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Abstract

Feature subspace learning plays a significant role in pattern recognition, and many efforts

have been made to generate increasingly discriminative learning models. Recently, several

discriminative feature learning methods based on a representation model have been pro-

posed, which have not only attracted considerable attention but also achieved success in

practical applications. Nevertheless, these methods for constructing the learning model simply

depend on the class labels of the training instances and fail to consider the essential subspace

structural information hidden in them. In this paper, we propose a robust feature subspace

learning approach based on a low-rank representation. In our approach, the low-rank repre-

sentation coefficients are considered as weights to construct the constraint item for feature

learning, which can introduce a subspace structural similarity constraint in the proposed learn-

ing model for facilitating data adaptation and robustness. Moreover, by placing the subspace

learning and low-rank representation into a unified framework, they can benefit each other

during the iteration process to realize an overall optimum. To achieve extra discrimination, lin-

ear regression is also incorporated into our model to enforce the projection features around

and close to their label-based centers. Furthermore, an iterative numerical scheme is

designed to solve our proposed objective function and ensure convergence. Extensive experi-

mental results obtained using several public image datasets demonstrate the advantages and

effectiveness of our novel approach compared with those of the existing methods.

Introduction

Feature subspace learning is a critical technique for feature extraction, which has been widely

and well studied in the areas of computer vision, data mining, and pattern recognition [1, 2,

3]. Many representative works have been proposed for feature subspace learning. For example,

principal component analysis (PCA) [4] is a classical unsupervised feature learning method,

which seeks a subspace with maximum variance of the projected samples to project the high-

dimensional data onto a lower dimensional subspace. Aiming to preserve the local
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neighborhood structure in the data manifold, He et al. proposed a neighbor-preserving

embedding (NPE) [5], which showed advantages over PCA in terms of the robustness to noise

and reduced sensitivity to outliers. Locality-preserving projection (LPP) [6] is another effective

feature projection method, which attempts to preserve more local structure of the original

image space. Although both NPE and LPP are unsupervised feature learning methods, they

can be extended to supervised scenarios to achieve improved performance. To improve the

robustness and discriminative ability of preserving projection methods, structurally incoherent

low-rank 2DLPP (SILR-2DLPP) [7] was proposed, which realized the discriminability of the

preserving projection learning by recovering the sample from different classes. Linear discrim-

inant analysis (LDA) [8] is a well-known supervised subspace learning method, which obtains

the projection by Fisher’s LDA and produces well-separated classes in a low-dimensional sub-

space with discriminative information. For further improvement, locality-sensitive discrimi-

nant analysis (LSDA) [9] was presented, which aimed to learn projection by determining the

local manifold structure to maximize the margin between the data points from the different

classes in each local area.

Recently, several feature extraction techniques based on representation models have

received increased attention owing to their robustness. Among them, sparse representation

(SR) and low-rank representation (LRR) are two representative models that are the most well-

known and widely used in many recognition and classification applications. Wright et al. pro-

posed a SR-based classification (SRC) method [10]. In [10], SR was used to represent the test

sample with the smallest number of training instances, and the representation coefficients

were considered as its features to determine the classification results of the test sample. It was

verified through a facial recognition problem that SRC provided excellent and robust results

despite the facial occlusions. To reveal the essential mechanism of SRC, a collaborative repre-

sentation providing an interesting analysis of the representation-based facial recognition

framework was proposed to extract the coding features [11]. Many existing SRC-based coding

schemes lead to significant classification errors because they ignore the relevance between sim-

ilar instances. In [12], Li et al. proposed a self-supervised sparse coding scheme for image clas-

sification based on LRR, which could effectively preserve the local structure information of the

coding for similar instances. Moreover, the main concept of SRC has also been extended to

applications in subspace learning. In [13], Zhang et al. proposed a novel linear subspace learn-

ing approach by combining sparse coding and feature grouping. In their method, a dictionary

was learned from the training dataset and used to sparsely decompose the training samples.

Then, the decomposition components were divided into more and less discriminative parts,

respectively, to learn the desired subspace. However, when the training instances are cor-

rupted, this method is not sufficiently robust to the noise. By giving an interpretation from a

probabilistic view, Cai et al. proposed a probabilistic collaborative representation-based classi-

fication (ProCRC) model in which the probability of a test belonging to the collaborative sub-

spaces of all the classes was well defined by the learned coding feature [14]. They also reported

that ProCRC achieved good results for numerous pattern classification problems.

