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Abstract

Autonomous Vehicles (AV) technology is emerging. Field tests on public roads have been

on going in several states in the US as well as in Europe and Asia. During the US public

road tests, crashes with AV involved happened, which becomes a concern to the public.

Most previous studies on AV safety relied heavily on assessing drivers’ performance and

behaviors in a simulation environment and developing automated driving system perfor-

mance in a closed field environment. However, contributing factors and the mechanism of

AV-related crashes have not been comprehensively and quantitatively investigated due to

the lack of field AV crash data. By harnessing California’s Report of Traffic Collision Involv-

ing an Autonomous Vehicle Database, which includes the AV crash data from 2014 to 2018,

this paper investigates by far the most current and complete AV crash database in the US

using statistical modeling approaches that involve both ordinal logistic regression and

CART classification tree. The quantitative analysis based on ordinal logistic regression and

CART models has successfully explored the mechanism of AV-related crash, via both per-

spectives of crash severity and collision types. Particularly, the CART model reveals and

visualize the hierarchical structure of the AV crash mechanism with knowledge of how these

traffic, roadway, and environmental contributing factors can lead to crashes of various serv-

eries and collision types. Statistical analysis results indicate that crash severity significantly

increases if the AV is responsible for the crash. The highway is identified as the location

where severe injuries are likely to happen. AV collision types are affected by whether the

vehicle is on automated driving mode, whether the crashes involve pedestrians/cyclists, as

well as the roadway environment. The method used in this research provides a proven

approach to statistically analyze and understand AV safety issues. And this benefit is poten-

tial be even enhanced with an increasing sample size of AV-related crashes records in the

future. The comprehensive knowledge obtained ultimately facilitates assessing and improv-

ing safety performance of automated vehicles.
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Introduction

Technological advancement has brought Autonomous Vehicles (AVs) into reality, with the

fact that relationships between vehicles and drivers are likely to be reversed significantly in the

next twenty years [1]. To give AV technology a detailed and precise definition, Society of Auto-

motive Engineers (SAE) defines 6 levels of automated driving systems which address the ques-

tions pertaining to what extent of driving tasks each level of the automated driving system can

support [2]. Twenty-nine states have enacted legislation to regulate AVs and approved AVs

public tests [3–4]. Recently, public tests of AV have already been underway in several states of

the US such as California, Nevada, and Michigan, etc. [5–7]. The AV manufacturers that are

testing AVs on public roads are either from traditional vehicle manufacturers (i.e., Toyota,

Nissan, and General Motor), or technology companies (i.e., Google, Uber, and Baidu). These

AV manufacturers have commonly adopted SAE’s six levels of autonomy. Most of the vehicles

currently that are tested on public roads are either Level 3 (conditional automation) or Level 4

(high automation) AVs.

Current automated driving systems that are tested on public roads typically involve human

factors as safety drivers are expected to take over the driving in case the automated driving

system has some technical issues. For example, AVs would have difficulty in detecting the sur-

rounding objects or making decisions accordingly depending upon the roadway characteris-

tics. In these cases, it is essential for human drivers to take over the driving in an appropriate

and timely manner to ensure the safe transition from automated to manual driving and pre-

vent potential AV crashes from happening. Therefore, the AV safety issue is a concern to the

general public, government agencies, as well as the AV manufacturers.

In fact, there were AV crashes already happened and some of the crashes have resulted in

fatalities of AV drivers or pedestrians [8–10]. Both the National Highway Traffic Safety

Administration (NHTSA) and the National Transportation Safety Board (NTSB) investigated

fatal crashes onsite and published either preliminary or final reports. It can be concluded from

these reports that probable causes of these fatal crashes span from human driver’s’ inattention

to driving environment complexity [11], ignorance of the take-over request from the vehicle

[12], and distraction from some secondary tasks [13]. However, these “probable” causes are

ought to be further clarified and finalized in further research.

Although identified as a major reason, what factors cause the AV crash and how large the

impact is, still remain unknown. From the perspective of preventing potential AV crashes, what

causes AV crashes needs to be investigated comprehensively. With these research questions, a

comprehensive investigation of AV crashes’ causes and effects is imperatively needed to under-

stand the mechanism of AV crashes so as to facilitate the prevention of future AV crashes.

