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Abstract

Data analysis for flow-based in-vitro receptomics array, like a tongue-on-a-chip, is compli-

cated by the relatively large variability within and between arrays, transfected DNA types,

spots, and cells within spots. Simply averaging responses of spots of the same type would

lead to high variances and low statistical power. This paper presents an approach based on

linear mixed models, allowing a quantitative and robust comparison of complex samples

and indicating which receptors are responsible for any differences. These models are easily

extended to take into account additional effects such as the build-up of cell stress and to

combine data from replicated experiments. The increased analytical power this brings to

receptomics research is discussed.

Introduction

Receptomics research with microfluidic receptor cell arrays aims to measure purely biological

responses without a complicated biological system surrounding it [1–3]. For example, the

human tongue can be emulated on a chip by an array containing G-protein coupled receptors

(GPCRs), e.g., in the form of reconstituted receptor proteins [4] or vesicles [5]. Another possi-

bility is formed by living cells expressing the genes coding for particular GPCRs, produced by

either reverse-transfecting a generic cell line on the chip [6] or spotting pre-transfected cells

[7]. Such a tongue-on-a-chip allows direct access to the original taste signal, before the signal is

further transmitted via neurons, and processed and interpreted by the human brain. Thus,

while a taste panellist would define a sample as bitter or sweet, a tongue-on-a-chip provides

direct quantitative information on which taste receptors are triggered, and by how much. On a

more general level, receptomics enables identifying compounds or extracts activating or block-

ing specific receptors active in taste sensation as well as in many other processes. Humans have

a wide palette of receptor proteins. Even considering only GPCRs there are more than 800

receptors for the detection of hormones, neurotransmitters, tastants, odorants, and others.

Since all receptors play an important role in human physiology, there is an advantage to a
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receptomics approach aiming at combining different receptors on a single chip, allowing the

researcher to study the role of a compound or extract in a wider perspective by including all or

at least the most relevant receptors.

However, data analysis for flow-based in-vitro biosensor arrays such as a tongue-on-a-chip

is complicated by the relatively large variability in specific and non-specific responses within

and between arrays caused by differences in the expression of the transfected receptor DNA,

variability in spots and in cells within spots. Approaches based on simply averaging the

response values of spots of the same type therefore lead to estimates with a large variability,

allowing only the most obvious differences between samples to be detected and providing no

means to correct for other effects often seen in flow-cell based approaches such as time or

memory effects. Furthermore, chemically complex samples may trigger host-cell responses

that vary widely between receptor types, depending on unknown interactions with the func-

tional properties of the transfected DNA [8]. To eliminate such host-cell responses often ham-

pering the analysis, one may dilute the sample until the host-cell response is no longer

observed, but that often also means losing a large part or even all of the signal.

Here, we are focusing on microfluidic receptomics chips containing receptor cell arrays

generated by reverse transfection of DNA arrays and with ectopic expression of different

GPCRs and a generic calcium-ion sensor protein, Twitch2B [6, 9]. The chips were printed

with plasmid DNA encoding a GPCR gene and a calcium sensor gene. Transient expression of

the genes was achieved by reverse transfection: HEK293 cell were seeded on top of the DNA

array, the DNA was taken up and the genes were expressed leading to G-protein-coupled

receptors embedded in the cell membrane and calcium sensor accumulation in the cytoplasm.

Upon stimulation of the receptor with a ligand, the GPCR signal transduction pathway is acti-

vated via Gα16GUST44 [10]. Activation of this chimaeric G-protein leads to a transient rise in

calcium ion concentration within the cytoplasm. These calcium dynamics can be measured

using ratiometric calcium sensors that are based on the FRET pair CFP and YFP connected by

a calcium binding domain.

The principle of the sensor is depicted in Fig 1. Since the array can contain hundreds of

spots, it is possible to accomodate many different receptors and at the same time have a rela-

tively large number of spots for each receptor type, leading to more precise estimates. For each

spot on the array, fluorescence time series are measured at two different wavelenghts which

are, in a series of steps, transformed in response values for each spot upon exposure to a sample

[6]. The goal of the statistical analysis, the main focus of this paper, is to be able to unambigu-

ously and objectively discriminate between samples in terms of receptors affected.

