org/10.1371/journal.pone.0215849.g003
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color condition even after partialling out the effect of age in the anyA9 group (r = 0.2696,

p(FDR) = 0.0432), but not in the A10/A10 group (Fig 5).

Discussion

Before discussing the results, the key findings are summarized here to provide an overview. At

the brain-wise level, neither age nor genotype main effects were observed in the measures

modularity (Q) and betweenness centrality (BC). In contrast, however, the measure PC, which

quantifies the extent to which the network connectivity is evenly distributed across modules,

yielded significant effects of age, genotype and their interactions. Specifically, the rsFC is less

evenly distributed across modules (lower values of PC) in older than in younger adults in carri-

ers of the DAT1 anyA9 genotype, but not in A10 homozygotes. Furthermore, follow-up analy-

ses revealed that the nodes contributing to the age and genotype effects with respect to PC

mainly resided in the DMN network. None of the remaining six cortical networks using the

Yeo et al. [50] parcellation–i.e., the visual (VIS), somatomotor (SOM), limbic (LM), dorsal

Fig 4. Kendall’s tau(b) rank correlations between PC and Raven’s matrices scores. Correlations were carried out

separately for anyA9 and A10/A10 allele carriers in the entire sample. Effects of age were removed from variables prior

to the analyses. The correlation was only significant in the anyA9 group. Abbreviations: K, average node-degree; PC,

participation coefficient.

https://doi.org/10.1371/journal.pone.0215849.g004

Fig 5. Kendall’s tau(b) rank correlations between PC and performance accuracy of Stroop task in the incongruent

condition. Correlations were carried out separately for anyA9 and A10/A10 allele carriers in the entire sample. Effects

of age were removed from variables prior to the analyses. The correlation was only significant in the anyA9 group.

Abbreviations: K, average node-degree; PC, participation coefficient.

https://doi.org/10.1371/journal.pone.0215849.g005
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attention (DOR), ventral attention/saliency (VEN), and frontoparietal (FPC) networks–exhib-

ited age or genotype effects. Moreover, the values of PC correlated with individual differences

in general cognitive ability and executive control function in DAT1 anyA9 carriers, but not in

A10 homozygotes. The functional relevance of PC in general cognitive ability is mainly shared

with the age effect, whereas PC predicted individual differences in executive control above and

beyond the effects of age.

The fact that we did not observe significant age differences in modularity (Q) is somewhat

surprising, given previous results of either moderate negative correlation between age and Q

in continuous adult developmental samples (e.g., [39]) or a significant age effect in age com-

parative samples (e.g., [21]). The discrepancies between our and prior studies might reflect

that our older adult sample was relatively healthy, since previous studies included also older

subjects with mild cognitive impairment and mild dementia [39]. Besides, differences in the

parcellation schemes [21] used between studies may also contribute to the inconsistency. In

line with previous results showing null relations between dementia status and the amount of

nodes that fall within the shortest paths between other nodes within a network, we also did not

observe effects of age or DAT1 genotype on betweenness centrality (BC) [39].

To the best of our knowledge, this is the first study showing that adult age differences in

rsFC could be moderated by individual differences in dopamine genotype. Depending on the

ranges, values of PC may reflect different roles of the nodes in brain networks. Specifically,

nodes with values of PC in the range (0.05< PC< = 0.62) are known as peripheral nodes,

which have most of their connections within rather than between modules; whereas nodes

with values of PC in the range (0.62< PC < = 0.80) or in the range (PC> 0.8), characterize

connector nodes and kinless nodes, respectively. Connector and kinless nodes have more dis-

tributed connections across network modules [56]. The values of PC observed in our data are

within the range of peripheral nodes. Findings from the correlational analyses suggest that

individual differences in the extent of peripheral nodes’ connectivity positively predict individ-

ual differences in executive control function and general cognitive ability, albeit the latter effect

is shared with the effect of age. These findings are in line with a recent study showing that PC

as a metric of rsFC is predictive of individual differences in general intelligence [60].

A pattern of larger values of PC in older adults than in younger adults has been previously

observed in a higher range of PC values for connector and kinless nodes. At these higher

ranges, increasing values of PC indicate a tendency for uniformly distributed connections

across modules. Aging-related increase of PC in the ranges of connector and kinless nodes

were interpreted as an indication of age-related decrease in large-scale brain system segrega-

tion (e.g., [18]) that may underlie the established findings of aging-related cognitive dediffer-

entiation observed at the behavioral level [44, 61]. However, other prior aging studies which

observed values of PC in the range of peripheral nodes, like our findings here, found age-

related increases in values of PC either only in the visual and somatomotor networks but not

in the DMN or FPC network [21], or only during cognitive tasks but not during resting state

[62]. Furthermore, in general whether PC increases or decreases with age needs to be consid-

ered in light of the spatial scales of the networks. Similar to our findings, regarding regional

integration in the DMN network, graph-theoretic analyses that consider multiple spatial scales

show age-related decrease in PC [63].