In practice, this type of effort is refrained majorly due to the lack of sufficient AV crash data

caused by the following reasons:

1. Some of the AV field tests are still underway in the closed course without field test data

being published;

2. For the public road tests, most states’ Department of Motor Vehicles (DMV) did not pub-

lish the AV crash data or/nor update their crash report formats by adding a specialized sec-

tion for collecting AV-related information, such as the driving mode of AV when collides

(autonomous/ conventional), the faulty party of an AV crash, whether take-over requests

have been sent to the human driver, and what kinds of warning cue is employed (visual/

audible/ haptic). This has restrained officers from collecting valuable AV crash data.

Since 2014, the California DMV (CA DMV) has begun to require manufacturers to provide

the AV crash report (form OL 316) within 10 business days of the crash [14]. All the reports of
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AV crashes happened in California were available to the public. As of now, the California

DMV has received 113 AV crash reports. The only related study at this moment is that Favarò
et al. [15] examined California’s AV crash reports by providing an overview of AV crashes.

This research is very meaningful in analyzing the impacts of AV crash and the contributing

factors. At the same time, the work is more of a qualitative study, with the mechanism of AV

crashes remaining unexplored. It also restrains AV manufacturers from identifying the crash

causes also based on crashes involving AVs from other manufacturers, and in turn continu-

ously improving the AV safety by targeting these causes.

In this context, the objective of this research is to comprehensively explore the AV crash

mechanism with an attempt to understand its pattern, causes, and impacts from analyzing

crash severity and collision type based on the most recent records from the California AV

crash database (as of now, published reports are through October 2018).

The relationship among the AV crash severity, collision types, driving mode, roadway char-

acteristics, road users and liability, as well as the relationship among the AV collision types,

driving mode, roadway characteristics, road users and liability are to be investigated using a

hybrid approach of statistical modeling and classification tree.

Literature review

Crash modeling

Typically, the traditional approach for modeling crash has been through collecting crash data

for the normal condition or traffic data with converting into traffic conflicts for the pre-crash

condition. Then, the data is fed into a modeling method which is suitable for predicting

dichotomous outcomes (i.e., crash/no crash; traffic conflict/ no traffic conflict) [16]. However,

if the dependent variable, such as levels of crash severity or collision types, has more than two

types of outcomes, it is necessary to choose crash modeling methods that allowing the depen-

dent variables to have multiple outcomes.

Among all statistical methods for modeling crash, various forms of logit and probit models

have become the primary choices for researchers. Other forms such as the mixed generalized

linear model with multiple link functions have been widely used as well. Fountas et al. analyzed

the injury severities using a correlated random parameter ordered probit approach with time-

variant covariates [17]. Yang et al. conducted a two-step identification of the method of sec-

ondary crashes on the freeway by using random effect logit regression model [18]. Guo et al.

did a thorough evaluation of the impact of various risk factors on traffic crashes, which are pre-

senting different collision types at freeway diverge areas [19]. A Random Parameters Multivar-

iate Poisson-Lognormal (RP-MVPLN) Model with was developed and compared with an

MVPLN model from the perspective of fitting crash data. Also, in another study, Guo et al.

investigated the factors that affecting cyclist safety by comparing four types of crash models in

terms of goodness of fit [20]. The statistical comparison indicated that Spatial Poisson Lognor-

mal (SPLN) model outperforms the rest of the models.

Besides all statistical approaches, data mining and machine learning techniques have also

been employed for analyzing and explaining crash data. Huang et al. examined the interactive

effect of mountainous freeway alignment, driving behaviors, vehicle characteristics and envi-

ronmental factors on crash severity using a classification and regression tree model [21].

Osman et al. proposed a bi-level hierarchical classification methodology to identify different

types of secondary tasks that drivers are engaged in using their driving behavior parameters

[22]. Sun et al. utilized the Latent Class Cluster (LCC) model as a preliminary tool to identify

the major factors that contribute to the crashes [23]. Ding et al. adopted a machine learning

approach of Multiple Additive Poisson Regression Trees (MAPRT) to sort the relative
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importance of attributes in explaining pedestrian crashes [24]. Jeong et al. classified the injury

severity in motor-vehicle crashes with high accuracy rate by using multiple classification trees

such as decision tree, neural network, gradient boosting model and so forth [25].