Materials and methods

Cell array experiments

Reverse-transfected cell arrays were prepared and measured as previously described in [6].

The genes encoding bitter receptors were obtained from genomic DNA by PCR amplification

and cloned into pcDNA3 containing the N-terminal sstr3 tag (gift from Dr. Wolfgang Meyer-

hof, German Institute of Human Nutrition Potsdam-Rehbrücke, Germany). Plasmid pcDNA3

Twitch2B (addgene #49531 [9]) was added to the print solution to enable ratiometric calcium

detection. The arrays contained 24 individual bitter taste receptors, including SNP variants

Tas2R4-SLN and -FVS, Tas2R38-PAV and -AVI, and Tas2R39-A and -T. For a complete over-

view, see—in the remainder of this paper, the Tas2 prefix will be deleted for clarity. These

receptors were placed randomly on the array, to avoid location and neighbour effects. Each

print mix contained 75ng/μl receptor-coding plasmid DNA and 10 ng/μl calcium-sensor-cod-

ing plasmid DNA. The low level of sensor expression obtained this way prevented buffering of
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the calcium ions by the sensor itself. Two additional controls were printed; one control with-

out receptor-coding DNA but an empty vector instead (Mock), and one control without

receptor-coding DNA but with a modified calcium sensor protein that lacks the ability to bind

calcium. This control, named YC-, has a YFP/CFP ratio independent of the intracellular cal-

cium concentration. Any environmental influences on the spectral properties of the fluores-

cent calcium probe will be detected by this control, as will be fluorescence coming from the

sample itself.

Reverse-transfected cell arrays were prepared using HEK293 cells stably transfected with

Gα16GUST44 (a gift from Dr. Takashi Ueda, Nagoya City University, Nagoya, Japan). At 48

hours after transfection, the cell arrays were removed from the incubator, washed and incu-

bated in assay buffer for 1 hour prior to the measurements. All measurement series were per-

formed using a 150 μl flowcell and the flowcell holder (Micronit Microfluidics B.V., Fluidic

Connect PRO Chip Holder.) The assay buffer (NaCl 130mM, KCl 5mM, Glucose 10mM,

CaCl2 2mM, HEPES 10mM at pH 7.4) was set to a continuous flow of 300 μl/min over the

array. The injections were performed with a manual valve containing a 150 μl sample loop.

Reagents used in the injections were Adenosine 5’-triphosphate (ATP, Sigma A6419), Chlor-

amphenicol (Duchefa C0113.0100), Picrotoxinin (Sigma P8390), 6-propyl-2-thiouracil PROP

Fig 1. The receptomics principle used in this paper. The microfluidic system (A) allows sequential injections of samples into the

flowcell. The fluorescence microscope in (B) captures CFP- and YFP-FRET images of the entire cell array that can be analysed to give

average values for the YFP/CFP fluorescence ratio. (C) The spots of the array are composed of approximately 50 fluorescent cells,

each transfected with a receptor-coding gene and a fluorescent calcium sensor coding gene. Both receptor and sensor are expressed

in each fluorescent cell of an array spot (D). Each spot on the array expresses a different receptor type. When the receptor interacts

with a ligand, the Gα16GUST44 signalling cascade is activated: the Gα protein acts via Phospholipase C (PLC) to convert PIP2 into

second messenger IP3 which can interact with IP3 receptors (IP3R) on the Endoplasmic Reticulum (ER). The IP3R are calcium ion

channels which, when activated, transiently release calcium into the cytoplasm. The Twitch2B calcium sensor, expressed in the

cytoplasm, is a fluorescent FRET probe which, upon binding of calcium ions, changes conformation and thereby increase the FRET

efficiency between the CFP and YFP fluorescent proteins. These FRET changes are captured by the camera as a ratio change of CFP

and YFP intensities.

https://doi.org/10.1371/journal.pone.0214878.g001
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(Sigma P3755) and D-Salicin (Wacko 199-00083). The time between injections was set to

approximately 5 minutes, allowing the intracellular calcium levels in the solution to return to

pre-injection values.