To increase the robustness, low-rank models have attracted significant attention owing to

their effectiveness in recovering data and removing noise. They have already been applied to

many fields including dictionary learning [15, 16], transfer learning [17], domain adaptation

[18, 19], and outlier detection [20]. As an extension of SR, LRR not only solves the subspace

recovery problem but also captures the low-dimensional subspace structures accurately [21].

Subsequently, many LRR-based feature learning methods have been studied in recent years.

Liu et al. proposed a latent LRR model to integrate subspace segmentation and feature extrac-

tion in a unified framework, which could robustly extract the salient features from the data by

exploiting the latent structural information hidden in the data [22]. Considering the drawbacks
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of learning two low-rank matrices individually in latent LRR, a supervised feature extraction

method by approximating the LRR was proposed by Fang et al. [23]. Unlike latent LRR, they

treated the above-mentioned two matrices as a combined matrix during learning, which mutu-

ally boosted them and extracted more discriminative features. Zhang et al. proposed a structural

LRR [24]. In [24], ideal supervised regularization was introduced to guide the feature learning

process and low-rank recovery was performed for the training data from all the classes simulta-

neously without losing the structural information. The results showed that the obtained features

consisting of the representation coefficients were suitable for classification. Ma et al. proposed a

discriminative low-rank dictionary learning algorithm for sparse representation (DLRDSR)

[25], which combined low-rank constraints and discriminative dictionary learning to perform

SR for solving the problem of facial recognition. Zhou et al. integrated latent LRR with a ridge

regression-based classifier, which could place feature learning and classification in the same

framework. Consequently, the classifier and feature learning could benefit each other during

the iteration, and the learned feature was more adaptive to the classification problem [26]. To

increase the discrimination, Luo et al. proposed feature learning with calibrated data recon-

struction and a low-rank model. By minimizing the joint l2,1-norm reconstruction error and

inner-class distance, the discriminative information and reconstructed low-rank structures

were preserved simultaneously, which helped improve the feature learning [27].

Motivated by the success of representation-based feature learning, this paper proposes a

nonnegative LRR-based robust and discriminative feature learning method for image classifi-

cation, in which the LRR and feature subspace learning are combined in a unified framework.

In our proposed framework, the nonnegative LRR coefficients, as the measurements of the

low-dimensional structural similarity, are utilized to guide the feature subspace learning.

Thus, the LRR coefficients are introduced as weighted constraints on the distances of the pairs

of the projected instances in the feature subspace. In addition, the feature subspace learning

and LRR can benefit from each other during the iteration to ensure an overall optimum. Fur-

thermore, to address the classification problem, we incorporate a discriminative linear regres-

sion term in the proposed framework, which can be used to provide an additional supervised

effect. Thus, it will enable our model to learn a more discriminative feature subspace and be

more adaptive to the classification task. Extensive experiments are conducted on several public

datasets and encouraging results are obtained.

The contributions of our work are as follows:

1. We design a new feature learning model that incorporates LRR into feature subspace learn-

ing. In our proposed model, the LRR coefficients are exploited as the similarity measure-

ments to guide the feature learning dynamically and adaptively. Furthermore, a class-label-

based linear regression is incorporated into the proposed model as extra supervised infor-

mation to further improve the performance, which can make the extracted features to be

more discriminative and adaptive for classification tasks.

2. We introduce a nonnegative constraint to the LRR coefficients in our proposed objective

function. The coefficients can be used as penalty parameters for penalizing the approxima-

tion of the related instances in the feature subspace, which will adaptively lead to a small

inner-class with a large intra-class margin.

3. We develop an iterative scheme with the recent augmented Lagrangian multiplier (ALM)

method [28] and Block coordinate descent(BCD)[29] in which the objective function is

solved efficiently and convergence is ensured.

4. We evaluate our approach using several image datasets with different classifiers to show the

effectiveness and robustness of our novel model.
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The remainder of this paper is organized as follows. The related works on LRR and discrim-

inative feature learning are reviewed in the second section. The third section elaborates our

proposed approach followed by the theoretical analysis and development of the numerical

scheme. The experimental and analysis results are reported in the fourth section. The fifth sec-

tion concludes this paper.

Related work

In this section, we briefly review the related works on LRR and discriminative subspace learn-

ing, respectively.