Understanding of automation levels

Generally, an AV is a vehicle that is capable of sensing the driving environment and acting like

an agent to drive itself. AVs are combinations of a variety of hardware and software techniques

to perceive their surrounding environment, including Light Detection and Ranging (LiDAR)

sensor, a radar sensor, cameras, GPS, and computer platforms [26]. AVs are expected to

reduce the number of fatal rates caused by human errors. According to the statistical report

from NHTSA in 2016, human errors are the major factor contributing to 90% of all fatal

crashes [27].

The Society of Automotive Engineers (SAE) defines six levels of driving automation in

detail, from Level 0 (No automation) to Level 5 (full automation), which can be used to

describe the full range of driving automation features [28]. Existing work has been done, aim-

ing to have a better understanding of the different levels of driving automation. Favarò et al.

also indicated the four factors that differentiate each SAE level, which is executing steering and

throttles control, monitoring driving environment, and fallback performance [15, 29]. How-

ever, the SAE definition adopted by car manufacturers and authorities seems not fully adopted

by AV owners. As the crash of a Tesla Model S in 2016 was caused by human driver’s overreli-

ance on Autopilot, despite the fact that Tesla [30] has clearly claimed that “Every driver is

responsible for remaining alert and active when using Autopilot and must be prepared to take

action at any time”. In this case, some car manufacturers such as Google (now called Waymo),

Baidu, and Ford would like to skip Level 3 and focus on “complete the work to fully take the

driver out of the loop” [31], which might be a good action to simplify the regulations and

make general public to use without concerning safety issues.

Current practices of AV safety

The existing studies of AV safety were conducted in both field and driving simulator study.

Although there are public tests undergoing, many field studies have been restrained in the

closed circuit to eliminate the risks of having safety issues. Some of the studies focus on the

track of AVs to avoid potential collisions if the trajectory is not correct. Omidvar et al. devel-

oped an algorithm in the optimization of trajectories for AV in low demand condition at a

closed-course signalized intersection. The algorithm optimizes signal control and provides

AVs with optimal trajectories. Field tests confirmed the feasibility of the algorithm, and field

deployment for high traffic flow rate condition will be prepared as well [32]. Li et al. developed

an integrated local trajectory planning and tracking control framework for AVs with obstacle

avoidance. An objective function of considering both safety and comfort performance is for-

mulated for assessing the generated trajectories and selecting the optimal one [33]. Zhu et al.

presented a novel speed tracking control approach based on a model predictive control frame-

work for autonomous ground vehicles [34]. Hegedus et al. presented a local trajectory plan-

ning method on nonlinear optimization which can generate a dynamically feasible,

comfortable, and customizable trajectory for highly automated vehicles [35].

As for the simulation studies regarding AV safety, many researchers deployed driving simu-

lators as the tool to conduct experiments. Their focuses are a degree of trust in automated driv-

ing technology, and other human factors such as age. Winter et al. investigated the effects of

Adaptive Cruise Control (ACC) and Highly Automated Driving (HAD) on drivers’ workload

and situation awareness. They found that the driver of a highly automated car has the
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possibility to divert attention to secondary tasks [36]. Merat et al. conducted a driving simula-

tor study in comparing the effect of changes in workload on performance in manual and

highly automated driving. Findings suggested highly automated driving did not have a delete-

rious effect on driver performance under the condition of drivers’ attention was not diverted

to the distracting secondary tasks. Failing to bring enough sample size of participants is one of

the limitations for field AV safety tests. But, the driving simulator study addressed this issue

and investigate the topic from a human factor’s perspective. Some interesting findings indicate

that older drivers are as good as younger drivers when experiencing automated driving sys-

tems [37]. Besides, Körber et al. found older drivers can solve critical traffic events as well as

younger drivers [38].

To summarize, for the existing practice regarding AV safety research, both field and driving

simulator studies tried to address AV safety issues from perspectives of vehicular control and

human factors. However, there is a lack of studies that comprehensively investigate into the

mechanism of AV crashes by identifying the contributing factors to all the most recent AV

crashes on public roads. In this context, this paper aims at quantitatively investigate into the

significant and ruling factors that contribute to AV crashes with various severity levels and col-

lision types.