Image analysis

Upon stimulus by their respective ligands, receptors will induce a signal transduction leading

to an increased calcium ion concentration in the cytosol. This can be monitored in real time

by means of FRET (Förster Resonance Energy Transfer) imaging [6], here using a Leica fluo-

rescent stereo microscope (Leica M205FA with DFC 345 FX camera). Two channels were

monitored, CFP (ET CFP 10447409, excitation 436/20 and emission 480/40) and YFP (ET

FRET 10450566, excitation 436/20 and emission 535/30), respectively. Note that CFP and YFP

images are taken alternatingly and therefore have different time points. The CellProfiler soft-

ware package [11] was used to separate signal pixels from the background to define a grid cor-

responding with the positions of the spots and to quantify the raw CFP and YFP signals.

Preprocessing

Processing the images leads to a data table containing, for each of the spots, the CFP and YFP

signals for each measurement cycle. As a first preprocessing step, the data are corrected for

fluctuations in the lamp output using a reference position outside the flowcell. Next, spots con-

taining fewer than fifteen pixels are removed from the data. Receptor types that are repre-

sented by fewer than five spots are removed altogether. The CFP and YFP signals are then

smoothed using cubic smoothing splines [12]. The signal of each spot, related to the calcium

concentration in the cell, is now defined as the ratio of the interpolated CFP and YFP signals at

specific time points. An example showing CFP and YFP data (after lamp correction) for one

spot, as well as the derived spot signal, is shown in S1 Fig.

Next, this spot signal is used to calculate the response of a spot to a sample injection. This

can be done in several different ways: since spot signals often show peak-like shapes, obvious

candidates are peak height and peak area. Here, we focus on the the increase or decrease of a

spot signal after the injection, given by the ratio of the extreme value of the signal (within a cer-

tain time window), and the average of the first three signal values directly after the injection.

In this case, the time window is chosen to cover 30 cycles (approx. 1,5 minutes) directly after

the sample introduction, corresponding to the time the cells are exposed to the sample. An

example is provided by S2 Fig. In this way, a data matrix is obtained that describes the quanti-

tative response of each spot to each sample injection, independent of the initial signal strength.

Statistical modelling

Qualitative analysis. To obtain an easily interpretable overview of the differences between

samples for which multivariate responses are available, Principal Component Analysis (PCA

[13, 14]) is often used. In PCA, a high-dimensional data matrix is reduced to a much lower

number of dimensions (for visualization purposes usually two) that contains the maximum

amount of information. Each new dimension is a linear combination of the original variables.

So-called score plots show the position of the samples in this reduced space; loading plots

show the weights of the original variable on the new axes, i.e., which of the original variables

are important in each new direction. Quantitative statements about significant differences

between injections cannot be made with PCA. In a context where samples are compared to see

whether they lead to different taste receptor responses PCA therefore is of limited value, and a

statistical model is needed.
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Mixed models. Here, we are interested in assessing which samples differ significantly
from each other, and which receptor types are responsible for any observed differences. Our

approach is based on linear mixed models [15]. In the simplest form, one fits a model describ-

ing the spot response R with receptor and sample as (fixed) variables, also including the

interaction between the two. Additional fixed variables could include the injection number, to

account for any trends in sensitivity over time, and array number, when combining several

replicated experiments in one analysis. To take account of the fact that every spot will have its

own characteristics, the spots have to be part of the model, too. In order to avoid estimation of

individual coefficients for all spots, which would consume valuable degrees of freedom, one

can include spots as a so-called random variable. That is, one assumes that the spot effects fol-

low a normal distribution around zero, and the only parameter that is estimated is the width of

the distribution, implying that observations on the same spot are correlated rather than inde-

pendent. This leads to the following model (in matrix notation):

y ¼ Xbþ Zuþ ε

where y is the vector of spot responses to sample injections, β contains the coefficients for all

fixed variables, and u contains the random effects associated with the individual spots. X and Z
are design matrices relating the responses to the values of the independent variables: i.e. X con-

tains information about the sample type, receptor type and possibly injection number and

array number, and Z describes the receptor types present at all spots. Finally, ε is the vector of

residuals. The model is fit, as is common practice, through restricted maximum likelihood

(REML) [15].

Contrasts. Once the model is obtained, it can be used to estimate the expected response

of a particular type of receptor to a particular sample (so-called estimated marginal means).