Low-rank representation

LRR has drawn great attention and has already been applied in many fields such as subspace

learning [30, 31], subspace clustering [21, 32], and image processing [33, 34]. Consider a set of

data samples X2Rm×n (m and n denote the dimension and number of samples, respectively),

which can be represented by the linear combination of the basis in dictionary A and error

components E. The object function of LRR is as follows:

min
Z;E
rankðZÞ þ lkEkl; s:t:X ¼ AZ þ E ð1Þ

where Z denotes the representation coefficient matrix, rank(�) denotes the rank of the matrix,

and k�kl indicates the norm-based regularization strategy applied to the error matrix, such as

Frobenius norm, l1 norm, or l2,1 norm. All the three norms can be used to model the corrup-

tion and outlier existing in the data. Nevertheless, the l2,1 norm shows some advantages in

exploring the relevance in the data and can well characterize the sample-specific corruption. λ
is a penalty parameter for balancing the two terms.

However, the rank-minimization problem expressed in Eq (1) is difficult to solve because

the rank function is nonconvex. To address this problem, the nuclear norm, which is a convex

relaxation of the rank operator [22, 35], is used to replace the first term in Eq (1). Hence, the

object function can be rewritten as follows:

min
Z;E
kZk� þ lkEkl; s:t:X ¼ AZ þ E ð2Þ

where k�k� is the nuclear norm of matrix that computes the sum of singular values of the

matrix [36]. If we take the data matrix itself as dictionary A, then Eq (2) is converted into the

following self-expression form:

min
Z;E
kZk� þ lkEkl; s:t:X ¼ XZ þ E ð3Þ

It is reported that the representation coefficients in Eq (3) can well present the similarity in

the manifold structure of the instances themselves to some extent [37]. Based on this assump-

tion, a graph learning model was constructed with LRR in [37] for the clustering and recogni-

tion issues. Motivated by [37], we also wanted to incorporate LRR into the feature subspace

learning and consider the coefficient as the similarity measurement to constrain the distance

of the feature subspace of the instances.

Feature subspace learning

Lately, feature subspace learning is becoming well known and practical, and it can be divided

into three categories: unsupervised methods, supervised methods, and semi-supervised meth-

ods. The concept of subspace learning is learning a projection subspace that can project high-
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dimensional data onto a low-dimensional space [38]. Concurrently, useful information is

retained, and the similarity of the inner-class and dissimilarity of the inter-class can be further

increased. To this end, discriminative feature learning methods are well studied and have

recently become a very active topic.

LDA is one of the most common supervised subspace learning methods aimed at finding a

projection that maximizes inter-class scatter and minimizes intra-class scatter simultaneously.

Supervised subspace learning methods can effectively extract discriminative information and

achieve improved classification performance.

Considering a training dataset X with multiclass instances, the inter-class divergence can be

formulated as follows:

Sb ¼
XC

i¼1

ðmi � mÞðmi � mÞ
T

ð4Þ

where C denotes the number of classes, μ denotes the mean vector of the whole training data-

set, and μi denotes the mean vector of training instances that belongs to the i-th class.

Similarly, the summation of intra-class divergence for the training data can be formulated

as follows:

Sw ¼
XC

i¼1

XMi

j¼1

ðxji � miÞðx
j
i � miÞ

T
ð5Þ

whereMi indicates the number of training samples within the i-th class, and xji represents the

j-th instance that belongs to the i-th class.

After defining the above two kinds of divergence, the objective function for LDA is formu-

lated as the following maximum problem:

max
P

trðPTSbPÞ
trðPTSwPÞ

ð6Þ

where P denotes the feature projection subspace to be learned.

Using the Lagrangian multiplier method with λ, the above Eq can be transformed into a

problem of solving eigenvectors as follows:

SbP ¼ lSwP ð7Þ

With Eq (7), LDA learns a discriminative subspace that consists of the first C−1 eigenvec-

tors of matrix S� 1
w Sb.

To improve the performance of LDA, many extended methods based on it have been pro-

posed in recent years. Local Fisher discriminant analysis (FDA) [39] is a new linear supervised

dimensionality reduction method that effectively combines the concepts of FDA [40] and LPP

[41]. Subsequently, semi-supervised local FDA was proposed to preserve the global structure

of the unlabeled samples in addition to separating the labeled samples into different classes

[42]. Probabilistic LDA (PLDA) is a generative probability model that can extract and combine

features for recognition [43]. With PLDA, a model of a previously unseen class can be built

from a single example and multiple examples can be combined for improving the representa-

tion of the class. Sparse discriminant analysis (SDA) is a method for performing LDA under

an imposed sparseness criterion [44]. SDA is based on the optimal scoring interpretation of

LDA and can be extended to perform sparse discrimination by mixtures of Gaussians if the

boundaries between the classes are nonlinear or if the subgroups are presented within each

class.