Materials and methods

Data collection

The traditional method for collecting crash data relies on police crash reports, regardless of

paper or electronic version. Similarly, the AV crash data that used in this research is collected

from the following two major sources:

1. Report of Traffic Collision Involving Autonomous Vehicle (OL 316) [14]: starting 2014, the

CA DMV created the specific section for summarizing all the traffic collision reports which

involve AVs. This database provides detailed information regarding the collision that

occurred when testing automated vehicles on public roads in California (i.e., manufactur-

er’s information, crash information, serious injuries to people, other associated factors such

as weather, lighting, pavement condition). As of October 24, 2018, the CA DMV has

received 107 automated vehicle collision reports. Therefore, crashes that occurred only in

2017 and 2018 are used in this research. In total, the CA DMV AV crash database contrib-

uted 107 reports of traffic collisions involving AV that are included in the study.

2. Known AV crashes news from nationwide: Except for California, other states do not pub-

lish AV crash records officially through their DMV websites. Since the public has been

interested in AV testing and safety, news regarding AV crashes was frequently broadcasting

via all kinds of media. In this study, some other AV crashes were collected based on both

local and national news. In addition, the National Transportation Safety Board (NTSB),

which is responsible for investigating the independent accident and advocating safety

improvements, published the final report of these crashes involving AVs, which validate the

dataset. Therefore, another 6 reports of a traffic crash involving AVs are added to the data-

set in this study.

To summarize, a total number of 113 crash records are included in this study. This is by far

the most completed AV-related crash data since 2014, with which we can identify and collect

from all possible sources. This dataset is further associated with manufacturers information,

crash-related information, hardware sensors coverages and other associated factors. This will

be further explained in the following section.
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Variables

Safety performance measures: Crash severity and collision type. To further understand

the mechanism of the crashes involving AVs, crash severity and collision type are selected as the

dependent variables in the study. These performance measures are essential components in an

accident. There are benefits for autonomous car companies to better understand the mecha-

nism of AV crash in order to improve safety and for governments to form better regulations.

Federal Highway Administrations (FHWA) classified the injury by its scale and definitions

[39]. In this study, the KABCO scale would be applied to classify injury levels for all AV

crashes. Each injury level is defined as follows: K (Fatality), A (Incapacitating injury), B (Non-

incapacitating injury), C (Possible injuries) and O (No injury/ Property damage only).

To better understand the dynamics of the accident, it is necessary to analyze the relative

motion of the two vehicles. Milton, Shankar et al. have highlighted the importance of investiga-

tion into collision types [40]. Amiri, Nadimi et al. have predicted crash severity on its related

collision types using data mining techniques [41].

After examining the crash reports employed in this study, collision types are categorized

into “Rear end”, “Sideswipe”, “Angled collision”, and “Run off the road” 4 types.

Potential contributing factors. As crash severity and collision type are the dependent

variables in the models, the remaining explanatory variables consist of the information

retrieved from crash reports. Table 1 summarizes these potential variables that may impact the

above components in an AV-involved crash.

Modeling approach

Ordinal logistic regression modeling. For identifying the significant factors contributing

to crash severity, levels of crash severity can be classified into an order from “K” (fatality) to

Table 1. AV crash data variables.

Variable Description Type Definition Count

(Proportion)

Performance/

Dependent Variables

Crash Severity

(CS)

Different levels of crash injuries Ordinal K (Fatal) 3 (3%)

A(Incapacitating injury) 1 (1%)

B (Non-incapacitating injury) 10 (9%)

C (Possible injury) 2 (2%)

O (No injury/Property Damage) 97 (86%)

Collision Type

(CT)

Different types of collision Categorical Rear End 69 (61%)

Sideswipe 25 (22%)

Angled Collision 10 (9%)

Run off the road 9 (8%)

Explanatory Variables /

Potential Contributing

Factors

Faulty Party (FT) The party who is responsible for the

crash.

Binary 1 = AV’s fault 15 (13%)

0 = Not AV’s fault 98 (87%)

Yielding to pedestrian/

cyclist resulted collision or

not

Whether the collision was happened

due to yielding to pedestrian/ cyclist

or not

Binary 1 = Collision was happened due to

yielding to pedestrian/ cyclist

12 (11%)

0 = Collision was happened

without due to yielding to

pedestrian/ cyclist

101 (89%)

Roadway Characteristics Special characteristics and locations

identified in AV collision reports

Categorical Highway 5 (4%)

Signalized Intersection 70 (62%)

Stop/Yield signs or behaviors 22 (19%)

Lane-changing 9 (8%)