By focusing on differences of these estimates for individual spots, the differences between the

spots are eliminated, removing a major source of irrelevant variation and leading to much

narrower confidence intervals and increased statistical power. Such differences are called

contrasts, and can be defined in a number of ways. In treatment-versus-control contrasts, for

example, one of the injection types is used as a control, and the magnitude of the results of

the other injection types (usually the study samples) is related to this. In this way one can

quantitatively assess which receptors show different responses to the injection of different

samples.

Scaling of the response variable. Although the mixed models can be fitted for the inten-

sity ratio described above and shown in S2 Fig, it is more appropriate to use a log-scaled inten-

sity ratio as the response variable. Comparing samples then will (after backtransformation)

lead to ratios of ratios: a value of 1 corresponds to no change in intensity ratio, values lower

than 1 correspond to a decrease in intensity ratio, and values higher than 1 to an increase. In

this way a treatment-versus-control contrast can be expressed in terms of simple ratios of the

original CFP and YFP responses, which would not have been possible if we would have ana-

lysed the intensity ratio data without the log transformation. The variance-stabilizing effect of

the log transform is less important here since all intensity ratios are relatively close to one; for

other response variables with heteroscedastic residual variance, this could be an important rea-

son to employ the log transform.

Software

All statistical analyses described in this paper have been performed using R [16], using pack-

ages nlme [17] for fitting the mixed models, emmeans [18] for obtaining estimated marginal

means, contrast estimates and confidence intervals, and lattice [19] for generating plots.
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R scripts and data to reproduce the results in this paper are available in S1 Code, S1 and S2

Data, respectively.

A stable version of the analysis scripts using defaults also used in this paper has been

included in our “Receptomics” software, which provides an intuitive and powerful user inter-

face allowing inspection of raw data, elimination of bad data points, choice of model (“raw”

effect sizes or treatment-versus-control contrasts), and inspection of the outcome of the statis-

tical modelling. For more information about this software, see http://www.receptomics.com.

Data

Three experiments, each executed three times, serve to illustrate our approach. In the first type

of experiment (A), a quality control (QC) mixture of four compounds, chosen because they

are known to hit specific bitter receptors, was injected at nine different dilutions (see Table 1).

The sample with the lowest concentration was injected first; each subsequent injection had a

double concentration of the QC mixture. In addition, a blank injection, and a 2 μM ATP injec-

tion were performed. The ATP injection elicits a host-cell response, different for each receptor

type. The second type of experiment (B) was set up to compare 2 μM ATP injections with

injections where the ATP sample was spiked with the same QC mixture as in (A). Also here a

blank injection (containing only assay buffer) was included. This experiment is a simple exam-

ple of a case where a specific response should be estimated in the presence of a constant back-

ground (the host-cell response). Table 2 gives an overview of the injections in both experiment

types.

Table 1. QC mixture and target receptors, in order of expected sensitivity [20]. Concentrations of compounds in

the A-type experiments correspond to the most concentrated sample. The concentrations of the QC mixture in the B

experiments correspond for all compounds but D-Salicin to QC 2 in the A experiments.

Spike Exp A (μM) Exp B (μM) Affected receptors

Chloramphenicol 500 250 R8 > R46> R1, R10, R43> R39

Picrotoxinin 500 250 R14> R46> R1, R10

D-Salicin 10,000 1,000 R16

PROP 20 10 R38 PAV

https://doi.org/10.1371/journal.pone.0214878.t001

Table 2. Injections for experiments A and B. The numbers after “QC” in Experiment (A) indicate the dilution factors:

samples have been injected in order of increasing concentration.

Injection Experiment (A) Experiment (B)

1 Blank Blank

2 QC 256 QC

3 QC 128 ATP 2uM

4 QC 64 ATP 2uM+QC

5 QC 32 ATP 2uM

6 QC 16 ATP 2uM+QC

7 QC 8 ATP 2uM

8 QC 4 ATP 2uM+QC

9 QC 2 ATP 2uM

10 QC 1 QC

11 ATP 2uM

https://doi.org/10.1371/journal.pone.0214878.t002
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Results

Experiment A

Experiment type A investigates spot responses to exposure to a dilution series, and was exe-

cuted three times, using three identical arrays. The QC 8 injection in the first replication

(experiment A1) did not succeed, so data for that particular dilution are missing. The PCA

score plots for the three replicated experiments are shown in Fig 2. One can clearly see the

trend of more concentrated QC injections going away from the blank injection, while the

ATP injection is in a completely different part of the PCA space. The corresponding loading

plots, shown in S3 Fig, indicate which variables are involved in the first two PCA dimensions.