Feature subspace learning via low rank constraint

PLOS ONE | https://doi.org/10.1371/journal.pone.0215450 May 7, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0215450


Motivated by the above insights, we want to incorporate an LRR into the feature subspace

learning and to consider the class label and LRR coefficient as two different types of constraint

items to maximize the inter-class scatter and minimize the intra-class scatter simultaneously.

To this end, a structural similarity-based constraint term is designed by first utilizing the LRR

coefficients. Next, a label-based linear regression constraint is incorporated to achieve extra

discrimination and adaptation to the classification problem.

Our proposed approach

In this section, our discriminative feature learning model is proposed and the novel objective

function for our proposed model is detailed and analyzed. To solve the objective function effi-

ciently, we also developed a numerical scheme to obtain an approximate solution.

Construction of proposed feature subspace learning

As mentioned above, in conventional LDA-based approaches, the constraint term for the

feature subspace learning is combined with the label information, aiming to enforce the

minimum intra-class distance and maximum inter-class distance within the learned sub-

space. This can be considered as a learning strategy with equal weights assigned to different

training instances. In such methods the regularization parameters are 1 for the pairs of train-

ing instances within the same class and -1 for those belonging to different classes. However,

the equal-weighted scenario is not typically optimal. On one hand, the differences between

the instances from the same class may not be uniformly closed owing to some objective fac-

tors. For example, face instances can suffer from expression or lighting variation. On the

other hand, in the real world, the data are contaminated with noise and outliers, which can

disrupt the essential structural relevance. However, it has been found that instances from

same class generally lie in the same low-dimensional subspace [10]. Furthermore, the essen-

tial structural information can be explored with an LRR model even when the data are

corrupted.

Based on the above observations, our basic concept is to introduce low-dimensional struc-

tural information in the constraint on the feature subspace, which can lead to learning a robust

and adaptive feature subspace. Thus, our feature learning objective function can be defined as

follows:

min
P;Z;E

ZkZk� þ
X

ij

ZijkP
TXi � P

TXjk
2

2
þ lkEk2;1

s:t:X ¼ XZ þ E; Zij � 0

ð8Þ

where X = [X1,X2,. . .,Xm] is the training set, Xi(i = 1,2,. . .,m) represents each column of X, and

m is the total number of training instances. P and E denote the feature subspace and error

matrix, respectively. η and λ are positive scalars to balance the three terms. The first term in Eq

(8) is used to enforce a low-rank constraint on representation matrix Z, which helps explore

the low-dimensional structures hidden in the training instance. The second term is our pro-

posed constraint for the feature subspace, which considers the low-rank coefficients as the sim-

ilarity weights for constraining the distances of the pairs of projected instances. It is noted that

each element of Z can be considered as a measurement of the low-dimensional structural simi-

larity for each pair of instances. Thus, using our proposed constraint term, the structural simi-

larity information is not only preserved in the learned subspace but also used to guide the

feature learning. In addition, with the second term, Z and P can be learned jointly, benefiting

each other during the iteration and yielding progressively better and robust solutions. More-

over, we also introduce a nonnegative constraint in each element of Z, which can ensure that Z
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is used as a nonnegative regularization parameter. To increase the robustness, the third term

enforces the l2,1 norm-based constraint on the error matrix, which is used to better explore the

relevance in the data and combat sample-specific corruptions.

As described in [21], the LRR matrix can lead to large values for instances lying in the same

low-dimensional subspace and small values for those in different subspaces. In addition, close-

ness of the two instances implies a large Zij and vice versa. Hence, different from the conven-

tionally designed feature learning, our feature learning constraint can effectively optimize both

the intra-class and inter-class divergences with some adaptive structural similarity information

from the latent low-dimensional space. To avoid trivial solutions and reduce the redundancy,

an orthogonal constraint is also imposed on feature subspace P. Thus, the minimization prob-

lem in (8) can be rewritten as

min
P;Z;E

ZkZk
�
þ
X

ij

ZijkP
TXi � P

TXjk
2

2
þ lkEk

2;1

s:t:X ¼ XZ þ E; Zij � 0; PTP ¼ I
ð9Þ

where I is the identity matrix.