Overtaking 7 (6%)

https://doi.org/10.1371/journal.pone.0214550.t001
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“O” (least severe injury) based on the injury description reported in the crash reports. The “K”

through “O” severity levels follow certain order as “K” being the most severe while “O” being

the least se severe. Therefore, we used ordinal (ordered) logistic regression model to analyze

the contributing factors to AV severity levels. The model has the following form:

P x ¼ ið Þ ¼
1

ð1þ e� ziÞ
ð1Þ

zi ¼ ai þ
P

kbkxik ð2Þ

Where:

P(x = i) = probability of the AV crash being the ith injury severity level (i follows the order

of 1 = K, 2 = A, 3 = B, 4 = C, and 5 = O.)

zi = a linear function of multiple factors for injury severity level i;

ai = constant of the linear function when the AV crash has the injury severity level i;

xik = kth variable that can significantly affect the probability of the ith injury level;

βk = coefficient of the kth variable.

Regression and classification tree (CART) modeling. Using a decision tree to classify a

nominal dependent variable is called a classification tree [42].

The classification is a machine learning based approach used for understanding the mecha-

nism of predicting a dependent variable [43]. If the dependent variable is categorical, CART

produces a classification tree. If the dependent variable is numerical, CART produces a regres-

sion tree. In this study, both crash severity and collision type are considered as categorical vari-

ables. CART models are suitable for exploring the following dependent variables:

• Exploring the relationships among the crash severity, collision type, faulty party, whether

involving pedestrians/cyclists, and roadway characteristics;

• Exploring the relationships among the collision types, faulty party, whether involving pedes-

trians/cyclists, and roadway characteristics.

The two basic components of decision tree models are the “root node” and the “leaf node”

[44]. The root node is divided into two child nodes with independent variable creating the best

homogeneity. The dividing procedure would be repeated until all the data in each node reach

their highest homogeneity. The split criterion in the CART method is based on Gini, which is

the diversity of a factor. Gini is calculated in the following form:

gini ¼ 1 �
Pn

i pi
2 ð3Þ

Where:

i = the category of the dependent variable;

n = the total number of the dependent variable;

p = the percentage of each category in the dependent variable.

Following this sequence, the classification tree can be plotted. The strength of the CART

model, compares with other machine learning techniques such as Random Forest, is that “leaf

node” that impacting the nominal dependent variables can be quantitatively analyzed.

Normally, the classification models are built from a training dataset in which trends of

explanatory and response variables are identified and used to predict the value of the depen-

dent variable for the testing dataset [45]. In this study, these tree graphs can assist car manufac-

turers to understand the mechanisms of AV disengagement. Furthermore, decision trees

models are developed using a package named “rpart” in R studio. The reason why choosing

“rpart” to build these decision tree models is due to the function of cross-validation [46],
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which the training and testing dataset are the same for saving the disadvantage of short sample

size.

Results and discussion

The following analysis is structured in the following way. First, an overview regarding the levels of

crash severity and collision types in the different driving mode as well as liability issues is pro-

vided. Then, what are the contributing factors and how do they affect the levels of crash severity

and collision types are analyzed respectively using the classification tree model and logistic model.

Analysis of crash severity and collision types distribution

This study first examines the percentage of all collisions reports that automated vehicles were

driving with Automated Driving (AD) mode. Among all 113 AV involved crashes, 76 crashes

happened with the vehicle driving on AD mode. 37 of these crashes happened with the vehicle

driving on conventional mode.

Fig 1 illustrates the density of each level of crash severity in AD mode or conventional

mode in terms of whether AV is responsible for the collision or not. As shown in Fig 1A, if the

AV is responsible for the collision, it shows a higher proportion of having a crash severity level

of “K” or “C” than the circumstance that AV is not responsible for the collision when driving

the automated vehicle with AD mode. This is mainly due to the unexpected behaviors from

road users or discarding the take-over request from the AV. Since automated driving is under

testing and development, it is necessary to prioritise the safety in order to prevent severe inju-

ries from happening. If the AV is not responsible for the collision, it shows a higher proportion

of having a crash severity level of “O”.

As shown in Fig 1B, when drivers manually operate the AV, the probability of having a

crash severity level of “K” or “A” decreases compares with AV driving with AD mode.

