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Abstract

Brown Adipose Tissue (BAT) is present in a significant number of adult humans and can be

activated by exposure to cold. Measurement of active BAT presence, activity, and volume

are desirable for determining the efficacy of potential treatments intended to activate BAT.

The repeatability of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)

measurements of BAT presence, activity, and volume under controlled conditions has not

been extensively studied. Eleven female volunteers underwent double baseline FDG PET

imaging performed following a simple, regional cold intervention intended to activate brown

fat. The cold intervention involved the lightly-clothed participants intermittently placing their

feet on a block of ice while sitting in a cooled room. A repeat study was performed under the

same conditions within a target of two weeks. FDG scans were obtained and maximum

standardized uptake value adjusted for lean body mass (SULmax), CT Hounsfield units

(HU), BAT metabolic volume (BMV), and total BAT glycolysis (TBG) were determined

according to the Brown Adipose Reporting Criteria in Imaging STudies (BARCIST) 1.0. A

Lin’s concordance correlation (CCC) of 0.80 was found for BMV between test and retest

imaging. Intersession BAT SULmax was significantly correlated (r = 0.54; p < 0.05). The

session #1 mean SULmax of 4.92 ± 4.49 g/mL was not significantly different from that of

session #2 with a mean SULmax of 7.19 ± 7.34 g/mL (p = 0.16). BAT SULmax was highly

correlated with BMV in test and retest studies (r� 0.96, p < 0.001). Using a simplified ice-

block cooling method, BAT was activated in the majority (9/11) of a group of young, lean

female participants. Quantitative assessments of BAT SUL and BMV were not substantially

different between test and retest imaging, but individual BMV could vary considerably. Intra-

session BMV and SULmax were strongly correlated. The variability in estimates of BAT

activity and volume on test-retest with FDG should inform sample size choice in studies

quantifying BAT physiology and support the dynamic metabolic characteristics of this tissue.
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A more sophisticated cooling method potentially may reduce variations in test-retest BAT

studies.

Introduction

Obesity is a global epidemic with significant health consequences. According to the Centers

for Disease Control and Prevention (CDC), the prevalence of adult Americans considered

overweight and obese was 71.1% and 38.9%, respectively, between 2013 and 2016 [1]. One

study projects that 85% of Americans could be obese or overweight by 2030 [2]. Obesity is a

risk factor for numerous conditions including high blood pressure, type II diabetes, and some

cancers [3]. Added to the health impact is the economic burden of obesity and obesity-related

conditions, which has been estimated to consume 21% of healthcare expenditures in the

United States [4]. Weight management has been shown to aide in the reversal of obesity-

related conditions such as type II diabetes, but current weight-loss strategies have shown lim-

ited efficacy and alternative weight management tools may be necessary to help reduce the

excessive burden of obesity [5].

The human body has two primary types of adipose tissue: white adipose tissue (WAT) and

brown adipose tissue (BAT) [6]. Lipid storage for subsequent use during caloric shortage is the

principal WAT function. In mammals, BAT plays a key role in the regulation of energy and

metabolism and helps protect against hypothermia via increased thermogenesis [7]. BAT

uncoupling protein-1 (UCP1), which dissociates oxidative phosphorylation from ATP produc-

tion and releases the energy stored in the mitochondrial proton electrochemical gradient as

heat. UCP-1 knock out mice are obese, consistent with a role of BAT in maintaining caloric

balance. BAT activation of lipolysis and the associated thermogenesis has been shown to pro-

tect rodents against obesity and diabetes [8].

The degree to which BAT is present and active in adult humans was unclear until the some-

what recent introduction of imaging modalities such as [18F]fluorodeoxyglucose (FDG) posi-

tron emission tomography combined with computed tomography (PET/CT) and selective

tissue sampling, which have confirmed that functional human BAT exists into adulthood [9–

11]. Furthermore, the inverse correlation between active BAT and overall adiposity may imply

that BAT plays a central role in human energy regulation [12]. Thus, various obesity interven-

tions that aim to increase BAT volume and activity are currently being studied [13–17].