To make our model more discriminative and adaptive in the classification task, the label

information was incorporated into our framework as a kind of discriminative supervised

information. To this end, the comprehensive objective function for our proposed framework

is reformulated as follows:

min
P;Z;E

1

2
kY � PTXk2

F þ
X

ij

ZijkP
TXi � P

TXjk
2

2
þ ZkZk

�
þ lkEk

2;1

s:t:X ¼ XZ þ E; Zij � 0; PTP ¼ I
ð10Þ

where Y = [Y1,Y2,. . .,Ym] is a matrix decided by the class label. Yi =[-1,-1,. . .,1,. . .,-1]T2RC

denotes the i-th column of Y, and its c-th element is 1, whereas the others are -1 if the i-th

instance belongs to the c-th class. With the first label fitness term in Eq (10), our feature sub-

space will be jointly learned by minimizing the classification error simultaneously.

In our proposed framework, the first two terms in Eq (10) can be considered as two types of

effective constraints for optimizing the learned feature subspace. From Fig 1(A), we can see

that with the first term, the class label can be used to provide a clustering center, which will

enable the learned subspace to be discriminative and adaptative for the classification problem.

However, the inferior inter-class divergence due to the corruption still needs to be optimized,

as shown in Fig 1(A). To this end, we incorporated the second term into the framework. Con-

sequently, the feature learning is guided by the low-dimensional adaptive structural informa-

tion, which increases the small intra-class divergence and large inter-class divergence within

the projected feature subspace as shown in Fig 1(B) and helps to improve the learning perfor-

mance.

Solution scheme for our novel objective function

In this section, we develop an iterative numerical scheme for solving the novel objective func-

tion. It is worth noting that the minimization problem in Eq (10) is not jointly convex with

respect to all the variables [45]. Hence, the inexact ALM with BCD are used to obtain the

approximate solution. To decouple the variables, two auxiliary variablesW andM are
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introduced to relax the minimization, and the objective function can be rewritten as follows:

min
P;Z;E;W;M

1

2
kY � PTXk2

F þ
X

ij

MijkP
TXi � P

TXjk
2

2
þ ZkWk� þ lkEk2;1

s:t:X ¼ XZ þ E;Z ¼W;Z ¼ M;Mij � 0; PTP ¼ I
ð11Þ

Fig 1. Graphical analysis of our proposed framework. (a) the effect of the first constraint term and (b) the effect of the incorporated first two

constraint terms.

https://doi.org/10.1371/journal.pone.0215450.g001
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By the ALM, the Lagrangian function of problem in Eq(11) is

LðP;Z;E;W;MÞ ¼
1

2
kY � PTXk2

F þ
X

ij

MijkP
TXi � P

TXjk
2

2
þ ZkWk� þ lkEk2;1

þ
m

2
ðkX � XZ � Ek2

F þ kZ � Wk
2

F þ kZ � Mk
2

FÞ

þ hY1;X � XZ � Ei þ hY2;Z � Wi þ hY3;Z � Mi

ð12Þ

where h•i denotes the operation for inner product and Yi(i = 1,2,3) is the Lagrangian multi-

plier. Then, we transform L into the following compact form.

LðP; Z; E;W;MÞ ¼
1

2
kY � PTXk2

F þ
X

ij

MijkP
TXi � P

TXjk
2

2
þ ZkWk� þ lkEk2;1

þ
m

2
X � XZ � E �

Y1

m
k

2

F þ kZ � W �
Y2

m
k

2

F þ kZ � M �
Y3

m

�
�
�
�

�
�
�
�

2

F

� �

�
1

2m
ðkY1k

2

F þ kY2k
2

F þ kY3k
2

FÞ

ð13Þ

Thus, the minimization can be converted as

min
P;Z;E;W;M

LðP;Z;E;W;MÞ

s:t:Mij � 0; PTP ¼ I
ð14Þ

With the recently proposed BCD, the minimization can be solved iteratively for each vari-

able while others are fixed. In this way, in the k-th iteration, the projection subspace P can be

learned as

min
P

1

2
kY � PTXk2

F þ
X

ij

Mk
ijkP

TXi � P
TXjk

2

2

s:t:PTP ¼ I

ð15Þ

To solve Eq (15) efficiently, we first rewrite it as the following graph-based compact formu-

lation:

min
P

1

2
kY � PTXk2

F þ TrðP
TXLXTPÞ

s:t:PTP ¼ I
ð16Þ

where L = D−M denotes the graph Laplacian matrix, and D presents a diagonal matrix with

Dii ¼

X
M�i þ

X
Mi�

2
. Owing to the orthogonal constraint, the minimization cannot be

considered as an easy quadratic problem. Given the derivative of the objective function in Eq

(16) as follows, it can be solved with the method proposed in [46].