The ordinal logistic regression is adopted to identify whether AV’s being the faulty party at

a crash can significantly impact the level of crash severity. Table 2 summarizes the ordinal

logistic regression results for crash severity in AD mode. the variable of faulty party is the sig-

nificant factor contributing to the crash severity. The result shows that the p-value for “Not

AV’s Fault” is smaller than 0.05. It means that liability issue is the significant factor that

impacting the injury level in an AV crash at the confidence level of 95%.

The “Not AV’s Fault” has a positive coefficient of 4.049. It suggests that when the AV is

operating in AD mode and is not responsible for the crash, the injury level would be signifi-

cantly lower (57.34 times) than the circumstance when AV is in the AD mode and is responsi-

ble for the crash.

Fig 1. Densities of each level of crash severity in (a) AD mode; (b) Conventional mode.

https://doi.org/10.1371/journal.pone.0214550.g001
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The ordinal logistic regression model is also adopted to analyze the crash severity when AV

is operating in conventional mode. As summarized in Table 3, the level of crash severity

increases significantly if the AV is on conventional mode and is not responsible for the crash.

Fig 2 illustrates the distribution of collision types from the perspectives of both driving

modes and liability issues. As shown in Fig 2A, when the crash involves AV and it is on AD

mode, it is more likely to be the non-AV’s responsibility rather than AV’s. In more detail, it is

found that the AV is rear-ended in most cases compares with other collision types, followed by

being sideswiped. For all the cases that AV is driving on conventional mode, as shown in Fig

2B, the AV is found to be rear-ended more times than being sideswiped or collided in angle.

Moreover, the AV is found to be responsible for “Rear End” collision more times when it is on

conventional mode, compares with when it is on AD mode. This means that when AV is driv-

ing itself on the road, it would less likely to rear-end other vehicles compares with the circum-

stance that AV is driven by human drivers.

Analysis of AV crash severity

Mechanism of various effects on AV crash severity. Fig 3 illustrates the relationship

between crash severity and potential contributing factors. Variables including driving mode,

roadway characteristics, liability, collision type, and whether the crash involving pedestrians/

cyclists affect the crash severity. The percentages of observations in classification are also

included in Fig 3.

• The findings are summarized as follows: Crashes that took place on the highway are affected

by driving modes, collision types, and liability issues. According to the crash database,

crashes that happened when the vehicle is on AD mode result in fatalities. Crashes of Tesla

in 2016 (Florida) and 2018 (California) are the examples of the fatalities. One common fact

from these two fatal crashes is that drivers ignored the warning of taking over from AVs,

which means that these two drivers did not take over the driving in an appropriate and

Table 2. Ordinal logistic model results for crash severity (AD mode).

B S.E. Wald df Sig. 95% Confidence Interval Exp (B)

Lower Bound Upper Bound

Dependent Variables

Crash Severity (K) -.341 .793 .185 1 .667 -1.896 1.213 0.711

Crash Severity (A) .217 .784 .077 1 .782 -1.319 1.752 1.242

Crash Severity (B) 1.881 .925 4.130 1 .042 .067 3.695 6.560

Crash Severity (C) 2.111 .938 5.069 1 .024 .273 3.949 8.256

Independent Variables

Not AV’s Fault 4.049 .996 16.544 1 .000 2.098 6.001 57.34

https://doi.org/10.1371/journal.pone.0214550.t002

Table 3. Ordinal logistic model results for crash severity (conventional mode).

B S.E. Wald df Sig. 95% Confidence Interval Exp (B)

Lower Bound Upper Bound

Dependent Variables

Crash Severity (B) -21.121 .734 828.474 1 .000 -22.559 -19.683 6.560

Crash Severity (C) -20.082 .493 1.656E3 1 .000 -21.049 -19.115 8.256

Independent Variables

Not AV’s Fault -18.556 .000 . 1 .000 -18.556 -18.556 -18.556

https://doi.org/10.1371/journal.pone.0214550.t003
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timely manner to secure driving safety. This also suggests that AVs are the responsive party

for these fatal crashes. In addition, according to the NTSB’s investigation reports of these

two fatal crashes, AVs’ speed was 71 mi/h~74 mi/h before making contacts with the object

or the semitrailer, which is higher than the posted speed limit of 65 mi/h. Therefore, it is

noted that both ignoring the take-over warning and traveling on the freeway with the speed

above the speed limit are two major causes to the fatal crashes.