PET/CT using FDG has become the gold standard for the detection of active BAT in

humans [18]. Increased uptake of FDG in BAT, quantified using the standardized uptake

value (SUV) parameter, indicates greater glucose utilization and has been shown in correlative

studies with 15O-oxygen and 11C-acetate, to be associated with increased oxidative metabo-

lism and thermogenesis in BAT [19–21]. FDG uptake in malignancies has been shown to

exhibit a high degree of reproducibility on PET/CT [22, 23]. Nahmias et al found a correlation

coefficient of 0.99 for serial measurements of mean standardized uptake value (SUVmean)

performed within five days [24]. In recurrent ovarian cancer patients, one study found FDG

uptake measurements to have repeatability coefficients of 16.3% and 17.3% for SUVmean and

SUVmax, respectively [25]. A combined analysis of two multicenter trials showed that, based

on repeated measurements, decreases in FDG uptake by more than 30% and increases by

more than 40% are likely to reflect true metabolic changes, in patients with non-small cell lung

cancer [26]. As FDG PET/CT appears quite reliable in the oncology setting, it is reasonable to
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assume that variability in test-retest imaging of BAT is likely due to intrinsic changes in the

BAT rather than variability associated with the imaging method.

The advent of functional metabolic imaging has fueled a resurgence of interest in human

BAT. Development of pharmaceuticals and other methods to increase BAT volume and dura-

tion of activity are ongoing. However, in order to assess the efficacy of methods designed to

increase BAT activation, one must have an idea of the repeatability of the FDG signal in brown

adipose tissue. To date, a prospective, systematic assessment of the repeatability of the FDG

signal in brown adipose tissue has not been carried out. The goal of this study (which was part

of a larger study evaluating the operating characteristics of a microwave radiometer in the

assessment of BAT; PMID: 29439011) was to evaluate the test-retest reliability of FDG PET/

CT in measuring BAT glucose metabolism in subjects exposed to a simple regional, inexpen-

sive cooling procedure, intermittent placement of the subjects feet on an ice-block, on different

occasions.

Materials and methods

This prospective study was approved by the Johns Hopkins Medicine Institutional Review

Board (IRB approval NA_00050285) and conducted according to the principles expressed in

the Declaration of Helsinki. Written, informed consent was obtained from all participants.

Healthy volunteers between ages 18 to 35 with a body mass index (BMI) less than 25 kg/m2

were eligible for the study. Considering the age and BMI criteria for the study, those enrolled

would not be considered representative of the general population. Volunteers were recruited

using flyers placed in various places on the Johns Hopkins medical campus. Subjects received

modest financial compensation for their investment of time. Pertinent exclusion criteria

included known diabetes mellitus, the use of drugs known to modulate BAT activity (e.g.

beta–blockers and certain psychotropic medications), a history of cold-related injury, and the

use of nicotine-containing products. Pregnant or breast-feeding individuals were also excluded

from the study.

All PET/CT images were acquired using the Discovery ST PET/CT system (GE Healthcare).

Static PET images were generated using an ordered-subset expectation maximization recon-

struction (OSEM). Participants were asked to avoid high carbohydrate meals and strenuous

activity within 24 hours prior to both study visits. They were also instructed to fast for at least

6 hours prior to administration of FDG (PETNET Solutions INC., Knoxville, TN). All partici-

pants underwent a “BAT maximization” cooling protocol followed by intravenous injection of

FDG (mean injected dose of 258.4 ± 36.4 MBq) was followed by a mean uptake period of

61.2 ± 5.5 minutes and then whole-body FDG PET/CT imaging. This process was then

repeated within a target of 2 to 14 days following the first session. The BAT maximization pro-

tocol utilized in this study was based on the method described previously by Saito et al and

consisted of cold stimulation in the form of a lightly clothed subject placed in a cooled room

(18.1˚C—20.0˚C) as well as having the participants intermittently place their feet on a block of

ice (4). Once cold stimulation began, participants were asked to place their feet on the block of

ice for 4 minutes, followed by one minute of rest. The ice-block was covered with a disposable

blue paper pad so the skin did not make direct contact with the ice. Participants wore a hospi-

tal gown (clo value of 0.44) and thin cotton hospital pants (clo value of 0.46). The cold stimula-

tion went on for a target of 1 hour until the administration of FDG and continued during the