@LP

@P
¼ XXTP � XYT þ XLXTP ð17Þ

Similarly, by fixing other variables, the objective function with respect toW is shown as

min
W

W � Zk �
Yk

2

m

� ��
�
�
�
�

�
�
�
�
�

2

F

þZkWk
�

ð18Þ
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Eq (18) is a classical rank-minimization problem that can be solved efficiently by the singu-

lar value shrinkage operator [47].

Next, ignoring the variables independent of Z in Eq(13), we have

min X � XZ � Ek �
Yk

1

m

�
�
�
�

�
�
�
�

2

F
þ Z � Wkþ1 �

Yk
2

m

�
�
�
�

�
�
�
�

2

F
þ Z � Mk �

Yk
3

m

�
�
�
�

�
�
�
�

2

F
ð19Þ

It is worth noting that Eq (19) is a quadratic convex minimization, which can be solved by

forcing its derivative to zero. Thus, we can obtain its closed-form solution as

Zkþ1 ¼ ð2I þ XTXÞ� 1
ðWkþ1 þMk � XTEk þ XTX � ð� XTYk

1
þ Yk

2
þ Yk

3
Þ=mÞ ð20Þ

After dropping the terms irrelevant toM, we can obtain

min
M

Zkþ1 � M �
Yk

3

m

�
�
�
�

�
�
�
�

2

F
þ
X

ij

MijkP
Tðkþ1ÞXi � P

Tðkþ1ÞXjk
2

F ð21Þ

For clarity, we rewrite it as the following form

min
M

M � Zk �
Yk

3

m

� ��
�
�
�
�

�
�
�
�
�

2

F

þ
X

i;j

ðSk �MÞij

s:t:Mij � 0

ð22Þ

where S is a matrix with Sij ¼ kPTðkþ1ÞXi � PTðkþ1ÞXjk
2

2
. Moreover, because both of S andM are

nonnegative, the minimization in Eq (22) can be converted as

min
M

M � Zkþ1 �
Yk

3

m

� ��
�
�
�
�

�
�
�
�
�

2

F

þkSkþ1 �Mk1

s:t:Mij � 0

ð23Þ

The problem in Eq (23) can be seen as the nonnegative weighted l1-norm minimization

problem, which can be solved using the method in [48].

Then, by fixing others, the error matrix E can be updated as

min
E

l

m
kEk

2;1
þ

1

2
E � X � XZkþ1 þ

Yk
1

m

� ��
�
�
�
�

�
�
�
�
�

2

F

ð24Þ

The minimization in Eq (24) can be easily solved with the method in [49]. By setting

F ¼ X � XZkþ1 þ
Yk

1

m
, the i-th column of updated Ek+1 is computed as

Ekþ1

i ¼

kFik2
� l

kFik2

; if l < kFik2

0; otherwise
ð25Þ

8
><

>:

As stated in the inexact ALM algorithm, the Lagrangian multipliers also need to be updated

during the iteration. The details of the developed scheme are summarized in Algorithm 1.
Algorithm 1 Scheme for discriminative feature subspace learning
Input: training data X, label matrix Y, Z = W = M = 0, E = 0,
Y1 = Y2 = Y3 = 0, μ = 0.6, μmax = 1010, ρ = 1.1
Output: P
While not convergence do
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Fig 2. Sample images. (a) Extended YaleB, (b) AR, (c) COIL20, (d) USPS.

https://doi.org/10.1371/journal.pone.0215450.g002

Table 1. Classification rates(%) of comparison methods on test datasets with KNN.

Methods Extended YaleB AR COIL20 USPS

PCA 72.57±0.58 79.43±0.79 89.51±0.67 79.47±1.17

LDA 89.09±0.91 84.68±1.81 89.38±0.84 72.49±0.53

NPE 86.01±1.37 81.26±1.41 85.51±1.26 62.10±2.66

LSDA 92.94±0.88 74.34±0.63 84.23±1.52 56.18±2.67

Latent LRR 88.76±1.26 82.49±3.16 90.08±0.89 81.43±1.39

ProCRC 93.61±0.49 86.86±0.82 84.60±1.71 78.06±2.33

DLRDSR 93.56±1.25 80.52±1.35 88.87±0.93 77.89±1.81

SFE-ALR 92.15±1.33 84.89±0.42 87.12±0.45 77.63±2.66

Ours 95.29±0.43 86.63±1.46 92.03±1.05 81.51±0.82

https://doi.org/10.1371/journal.pone.0215450.t001

Table 2. Classification rates(%) of comparison methods on test datasets with SRC.