• Crashes that took place on the local roads (i.e., proceeding at intersections, changing lanes,

overtaking a vehicle) are affected by driving modes, collision types, liability issues, and

whether involves yielding to road users such as pedestrians or cyclists. One fatal AV crash on

the local road draws the attention, which is the Uber test AV struck a pedestrian at nighttime

in Arizona. According to the NTSB’s investigation, the emergency braking maneuvers are

not enabled while the vehicle is on AD mode [13]. Therefore, the AV is responsible for this

Fig 2. Distribution of each collision types in (a) AD and; (b) Conventional mode.

https://doi.org/10.1371/journal.pone.0214550.g002

Fig 3. Mechanism of crash severity in collisions with AV involved.

https://doi.org/10.1371/journal.pone.0214550.g003
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fatal crash. Despite that not every collision with AV being the responsible party would result

in the fatal crash, there is one crash that leads to incapacitating injury, which is the one took

place in Utah, 2018. The AV rear-ended a firefighter truck with the AV driver “suffered seri-

ous injuries that have deprived her of being able to enjoy life” [47]. A conclusion can be

drawn from the above fatal or incapacitating crashes is that when the vehicle is on the AD

mode and is the responsive party for the crash, it is likely to have a severe injury.

• To address the issue that AVs brings severer injury than the conventional vehicle, there are

many solutions can be found from the perspective of AV technology. Besides, there are also

some alternatives can be identified simply according to the current limited AV crash data-

base. As illustrated in Fig 3, as long as AV is not the responsive party for the crash on local

roads, the injury level decreases. This is reflected by the fact that 48.7% of the crashes with

the vehicle in the AD mode but not being the responsive party has the crash injury of “O”,

which these crashes just result in the damage on the vehicle instead of road users. This find-

ing is also consistent with the ordinal logistic regression in the previous section. In addition,

switching to manual driving can also be a solution to avoid potential severe crashes brought

by automated driving, regardless of driving on the highway or on the local roads. Given the

fact that the AV crash database is provided by Level 3 or 4 AVs, it is essential for test drivers

to take over driving in a timely manner to avoid severe crashes.

To summarize, it can be concluded that if the vehicle is on AD mode and responsible for

the crash, the crash can result in severe injuries (i.e., fatality or incapacitating injuries). The

highway is the roadway where most of the severe injuries took place. The current field AV

crash data indicates that the injury level decreases when AV is not the responsible party for the

crash.

Discussion of model accuracy. Table 4 summarizes the classification accuracy of the clas-

sification tree illustrated in Fig 3. Overall, the model classifies 91.2% of all the crash data cor-

rectly, especially with an accuracy rate of 100% in crash severity of “K”, “A”, and “O”. The

prediction accuracies for “B” and “C” are lower. This is due to the small sample size of “B” and

“C” crashes. According to Table 1, there are 10 crash records with severity “B” and two crash

records with severity “C”, while compared to 97 crashes with severity “O”. The classification

method CART tends to have low classification accuracy for one observation (e.g., severity “C”

or “B” in the tree) unless the data for this observation has sufficient sample size [48]. This can

be the major reason why severity levels “B” and “C” have lower prediction accuracy. It is

expected that the prediction accuracy for severity levels “B” and “C” will increase, once more

“B” and “C” crashes are added into the analysis in future research.

Table 4. Model accuracy of AV crash severity classification tree.

Overall Accuracy: 91.2%

(103/113)

Predicted Values

K A B C O

Ground Truth

Values

K 100%

(3/3)

0 0 0 0

A 0 100%

(1/1)

0 0 0

B 0 0 20%

(2/10)

0 80%

(8/10)

C 0 0 0 0 100%

(2/2)

O 0 0 0 0 100%

(97/97)

https://doi.org/10.1371/journal.pone.0214550.t004
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Analysis of Collision type of AV crash

Mechanism of various effects on AV collision types. Fig 4 illustrates the explored classi-

fication tree regarding collision types in AV involved crashes. Roadway characteristics, driving

modes as well as whether the crash is associated with yielding to pedestrians/cyclists affect the

collision types. The percentages of observations in classification are also included in Fig 4.

The findings are summarized as follows:

• The intersection is the place where is most likely to have rear-end collisions than other road-

way characteristics, regardless of signalized or unsignalized intersections. This is due to fact

that the crash took place when the vehicle is waiting or slowly proceeding at the intersection.