FDG uptake period of about 1 hour (i.e. approximately 2 total hours of cold stimulation). A

primary goal of this protocol was to cool the participant, but to minimize shivering, which

could potentially confound the results of the radiometer and the PET/CT. To that end, volun-

teers were monitored throughout the session for signs of shivering. If shivering was detected
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by the researcher or reported by the volunteer, the cooling was modified by reducing the

amount of time the participant’s feet were on the ice until shivering ceased. Cold stimulation

was discontinued during PET/CT imaging. The patient’s body temperature (oral) was also

monitored at regular intervals.

PET/CT image analysis

A single, trained BAT biologist used a clinical imaging workstation (Mirada XD3, Mirada

Medical, Denver, CO) for determination of metabolic values and to qualitatively analyze the

PET/CT images. Supraclavicular areas expected to contain activated BAT were identified and

SUV (adjusted for lean body mass—SUL), CT Hounsfield unit values, BAT metabolic volume

(BMV), and total BAT glycolosis (TBG) determined. Per the BARCIST 1.0 criteria, a SULmax

value of 1.2 g/mL or greater and Hounsfield unit range of -190 to -10, in regions expected to

contain BAT, were used together as cutoffs to identify active BAT. When active BAT was not

able to be identified, a “fat mask” was created in the supraclavicular region where BAT is nor-

mally found (and where uptake values are generally highest in BAT) and a SULmax was

extracted using a previously described method [27]. A subset of participants were selected at

random and analyzed by a second experienced BAT biologist/imaging specialist in order to

estimate inter-rater reliability.

Statistical considerations

Repeatability of the BAT signal was assessed using paired t-tests, Wilcoxon signed-rank tests,

Lin’s concordance correlation coefficient (CCC), and reproducibility coefficients. A CCC

value of 0.8 was considered repeatable and the coefficient was calculated using the following

formula:

2sxsy

s2
x þ s

2
y þ ðmx � myÞ

2

Where σx is the variance of session 1, σy is the variance of session 2, μx is the mean of session

1, and μy is the mean of session 2. Inter-rater reliability was assessed using an intraclass corre-

lation coefficient (ICC), which was calculated using the following formula [28]:

s2
x

s2
x þ s

2
y

A within-subject coefficient of variation (wCV) was also calculated for each metric studied

by dividing the standard deviation of the relative test-retest differences by the square root of

two. Relative differences were calculated using the following formula:

S2 � S1

ðS1þ S2Þ=2
� 100

Where S1 and S2 are study 1 values and study 2 values, respectively. In all analyses, a P
value of less than 0.05 was considered statistically significant. Descriptive statistics were calcu-

lated using Microsoft Excel and further analyses were performed with Prism 4.0 (Graphpad

Software).

Results

Eleven participants were prospectively enrolled between March, 2012 and March, 2013 at the

Johns Hopkins medical campus in Baltimore, MD. Participant characteristics are described in
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Table 1. All volunteers underwent two sessions that each included the BAT maximization pro-

cedure followed closely by FDG PET/CT imaging. Representative PET images displaying

active BAT following both cooling sessions are shown in Fig 1. Two participants exhibited no

BAT activity qualitatively on PET/CT during the baseline session and neither exhibited BAT

activity during the repeat session. Additionally, two participants exhibited BAT activity during

the baseline session but did not have active BAT during the repeat session. The median and

range between BAT maximization sessions was 13 days and 2–34 days, respectively. All ses-

sions were performed during months with cooler temperatures (i.e. November–May), with the

exception of one performed in August, which did not result in activated brown fat during the

BAT maximization sessions.

Shivering was observed or reported in 4/9 BAT-positive participants and was then mini-

mized or eliminated in all 4 participants using the modified cooling protocol. When a partici-

pant reported or was observed shivering during the first cooling session, the cooling protocol

was not modified during the second cooling session (i.e. all participants began with the same

cooling protocol during both sessions).