Methods Extended YaleB AR COIL20 USPS

PCA 80.29±1.28 81.24±1.13 78.94±1.38 76.10±1.72

LDA 82.58±1.32 93.93±1.30 82.81±0.75 59.12±4.21

NPE 76.85±1.51 81.47±1.08 82.59±1.30 60.70±5.39

LSDA 87.53±1.08 81.54±1.26 61.03±4.72 76.14±2.53

Latent LRR 94.37±1.36 95.14±1.64 87.25±3.05 78.91±0.91

ProCRC 93.87±1.83 93.92±0.61 86.45±1.68 77.35±0.86

DLRDSR 92.66±1.74 90.37±1.16 86.53±1.47 77.43±1.31

SFE-ALR 92.70±0.87 95.43±0.67 85.81±0.93 77.97±0.96

Ours 95.86±0.34 96.92±0.94 88.97±1.18 79.75±0.83

https://doi.org/10.1371/journal.pone.0215450.t002
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Fig 3. Sample images with 10% noise. (a) Extended YaleB, (b) COIL20.

https://doi.org/10.1371/journal.pone.0215450.g003

Fig 4. Recognition results versus pixel corruption on extended YaleB.

https://doi.org/10.1371/journal.pone.0215450.g004
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1. Update Pk+1 using Eq (16)
2. Update Wk+1 using Eq (18);
3. Update Zk+1 using Eq (20);
4. Update Mk+1 using Eq (23);
5. Update Ek+1 using Eq (24);
6. Update the Lagrangian multipliers and parameter:

Ykþ1
1
¼ Yk

1
þ mðX � XZkþ1 � Ekþ1Þ

Ykþ1
2
¼ Yk

2
þ mðZkþ1 � Wkþ1Þ

Ykþ1
3
¼ Yk

3
þ mðZkþ1 � Wkþ1Þ

μ = min(μmax,ρμ);
end while

With the numerical scheme in Algorithm 1, optimal feature subspace P� can be learned

when it achieves convergence. Subsequently, the feature can be extracted by projecting each

sample x onto P� as P�x, and classification or recognition methods can be implemented on the

projected features.

In Algorithm 1, Steps 1 to 4 will consume the most time. The computation complexity with

respect to both P andW is O(n3) owing to the singular value decomposition. The computa-

tional cost of solving Z is approximately O(n3), which is equivalently a matrix inverse calcula-

tion. ForM, it can be seen as a nonnegative weighted l1-norm minimization problem, and its

complexity is O(n2). Therefore, the total computation complexity of Algorithm 1 is O(tn3),

where t is the number of iterations.

Fig 5. Classification results versus pixel corruption on COIL20.

https://doi.org/10.1371/journal.pone.0215450.g005
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Experimental results and discussion

Experimental results

In this section, we evaluate our proposed approach using four available public datasets. The

public datasets include two face datasets: object dataset and handwriting dataset. The details of

the datasets are described below. For the face datasets, the individual in this manuscript has

given written informed consent to publish these case details.

Extended YaleB dataset. The Extended YaleB face dataset includes 2414 frontal images of

38 individuals, and of each individual, there are approximately 64 images under different light-

ing conditions. Some instance images are shown in Fig 2(A). The sizes of the test images used

in our experiment are cropped to be 32 × 32. In addition, the samples are normalized to have a

unit norm. Thirty two images of each individual are randomly selected as the training set,

whereas the remaining are used as the test set.

AR dataset. The AR dataset has 3120 gray images of 120 individuals. For each individual,

there are 26 images from the frontal views with different expressions, lighting conditions, and

occlusions. Some samples are shown in Fig 2(B). In our experiments, all the face images are

cropped and then resized to 55 × 40. Half of the images of each individual are used for training,

and the remaining are used for testing.

Object dataset. COIL20 contains of 1440 images from 20 objects, and each object has 72

images captured from continuous angles at intervals of 5 degree, as shown in Fig 2(C). In our

experiment, all the images in dataset are resized to 32 × 32 and normalized. Ten images of

each object are used for training, and the remaining are used for testing.

Fig 6. Classification results versus variational η.

https://doi.org/10.1371/journal.pone.0215450.g006

Feature subspace learning via low rank constraint

PLOS ONE | https://doi.org/10.1371/journal.pone.0215450 May 7, 2019 14 / 19

https://doi.org/10.1371/journal.pone.0215450.g006
https://doi.org/10.1371/journal.pone.0215450


Handwritten dataset. The USPS dataset has totally 9298 handwritten digit images with

ten classes from zero to nine, of which some instances are shown in Fig 2(D). The size of each

image is 16 × 16. In the experiment, for each digit, we randomly select 10 images to group the

training set, and the remaining ones are used for testing.