Although some of the receptors, e.g., R8 and R14, seem to be important in PC2, the direction

of increasing QC concentrations, the loading plots are hard to interpret because of the large

number of variables and the fairly large variation, also within spots of the same receptor

type.

More quantitative results are obtained with the mixed-models approach, presenting for

each receptor type an estimate of the response to the different injections, including standard

deviations and confidence intervals. By considering the treatment-versus-control contrasts,

variability between spots is eliminated. These contrasts, estimated from the model combin-

ing the three arrays in one single analysis, are shown in Fig 3. The Blank injection is used as

the control. In this figure, significant effects, not including the value of 1 in the confidence

interval, are shown in red. In total, 42 significant effects are found. Going from top to bottom

in each panel, concentrations of the QC mixture increase (i.e., dilution factors become

lower) leading to larger responses for several of the receptors. Although the individual arrays

show some small differences, the general patterns are very similar. Very clear responses are

seen for receptors R8, R14, and R16, at at somewhat higher concentrations also for R10,

R38 PAV and R46L. All of these receptors are present in Table 1; receptors R1 and R39,

also mentioned in the table, only show a significant response at the highest concentration.

Note that some other receptors not present in Table 1 seem to respond, too—this may be a

genuine response, since not for all receptors it is fully known what triggers them. The full

results of the analysis of the individual arrays can be found in the supplementary material,

S4–S6 Figs.

Fig 2. PCA score plots for the three replicated experiments, type A. Dots correspond to injections. In all three cases, the ATP

injections lie in the top right corner, and the blank injections in the top left corner. Injections of the QC mixture move away from the

blank injection with increasing concentrations.

https://doi.org/10.1371/journal.pone.0214878.g002
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Experiment B

In Experiment B the goal is to distinguish between two types of injections, both containing a

large host-cell response. This host cell response, independent of the transfected receptor, is set

up by means of a sample containing ATP. One type of injection consists of the ATP sample;

the other adds to this the QC mixture also employed in Experiment A, so that both a generic

Fig 3. Control-versus-treatment contrasts from the joint analysis of the three type-A experiments. Each panel shows the

estimated contrasts and associated 95% confidence intervals of a particular receptor. Contrasts are the ratio between the model

response for a particular injection, and the reference injection, here the blank. Only the injections of the QC mixture are shown here

to stress the pattern of increasing response with increasing concentration (from top to bottom, corresponding to decreasing

dilutions indicated with the numbers on the y axis). Significant results, not including the baseline value of 1.0 in the confidence

interval, are shown in red. For several receptors, e.g., R8 and R14, we see a clear relation between response and increasing

concentration.

https://doi.org/10.1371/journal.pone.0214878.g003

Statistical models discriminating between microfluidic receptor-cell array samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0214878 April 8, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0214878.g003
https://doi.org/10.1371/journal.pone.0214878


host-cell response and specific receptor-specific responses are elicited. The statistical model

then should indicate which receptors show significant differences between the two types of

injections.

The PCA score plots are shown in Fig 4. In all three replicated experiments, the four

injection types (Blank, QC only, ATP only, and ATP plus QC) are located in four different

quadrants. Clearly, it is possible to distinguish between the injection types: the first PC distin-

guishes on the basis of the presence or absence of ATP; the second PC does the same for the

QC mixture. However, when looking at the loading plots (see S7 Fig) it is not at all clear which

receptors are involved. The two most responsive receptors to the QC mixture, R8 and R14,

are the ones with the biggest loadings on PC2, but we see appreciable differences, also within

one type of receptor.