Average values of active BAT SULmax, BMV, HUmean, and TBG for both imaging sessions

are listed in Table 2, along with the mean relative differences between test and retest studies

and the wCV for each metric. Regression analysis showed BMV and SULmax were both signif-

icantly correlated between visit 1 and visit 2 (Fig 2A and 2B) with correlation coefficients of

0.66 and 0.54, respectively. BAT TLG was poorly correlated between the test and retest imag-

ing sessions (r = 0.20; p = 0.56). BAT SULmax and BMV were also strongly correlated, with a

higher BMV generally corresponding to a higher SULmax during both sessions (Fig 3). Using

a CCC value of 0.80 as a cutoff, BMV was repeatable with a CCC of 0.80. SULmax, HUmean,

and TBG were not considered to be as repeatable (CCC values of 0.69, 0.59, and 0.12, respec-

tively). Inter-rater reliability was assessed using a subset of participants and ICC values of 1.00

and 0.96 were calculated for BAT SULmax and volume, respectively.

Regression analysis shows SULmax (A) and BMV (B) were each significantly correlated

between test and retest studies. Data points are labelled using identifiers from Table 1.

Table 1. Participant characteristics.

Participant Age (yrs) Racea Ethnicityb Body Weight (kg) Height (m) BMI (kg/m2) Days Between Test and Retest Imaging

A 22 A N 61 1.7 21.1 12

B 28 W N 59 1.68 20.9 13

C 21 A N 54 1.62 20.6 19

D 29 W N 52 1.65 19.1 3

E 26 W N 57 1.73 19 2

F 24 B N 48 1.68 17 6

G 19 W H 62 1.75 20.2 34

H 25 B N 63 1.73 21 14

I 20 W N 57 1.73 19 13

J 27 W N 54 1.68 19.1 9

K 22 W N 54 1.62 20.6 14

Median (IQR)c 24 (5.1) 57 (6.0) 1.68 (0.06) 20.2 (1.7) 13 (6.5)

aAsian, African American and Caucasian races are denoted by A, B, and W, respectively.
bHispanic and non-Hispanic ethnicities are denoted by H and N, respectively.
cMedian values and interquartile ranges (IQR) are reported for quantitative characteristics.

https://doi.org/10.1371/journal.pone.0214765.t001
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BAT SULmax repeatability

Bland-Altman analysis revealed a repeatability coefficient of activated BAT SULmax of 11.5 g/

mL (LOR: -7.6, 15.5), based on the difference between test and retest studies (Fig 4A). A

repeatability coefficient for activated BAT SULmax, based on the relative different between

test and retest visits, was144.5% (LOR: -140.4%, 148.6%) (Fig 4B). The intraclass correlation

coefficient was 0.48 (95% CI: 0.39–0.57). A within-subject coefficient of variation of 52.1% was

calculated for SULmax. The session #1 mean SULmax of 4.92 ± 4.49 g/mL was not significantly

different from that of session #2 with a mean SULmax of 7.19 ± 7.34 g/mL (p = 0.16). A

Fig 1. Representative PET/CT images. Active BAT is seen in both test (A) and retest (B) studies. Primary supraclavicular active

BAT depots are indicated by red arrows.

https://doi.org/10.1371/journal.pone.0214765.g001

Table 2. Average BAT measurement values per visit and selected repeatability measures.

Session #1 Session #2

median (IQR) median (IQR) μMRD (SD) wCV (%)
SULmax (g/mL) 3.2 (2.3) 1.6 (10.0) 2.1 (73.7) 52.1

Volume (mL) 21.1 (24.7) 1.4 (79.9) -45.5 (122.9) 86.9

CT HUmean -54.5 (11.4) -52.0 (10.4) -25.7 (43.2) 30.5

TLG 32.0 (48.2) 1.8 (128.8) -10.4 (147.0) 104.0

https://doi.org/10.1371/journal.pone.0214765.t002
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Fig 2. SULmax and BMV scatterplots showing the correlation between test and retest studies.

https://doi.org/10.1371/journal.pone.0214765.g002
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Wilcoxon signed-rank test indicated that test and retest SULmax did not differ significantly

(p = 0.99).