In our experiments, we compared the proposed approach to several existing excellent meth-

ods for feature subspace learning, including PCA, LDA, NPE, LSDA, latent LRR in [22],

ProCRC [14], DLRDSR [25], and SFE-ALR [23] respectively. Without loss of generality, we

use two types of classifiers, SRC and KNN, to test the comparison methods on the test datasets.

For SRC, the training instances are used as the atoms in the dictionary, and the recognition or

classification results are decided by the minimum class-specific regression error. For KNN, the

classification results are decided by the first K neighbors within the feature subspace, and K is

set as 1 in our experiments. All the experiments for each dataset are implemented five times.

The average classification results with KNN and SRC are reported with the standard deviations

in Table 1 and Table 2, respectively.

It can be seen from Tables 1 and 2 that our proposed approach shows a better performance

than the other comparison methods on practically all the testing datasets. Moreover, the

advantages are obtained consistently with both the KNN and SRC classifiers, implying that the

proposed approach exhibits a stable performance compared to that of the classification mod-

els. The reasons for our better performance are that the underlying subspace structure is well

studied with the low-rank model and its coefficients are effectively used as the relevance mea-

surements to constrain the learned projection. Moreover, by incorporating an LRR into the

Fig 7. Classification results versus variational λ.

https://doi.org/10.1371/journal.pone.0215450.g007
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feature subspace learning, these two variables can benefit each other during the iteration and

obtain jointly optimal solutions.

To test the robustness of our approach, we add random impulse noises of different levels to

two selected datasets, Extended YaleB and COIL20. The pixels are corrupted with different

percentages of the original image, and some instances of the noisy images can be found in Fig

3. The classification results are shown in Fig 4 and Fig 5. The results are obtained under the

same parameter settings for the experiments on clean datasets. From the classification results,

we can see that the LRR-based methods show advantages under the noisy conditions com-

pared to the conventional methods for feature learning. This is because the low-rank model

can help to remove the noise component and explore more of the essential structural informa-

tion existing in the original clean data. Concurrently, our approach outperforms other low-

rank-based feature learning methods and exhibits obvious improvement and robustness in the

classification results when the data are corrupted by a heavy noise.

Fig 8. Objective function values versus iterative steps. (a) curve for Extended YaleB dataset and (b) curve for COIL20 dataset.

https://doi.org/10.1371/journal.pone.0215450.g008

Feature subspace learning via low rank constraint

PLOS ONE | https://doi.org/10.1371/journal.pone.0215450 May 7, 2019 16 / 19

https://doi.org/10.1371/journal.pone.0215450.g008
https://doi.org/10.1371/journal.pone.0215450


Discussion on parameters and convergence

There are several regularization parameters in our algorithm. In the following, we will briefly

discuss them. Parameters μ and ρ are introduced owing to the ALM, and so they are set empir-

ically as suggested in [28] to ensure convergence. For parameters η and λ in Eq (13), we choose

COIL20 as the test dataset to study the effect on the classification results with their variational

values. The classification curves for both the original data and their corrupted version versus η
and λ are depicted in Figs 6 and 7, respectively. As can be seen from the results, the perfor-

mance is insensitive to different η and λ, and it almost achieves consistent results over a wide

range of these two parameters.

To verify the convergence of our approach, we plot the convergence curves of the objective

function values versus the iterative steps in Fig 8. We choose Extended YaleB(Fig 8(A)) and

COIL20(Fig 8(B)) as the testing datasets, and the settings are consistent with the experiments for

the clean data. We can observe that our approach can well converge as the iteration proceeds.

Conclusion

In this paper, a robust and discriminative feature subspace learning method is proposed for

feature extraction and classification tasks. Our approach iteratively learns a subspace with two

types of constraints based on a low-rank representation and class labels, respectively. The

ALM with BCD is developed to solve the framework convergently. The proposed approach is

examined on several public datasets, and the experimental results demonstrate the competitive

and superior performance of our approach compared to the conventional methods. In addi-

tion, when the data suffer from noise, our approach shows more robustness than the other

comparison methods. In the future work, we may extend our approach to a semi-supervised

scenario for feature learning and design some new regularization constraints to further

improve the classification performance.
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