Our findings extend the still limited literature on dopamine modulation of rsFC. Unlike

findings from seed-based approaches [8, 27], in younger adults we did not observe a DAT1
genotype effect on individual differences in internetwork connectivity as reflected in the PC of

peripheral nodes. In part, this may be attributed to the fact that our observed effects are mainly

in the DMN, whereas the prior finding based on dorsal caudate seeded rsFC mainly revealed

effects in the attention network. The graph-theoretical approach, however, does not dependent
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on the selection of seed regions and is not affected by age or genotype differences in functional

or structural integrities of the seed regions. Of particular interest is the genotype by age inter-

action, showing that correlated spontaneous brain activities are less distributed between net-

work modules in older carriers of the DAT1 anyA9 genotype than older A10 homozygotes.

This result is, in part, in line with prior findings of positive correlations between dopamine

transporter availability and regional rsFC between the midbrain and putamen in patients suf-

fering from dopamine loss [26]. Furthermore, the fact that the genotype effect on the PC mea-

sure has been apparent in older but not in younger adults is also in line with several previous

findings showing age-related magnification of genotype effects on cognitive functional out-

comes [37, 64]. Nevertheless, further studies are needed to substantiate this age by genotype

interaction, which suggests an age-related, DMN-specific decrease of intermodular communi-

cation in cortical networks in anyA9 carriers of the dopamine transporter gene.

This study is subject to the following limitations which need to be considered when inter-

preting the results. We used the cortical atlas by Yeo et al. [50] which was created by estimating

intrinsic functional connectivity in a sample of young adults (18–35 years). Its parcellation

might therefore not transfer well to the sample of older subjects in our study who might have

different intrinsic functional coupling. Nevertheless, the parcellation scheme by Yeo et al. [50]

was also used in prior aging and lifespan studies [15, 18, 19]. Furthermore, the aforementioned

atlas does not contain subcortical areas which prevented us from exploring whether regions

that receive substantial dopaminergic input, such as striatum or hippocampus, also show

DAT1 genotype related differences in functional network characteristics. In particular, in light

of evidence revealing higher dopamine transporter density in midbrain regions than in the

cortex [65–67], future studies would need to use finely parcellated maps of the human striatum

[68] to investigate potential interactive effects of DAT1 genotype and aging on graph theoreti-

cal metrics of intrinsic functional connectivity in the striatal subnetwork. In terms of better

controlling for potential confounds, in light of a recent exploratory finding of systolic blood

pressure being negatively associated with dopamine transporter variability in older adults [69],

future studies need to also assess indicators of vascular health and intake of medication for

controlling blood pressure, particularly in older samples. Finally, for investigating both age

and genotype related effects on brain network topology our study sample is rather small,

potentially underpowering our statistical analyses. Our lack of findings of age differences

regarding modularity and the absence of significant correlations between our four age and

genotype groups regarding PC might be due to low statistical power.

Conclusion and outlook

We found age by genotype interaction effects in resting-state fMRI networks that indicate a

lower degree of intermodular communication in older adults compared to younger adults who

are anyA9 allele carriers of the dopamine transporter gene DAT1, while this effect was absent

in A10 homozygotes. Furthermore, the anyA9 genotype was positively correlated with execu-

tive control and general cognitive ability, although the latter effect can be partially explained

by aging. Taken together, these findings suggest a modulating effect of dopamine on functional

brain networks at rest and a possible impact of said network characteristics on cognitive

functioning.

Future studies should expand on these findings and investigate how age and other dopa-

mine genotypes may interact in affecting functional connectivity patterns during performance

on tasks that depend on dopamine functioning in larger samples. Such an approach would

more directly relate connectivity to cognition than correlating graph-theoretic measures of

resting state networks with behavior in offline tasks. Further studies are also needed to
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examine whether pharmacological interventions (e.g. the administration of levodopa) are able

to alter functional networks in different age groups. As some studies point towards a link

between brain network topology and cognitive performance [70, 71], it would be an interesting

question to test if potential pharmaco-induced improvements in task performance are

reflected in changes of interactions between brain regions in older adults. Another interesting

avenue of research would be to explore when, during the course of the later lifespan, brain net-

work changes become apparent. Via longitudinal studies potential interrelationships between

the emergence of alterations in functional connectivity and changes in cognitive performances

could be investigated.
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S6 Fig. No age by genotype interaction regarding participation coefficient (PC) in 6 YEO

sub-networks. P values are plotted as a function of K, while the horizontal black line indicates

the FDR corrected p = 0.05. Abbreviations: FDR, false discovery rate; K, node-degree; OA, old

adults; YA, young adults. VIS: visual network; DOR: dorsal attention network; LM: limbic net-

work; N, number of nodes within subnetwork; SOM: somatomotor network; VEN: ventral
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