BMV repeatability

Bland-Altman analysis revealed a repeatability coefficient for activated BMV of 77.2 (LOR:

-54.4, 100.0), based on the difference between test and retest visits (Fig 5A). The repeatability

coefficient for activated BMV, based on the relative difference between test and retest visits,

was 240.9% (LOR: -330.0%, 151.7%; Fig 5B) and the wCV was 86.9%. The intraclass

Fig 3. BAT volume and SULmax were highly correlated during each visit. A higher SULmax was strongly correlated with a higher BMV during test and retest visits.

Data points are labelled using the identifiers in Table 1.

https://doi.org/10.1371/journal.pone.0214765.g003
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Fig 4. Bland-Altman plots showing the repeatability of BAT SULmax. Replicate means are plotted against both difference (A) and relative difference

(B). Repeatability coefficient values are included in each chart.

https://doi.org/10.1371/journal.pone.0214765.g004
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Fig 5. Bland-Altman plots showing BMV repeatability. Replicate means are plotted against both difference (A) and relative difference (B). Repeatability

coefficient values are included in each chart.

https://doi.org/10.1371/journal.pone.0214765.g005
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correlation coefficient was 0.62 (95% CI: 0.50–0.74). A Wilcoxon signed-rank test indicated no

significant difference in BMV between test and retest visits (p = 0.82).

Discussion

The most common technique used to image activated brown adipose tissue is currently FDG

PET/CT. The repeatability of FDG uptake in activated BAT has not been extensively investi-

gated. Various interventions intended to increase the volume and metabolic activity of BAT

are currently being evaluated as obesity or diabetes treatments [29–31]. Given the dynamic

nature of the brown adipose tissue, determining what change in metabolic status of BAT repre-

sents a true change in BAT activity or volume will help inform the design of studies assessing

possible treatment strategies, in which changes in BAT volume or activity may be expected to

precede other physiological markers of a successful anti-obesity therapy, such as reduction in

BMI or blood pressure. As such, the test-retest reliability of FDG PET/CT in measuring active

BAT is necessary information if one is to assess the effect of an intervention on brown fat activ-

ity by PET imaging. In the current study, BAT was activated, as assessed by FDG PET, on

scans from at least one time point, in 9 of 11 healthy participants and was assessed by the BAR-

CIST 1.0 criteria, by utilizing a simple cold-exposure technique that included readily available

and inexpensive materials. The majority of volunteers (7/11) showed activated BAT on both

test and retest scans by BARCIST. The qualitative assessments of the presence/absence of acti-

vated BAT activity were reasonably consistent, but other quantitative measurements of BAT

activity showed somewhat or much lower repeatability when compared with reports from

studies of FDG test-retest reliability in malignant tumors.

The SUV measurement extracted from PET images has become a primary metric for tumor

quantification and SUV values in tumors have been shown to be quite repeatable [22, 25, 32].

One meta-analysis of FDG repeatability, including 163 lesions in 86 patients with various

tumor types, found a SUVmax ICC of 0.90 [23]. A recent literature review found the mean

SUVmax wCV from repeatability studies of FDG PET was 10.96 ± 3.32% [33]. Groshar et al

enrolled 30 patients with varying cancer types and found a 95% RC of 29.4% for SUVmax,

which is considerably lower than the 144.5% value we observed in BAT using our activation

method [34]. In the context of obesity intervention assessment, this means an increase of SUV-

max of more than 144.5% would be necessary in order to be reasonably sure there was truly

more FDG uptake in BAT. This would be considered a very large change in tumor SUVmax,

but it may not represent an unreasonable target for an increase in BAT activity, especially

since the target population for an obesity intervention would have high BMIs, which has been

shown to be inversely correlated with active BAT [35]. Therefore, in many cases, a successful

BAT therapy may cause a change in obese patients from near zero to much higher BAT SUV

values. Future studies on the repeatability of BAT in higher BMI populations would be of

value, as lower baseline levels of BAT may result in greater test-retest variability. The large CV

for BAT suggests that in an individual patient, it would be difficult to confirm a true decrease

in BAT activity with an intervention, though it would be possible in populations.