To be able to concentrate on the most relevant results only, the linear mixed models are

constructed using only the ATP and ATP+QC injections, leaving out the Blank and QC injec-

tions. Peak number is included as a (numerical) variable, allowing a trend over time. This is

necessary: in the score plots of Fig 4 the effect of the injection order is clearly visible. Later

injections of the same type tend to have higher values on the PC2 axis.

The results for the first of the three experiments, B1, are shown in Fig 5. The two left panels

show the estimated response values, basically averages of model predictions for the two differ-

ent injection types, for all receptors. It is remarkable to see how the responses to the ATP injec-

tions vary widely between host cells carrying different bitter receptors. Perhaps even more

surprising is the fact that the response of the Mock receptor to ATP is the strongest of all. The

right panel in Fig 5 shows the treatment-versus-control contrast calculated by the mixed

model, where the ATP 2uM injection is the reference. Since the comparisons are effectively

made within each spot, the confidence intervals for the contrasts are much more narrow than

the confidence intervals for the estimated responses, leading to increased statistical power. In

total, 10 significant treatment-versus-control contrasts, not including the value of 1 in the con-

fidence interval, are found here. Note that for both control receptors, Mock and YC-, the con-

trasts are not significant, indicating that the model has effectively eliminated the very large

host-cell response component to ATP.

The estimated contrasts and confidence intervals for the three replicated B experiments are

shown in the top panels of Fig 6. Even though the ATP leads to a large signal, varying in size

Fig 4. PCA score plots for the three replicated experiments, type B. Dots correspond to injections—the name of the injection type

is followed by the injection number. In all three cases, injections without ATP are on the negative side on PC 1; injections without

QCs are on the positive side on PC 2. There is a clear trend where later injections are located more towards the top left corner of the

plot.

https://doi.org/10.1371/journal.pone.0214878.g004
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depending on the type of the receptor, the analysis is able to identify the effects of the QC mix-

ture on all receptors mentioned in Table 1—six receptors, R8, R10, R14, R16, R38 PAV and

R46L seem to stand out in particular. The joint analysis of the ATP-containing injections for

the three experiments is shown in S8 Fig. The two control receptors, Mock and YC-, overall

have non-significant effects, as expected.

Corresponding results from the model fitted using only the Blank (the reference) and QC
injections are shown in the bottom panels in Fig 6. Even though this is supposedly a much eas-

ier task since the large ATP background is absent in this comparison, the results are much

more variable: the contrast estimates themselves show large variation between repeated experi-

ments, and the estimated confidence intervals are much wider. The main reason for this is that

the replication level is lower: the blank was injected only once, and the QC mixture twice. In

contrast, there are four non-spiked ATP and three spiked ATP injections. Nevertheless, this

clearly shows that the mixed model is able to efficiently pick up signal also in the presence of a

large background.

Discussion

Data from sensors based on live cells often lead to highly variable results. At the cell level,

transfection efficiency and cell-cycle differences cause variation in protein expression, leading

to variation at the spot level. This can be prominent if relatively few cells make up a signal on a

receptor-cell microarray. In addition, in the analysis of complex samples both receptor-specific

and generic host-cell responses are often encountered.

Here, these issues have been tackled in several ways. First of all, the design of the slide is

important. The high replication of receptors of interest (typically, ten spots are printed for all

Fig 5. Estimates and 95% confidence intervals for the first B-type experiment. The panels on the left show the estimated

responses and associated confidence intervals of all receptors to injection types. The right panel shows the corresponding spot-wise

ratios, the treatment-versus-control contrasts. Significant results, not including 1.0 in the confidence interval, are indicated in red.

Note that the confidence intervals in the right panel are much more narrow than those in the left two panels since the between-spot

variation is taken out of the equation.

https://doi.org/10.1371/journal.pone.0214878.g005
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Fig 6. Validation of mixed-model results in the presence of a strong background. The top panels show the estimated treatment-

versus-control contrasts comparing spiked and non-spiked ATP injections. Even though the ATP will lead to a strong signal it is

possible to pick up the receptors responding to the compounds in the QC mixture mentioned in Table 1. The bottom panels show

the results of directly comparing the pure QC mixture injections with the blank, so without the ATP background signal. The top and

bottom rows are generally in good agreement, even though the bottom panels show much more variation and wider confidence

intervals due to the lower number of replicated injections.