• Collision types on the highway or lane changing are affected by driving modes and whether

the crash has pedestrians/cyclists involved. When the vehicle is on AD mode, it has an angled

collision occurred on the highway. This finding is reflected by the Tesla crash in Florida,

2016, where the AV struck a vehicle with the right angle and resulted in a fatal crash of the

AV driver. Sideswipe is the collision type that when AV is involved with lane-changing.

• When the vehicle is on conventional mode, the collision type is depending upon whether

yielding to pedestrians/cyclists or not. If the vehicle is yielding to pedestrians/cyclists, it is

more likely to have a rear end collision. This can be explained by the fact that when yielding

to these road users, the leading vehicle is going through a process of deceleration. A rear-end

collision could happen if the following vehicle fails to provide sufficient deceleration rate

accordingly. If the crash has no pedestrians/cyclists involving, the crash is taking place on

the highway with the collision type of running off the road.

Discussion of model accuracy. Table 5 summarizes the overall and breakdown accuracy

of the classification tree model of collision types in these AV involved crashes. Overall, the clas-

sification tree of collision types has a total accuracy of 70%. Specifically, 94.2% of all the rear

Fig 4. Classification tree of collision type in AD mode.

https://doi.org/10.1371/journal.pone.0214550.g004
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end crashes are classified correctly. The prediction accuracies for “Angled collision” and “Side-

swipe” are lower. This is due to the relatively small sample size of “Angled collision” and “Side-

swipe”. According to Table 1, there are 10 crash records with “Angled collision” and 25

crashes records with “Sideswipe”. If the database has an insufficient sample size for a certain

observation, the CART model tends to have low classification accuracy for this observation

[48]. Therefore, this is the major reason why both “Angled collision” and “Sideswipe” have

lower prediction rate than other collision types. Once more crashes with collision types being

“Angled collision” or “Sideswipe” are collected, the prediction accuracy is expected to increase.

Conclusions

The analysis based on statistical and classification tree modeling has successfully identified the

contributing factors that impact automated vehicle safety from both perspectives of crash

severity and collision types. Particularly, the CART model has revealed the mechanism of auto-

mated vehicle-related crashes via visualizing the hierarchical structure of contributing factors

to AV crash severity and types.

In conclusions, severe injuries can happen if the vehicle is on automated driving mode and

is the major responsible party for the crash. The highway is identified as the location where

severe injuries are likely to happen due to high travel speed. Collision types of AV-related

crashes are dependent upon the driving mode, location, and whether crashes are associated

with yielding to pedestrians/ cyclists. Both ordinal logistic regression and the CART models

show consistent results. The resulting hierarchical structure of the AV crash mechanism with

knowledge of how the traffic, roadway, and environmental variables can lead to crashes of vari-

ous serveries and collision types. Although the sample size is limited, the crash database that

used in this study contains by far the most complete published crash records with AV involved

as of November 2018. The method used in this research provides a proven approach to analyze

and understand AV safety issues. And this benefit is potential be even enhanced with an

increasing sample size of AV-related crashes records in the future. The comprehensive knowl-

edge obtained in this research can ultimately facilitate assessing and improving the safety per-

formance of current automated vehicles.

With an attempt to ultimately understand the mechanism of AV crash, future research will

focus on continuing to collect AV crash data to fit into the CART models used in this manu-

script. It is expected to have better prediction accuracy once more AV crashes are added into

the analysis in future research. In addition, multiple machine learning based modeling

approaches (e.g., Random Forest, AdaBoost, and CHAID) will be employed in modeling the

AV crash types and injury severities. The results and prediction accuracy will then be com-

pared with results from the CART model.

Table 5. Model accuracy of collision types in classification tree.

Overall Accuracy: 70.0%

(79/113)

Predicted Value

Angled collision Rear end Run off the road Sideswipe

Ground Truth Value Angled collision 10%

(1/10)

90%

(9/10)

0 0

Rear end 0 94.2%

(65/69)

2.9%

(2/69)

2.9%

(2/69)

Run off the road 11.1%

(1/9)

33.3%

(3/9)

55.6%

(5/9)

0

Sideswipe 0 64%

(16/25)

4%

(1/25)

32%

(8/25)

https://doi.org/10.1371/journal.pone.0214550.t005
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