BMV was the only quantitative metric found to have a CCC value that could be considered

repeatable by using the .8 cut off for CCC repeatability (0.80). However, the 95% RC of 240.9%

was still substantially higher than has been found in studies of metabolic tumor volume

(MTV) repeatability in cancer. Kramer et al found a 30.9% RC for the volumes of 60 lesions in

9 enrolled patients with lung cancer [36]. Another study assessed the effect of segmentation on

MTV repeatability using various SUV thresholds and found the best performing segmentation

threshold had an ICC of 0.99 and RC of 36.1% [37].
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The choice of cooling method, which has been the most common method of activating

BAT, potentially may influence FDG repeatability in brown fat studies. The influence of cool-

ing method choice on active BAT repeatability has not been studied, but it has been theorized

that “individualizing” (i.e. each individual is cooled to a different extent in order to reach the

just-above-shivering threshold) the cooling method will cause maximal non-shivering thermo-

genesis and, therefore more consistent FDG uptake in BAT [38, 39]. Although the ice-block

technique used here can be considered individualized, it potentially may not be as optimized

in terms of modulating body temperature as are other methods. Many studies of human BAT

have accomplished activation by means of only a cooled room or a cooled room with a fan,

which are considered “fixed” methods [20, 40]. More commonly used individualized methods

utilize a cooling blanket/suit/vest or a climate tent [41, 42]. The advantage of these methods is

precise and real-time temperature control, so that once shivering starts, body temperature can

be quickly raised above the non-shivering threshold. The ice-block method used here can cer-

tainly cool a region of the body and activate BAT, but once the shivering point has been

reached, the only remedy is reducing the exposure to the cold ice-block, as opposed to more

sensitive methods that can also introduce warmth [43]. This inability to raise body tempera-

ture may result in prolonged shivering, which could impact FDG uptake in BAT, especially if

the shivering occurs after administration of FDG. Future studies may focus on the impact of

cooling method choice on the repeatability of FDG uptake in activated BAT. In our cases, we

did not see intense FDG uptake in muscle suggesting shivering was not a major cause of an

altered FDG biodistribution.

Several other factors may have contributed to the relatively low repeatability found in our

study, compared to FDG repeatability seen in the oncologic setting. The method used to detect

shivering in this study was by researcher observation or self-report by the volunteer. A supe-

rior method, which was beyond the scope of this study, could be to use electromyography

(EMG), which can potentially detect shivering earlier than observation or report. Another lim-

itation of this study is that menstrual cycle information for these participants is not known.

Potentially, menstrual cycle phase may impact BAT activity and such information should be

collected in future studies. Given the lower reported variability of FDG PET measures of

tumors on test and re-test, it is probable that much of the greater variance is not due to scanner

factors, but rather due to the dynamic metabolic characteristics of the brown adipose tissue

using our activation method, thus contributing to the variability in FDG uptake between stud-

ies. Although we attempted to image volunteers twice under precisely the same conditions, it

is practically difficult to ensure variables such as patient preparation (e.g. fasting duration and

types of food eaten prior to the study) and exercise levels are totally constant between test and

retest imaging studies. Though each volunteer was imaged during the same season, it is possi-

ble that daily variations in outdoor temperature could have impacted BAT activity during test

and retest sessions [44]. Larger sample sizes may also be necessary to more effectively deter-

mine FDG repeatability in brown fat. It is also possible that a more sophisticated cooling

approach will result in lower variability than we observed. We are assessing a cooling blanket

approach as an alternative to the simple ice block/cold room method used here.

Conclusion

FDG PET/CT can commonly detect active BAT under conditions of controlled cold, ice-

block, intervention in humans. While the qualitative presence/absence of BAT appears reason-

ably correlated between test and retest imaging, quantitative assessments of SUV and BMV

vary substantially on test-retest using our regional cold BAT activation approach. The consid-

erable variation in estimates of BAT with FDG PET with our ice-block method implies sample

Brown adipose tissue repeatability
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sizes will need to be large in studies quantifying physiological changes in BAT volume and

metabolic activity related to treatment and support the highly dynamic metabolic character of

this tissue. It is possible that more sophisticated cooling methods will have more reproducible

results.
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