https://doi.org/10.1371/journal.pone.0214878.g006
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receptor types) leads to more precise estimates. Perhaps even more importantly, a high replica-

tion provides a safeguard against “bad” spots—we are working with live cells so their behav-

iour is not always predictable. In the preprocessing phase a number of spots showing too little

signal are typically eliminated. Since one of the main characteristics of the analysis pipeline

proposed in this paper is to get rid of spot effects, we still should have enough spots for each

receptor type to do this. For instance, for experiment B1, using only half the number of spots

would on average lead to a 7% increase in the width of the confidence intervals and more vari-

ability in the contrast estimates. Note that the current array can easily accomodate all our bitter

receptors and achieve high replication; it is also possible to simply print larger arrays contain-

ing more spots.

Secondly, quality control measures can be taken in the preprocessing, before the statistical

analysis: removing spots represented by too few pixels in the raw images has already been

mentioned. Sometimes air bubbles prevent spots from being covered by the fluid containing

the sample—such spots would be flagged manually and removed from the analysis (this was

not the case in the data presented in this paper). Additional quality control steps can easily be

integrated if necessary. Thirdly, and the main topic of the current paper, by choosing an

appropriate statistical model to describe the behaviour of the system very detailed and quanti-

tative information can be obtained. The mixed models proposed here allow one to draw con-

clusions about whether or not two samples are different, and if so, what receptors are involved

in sensing the differences between the samples. The results are given as tables including esti-

mates and confidence intervals, and can be easily visualized. Of particular importance is the

fact that the variation between spots of the same type, an important factor in the overall vari-

ability, can be separated from the relevant information by limiting the comparisons to be done

within spots. In that sense, the mixed-model approach leads to more precise and more easily

interpretable answers. This is true not only for the flow system described here but also in con-

ventional methods using microtiterplates if repeated sample exposure could be achieved. Even

the presence of a large generic host-cell response does not prevent the analysis from obtaining

correct and precise results.

The current data-analysis set-up is very flexible and can be changed and adapted in several

different ways. We can use other response variables, we can use more complicated models, or

we can combine the results of the current models in a different way.

Other response variables

In this paper, the response of a spot is expressed as a ratio of the initial signal and the signal at

the top of the peak. Obviously, other measures could have been chosen, such as the difference

between the two signal values rather than the ratio. This would correspond to a simple mea-

sure of peak height. For the statistical analysis, however, this would lead to heteroscedastic

data: high peaks would show much more variability than low peaks, necessitating more com-

plex statistical models. A logarithmic transform of peak heights, which would at least partially

alleviate the effects of such heteroscedasticity, is usually not possible since spot responses may

be zero or even become lower after sample injection, leading to zero or negative peak heights.

Therefore, our default is to use the log-scaled signal ratios described in this paper. Neverthe-

less, there may be cases where one is explicitly interested in fitting models for peak height.

Also other response variables could be envisaged, such as the peak area, the degree of tailing of

a peak, or the maximal steepness of the slope. Finally, in experiments where the timing of the

response (early or late) is important one could, e.g., consider the time to reach the top of the

peak, or to the start of the peak, as the response variable.
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More complicated statistical models

The statistical model describing the behaviour of the system can be extended easily—this is

one of the most attractive features of the current approach and a defining difference with the

usual strategy of simply averaging spots of the same receptor type. One example of a simple

extension is the linear term describing the decrease in response over a series of injections

employed in the data from Experiment B. In this paper, we have used one slope to describe all

spots, but one could actually fit receptor-dependent or even spot-dependent slopes, or fit non-

linear slopes such as an exponential decay. One could take into account interactions between

subsequent injections—cells may respond differently to a stimulus depending on what hap-

pened in the near past. However, more complicated models obviously consume more degrees

of freedom (and take more calculation time). The goal is to obtain an adequate description

(using whatever definition appropriate) of the behaviour of the system with minimal resources.

The set-up used in this paper takes a couple of seconds at most using simple every-day hard-

ware, so is eminently usable in practice.

More complicated comparisons

We have shown that it is possible to obtain very good results in comparing spiked samples

with non-spiked samples: the proposed methodology is able to eliminate the common back-

ground signal (triggered by ATP) from the receptor-specific signals, even though the back-

ground is the largest component by far. In more general experiments, where the differences

between the injection types are more complicated than the simple addition of a spike mixture,

it may not be so easy to remove host-cell responses: in pathological cases host-cell responses

may completely cancel out receptor-specific responses. It is clear from the results in this paper

that each receptor spot has a different host-cell response, and it is not correct to simply assume

that the Mock spots provide a good estimate. We are currently exploring ways to disentangle

the effects in a general way.

Conclusion

In the field of receptomics, microfluidic receptor-cell arrays are a valuable tool in investigating

human responses to food and in trying to understand the relation between chemical composi-

tion and taste in food stuffs [6, 21]. We have shown that careful experimental design, data pro-

cessing and statistical analysis can lead to highly informative results, opening the way to many

diverse applications. One particularly interesting possibility is to use these cell arrays as exten-

sions of taste panels for prescreening: in principle, many quantitative comparisons can be

made in a rapid and cost-effective way. This receptomics tool can be further extended to other

receptors of the GPCR gene family and ion channels, both of humans and other organisms.

Because of the complexity of the underlying biological processes, statistical analysis is non-

trivial. In this paper, a consistent and robust strategy has been devised, validated and imple-

mented in the form of R scripts to achieve maximum flexibility and transferability. On top of

these scripts, a software package has been built, focusing on the models described in this

paper, allowing also non-specialists to access the power of the mixed-model analyses, thus

greatly reducing the time needed to analyse these complex data sets, and ensuring reproduc-

ibility of the results.

Supporting information

S1 Table. Overview of bitter raste receptor genes used in the bitter-receptor array. Poly-

morphism variants are indicated with the aminoacid number of the receptor protein and the
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variable amino-acid letter code. In brackets the printed polymorphism is shown. The right-

most column contains the number of replications on the array.

(PDF)

S1 Code. scripts.R: File containing R scripts for reproducing the results (including fig-

ures) in this paper.

(R)

S1 Data. ExperimentA.csv: File containing data for the three experiments of type A.

(CSV)

S2 Data. ExperimentB.csv: File containing data for the three experiments of type B.

(CSV)

S1 Fig. Data processing: From CFP and YFP signals to spot signals. The top panel shows

the raw CFP and YFP signals for spot 21 from the first type-B experiment (a spot of receptor

type R8). These raw signals are smoothed and interpolated to obtain values for exactly the

same time points (shown in the middle panel). The final spot signal is calculated as YFP/CFP,

and is shown in the bottom panel.

(TIFF)

S2 Fig. Definition of the magnitude of the spot response to an injection. The plots depict

the last three injections of the data also shown in S1 Fig. The magnitude of the spot response is

the ratio of the extreme point within a time window (here 30 cycles, indicated by the gray verti-

cal lines), and the starting value, the average of the first three points.

(TIFF)

S3 Fig. PCA loading plots for the three replicated experiments, type A. Spots of types R8
and R14 are highlighted to show the variability between spots of the same receptor type. For

clarity, the largest loadings are shown with arrows, smaller ones are shown with dots only.

(TIFF)

S4 Fig. Estimated treatment-versus-control contrasts for individual spotmixes in experi-

ment A1. Each panel contains the result of one receptor type; dilutions are given at the y axis,

with stronger dilutions towards the bottom. Significant contrasts, not containing the value of

one in the confidence interval, are indicated in red. The blank injection serves as the reference.

(TIFF)

S5 Fig. Estimated treatment-versus-control contrasts for individual spotmixes in experi-

ment A2. For explanation, see legend of S4 Fig.

(TIFF)

S6 Fig. Estimated treatment-versus-control contrasts for individual spotmixes in experi-

ment A3. For explanation, see legend of S4 Fig.

(TIFF)

S7 Fig. PCA loading plots for the three replicated experiments, type B. Spots of types R8
and R14 are highlighted to show the variability between spots of the same receptor type. For

clarity, the largest loadings are shown with arrows, smaller ones are shown with dots only.

(TIFF)

S8 Fig. Joint analysis of type-B experiments. For explanation, see the caption of Fig 3. The

reference level is given by the injection type ATP 2uM.

(TIFF)
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