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Abstract

Television (TV) programming attracts ever-growing audiences and dominates the cultural

zeitgeist. Viewership and social media engagement have become standard indices of pro-

gramming success. However, accurately predicting individual episode success or future

show performance using traditional metrics remains a challenge. Here we examine whether

TV viewership and Twitter activity can be predicted using electroencephalography (EEG)

measures, which are less affected by reporting biases and which are commonly associated

with different cognitive processes. 331 participants watched an hour-long episode from one

of nine prime-time shows (~36 participants per episode). Three frequency-based measures

were extracted: fronto-central alpha/beta asymmetry (indexing approach motivation),

fronto-central alpha/theta power (indexing attention), and fronto-central theta/gamma power

(indexing memory processing). All three EEG measures and the composite EEG score sig-

nificantly correlated across episode segments with the two behavioral measures of TV view-

ership and Twitter volume. EEG measures explained more variance than either of the

behavioral metrics and mediated the relationship between the two. Attentional focus was

integral for both audience retention and Twitter activity, while emotional motivation was spe-

cifically linked with social engagement and program segments with high TV viewership.

These findings highlight the viability of using EEG measures to predict success of TV pro-

gramming and identify cognitive processes that contribute to audience engagement with

television shows.

Introduction

Today, we experience what many have dubbed a “TV Renaissance,” with an increasing num-

ber of television (TV) shows of varying quality produced by traditional networks, including

broadcast and cable, and by online streaming companies, such as Netflix, Amazon, and Hulu

[1]. In this sea of the ever-expanding TV content, it becomes exceedingly important to know
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what makes TV shows good. Television success has been traditionally measured in terms of

viewership (i.e., how many people watch each show episode at any given moment or overall)

[2–4]. However, with the advent of social media and the rising popularity and reach of social

media websites such as Facebook, Twitter, and Instagram, viewers’ social online engagement

with TV shows (e.g., sharing viewership preferences, reacting to show content, etc.) has

become another important measure of show success [2, 5–8]. The “eyes-on-the-screen” view-

ership metric increasingly gives way to “likes-on-the-page” indicators, as TV show retention

and cancellation may depend on factors that go beyond traditional viewership ratings, includ-

ing show’s presence on social media in the form of tweets, likes, and shares [7–9]. Several

recent studies have examined patterns of social media use (in particular, Twitter) surrounding

TV shows such as Walking Dead [10], Downton Abbey [9], or reality and news TV [11–13].

These studies suggest that social media engagement with a particular TV show is often driven

by two major categories of factors: internal (e.g., self-presentation or sense of social connected-

ness) and content-driven (e.g., emotional responses, preferences, or opinions about show con-

tent) [9–13]. Similar research also indicates that the volume and content of show-related

tweets correlate with show content and can be effective in assessing TV show success [2].

As audiences migrate their discussions about favorite shows away from watercoolers to

social media websites and apps, show-runners (e.g., media executives, producers, show crea-

tors, directors, and writers) not only monitor social media presence of their shows but also

actively promote show-specific social media communities and catalyze show-centric online

chatter by using Twitter hashtags, maintaining active Facebook/Instagram/Twitter profiles,

and encouraging show stars to engage with social media [2, 7–8, 13]. The reason for such an

extensive symbiosis between TV content and social media is the reciprocal relationship

between show-specific social engagement and TV viewership. Social ‘buzz’ around the show,

serving as an effective advertisement, can drive the overall viewership of future episodes as

well as active, real-time audience participation [8, 14–16]. Thus, the new strategy of show-run-

ners is to increase viewership through social media engagement, which could foster greater

popularity and, ultimately, translate into higher revenue from both distribution and advertise-

ment [7–8].

Although Twitter and other social media activity has become an important indicator of TV

show performance as it airs, accurately predicting future success of a new TV show or upcom-

ing show episodes is still quite a daunting task–complex predictive models are often employed

to gauge potential success of a TV show, including such variables as genre, target demographic,

market saturation/paucity, strength of existing competition, seasonality, and distribution/

broadcast options [17]. But the main driver of television success remains the strength of the

creative content–audiences want to watch great shows that are emotionally evocative, memo-

rable, and inspiring [2, 9–12, 18–20]. Capturing this “lightning in the bottle” is challenging

since it is often difficult to predict which creative idea will resonate well with viewers and

which will fall flat [21–23]. Thus, it becomes increasingly important for show creators, produc-

ers, and media executives to optimize the creative content in order to maximize viewership

potential and social reach.

Commonly employed assessments of TV show quality involve techniques that are based on

subjective opinions of potential viewers (e.g., focus groups, self-report questionnaires, and rat-

ing dials) [2, 9–10, 22–23]. However, such techniques suffer from several significant shortcom-

ings [24–27]. First, reporting biases may skew focus group and questionnaire results since

viewers often tailor their expressed opinion based on the context of the interaction (e.g., how

the questions are phrased, who is leading the focus group, or how the other members of the

group respond). Second, viewers often have difficulty reporting which elements of the show

they find particularly engaging and which parts they dislike or are indifferent about. The
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overall impression can overshadow or accentuate viewers’ perceptions of specific parts of the

show. Finally, when rating dials are used to evaluate moment-to-moment fluctuation in viewer

perceptions, results can be confounded by the dual-tasking nature of the technique and are

limited in scope as only one dimension can be examined at a time [28].

In recent years, the entertainment and advertising industries have seen an emergence of

alternative techniques to evaluate creative content, including functional magnetic resonance

imaging (fMRI) and electrophysiological recordings, which rely on direct measurements of

viewers’ brain activity as they watch movie clips, movie trailers, TV programming, or commer-

cial advertisement [29–46]. These neuroscience-based techniques are less susceptible to self-

report biases and, thus, represent a more accurate and direct assessment of viewers’ responses

to creative content [47–51]. Some neuroscience measures, such as electroencephalography

(EEG) and electrocorticography (ECoG), are also characterized by exceptional temporal reso-

lution, which allows for a more granular, moment-to-moment measurement of viewers’

responses [32, 44, 50–52].

There have been several fMRI, EEG, and ECoG studies evaluating brain activity in response

to creative content, including short movie clips [40] or excerpts from popular movies [34, 38–

39, 46]. These studies have been able to identify distinct cortical clusters, primarily in the sen-

sory (audio and visual) cortical areas, that reliably respond to complex naturalistic stimuli and

preferentially tune to specific content features of the videos (e.g., faces or action/movement).

Although these results demonstrate that brain activity can be successfully used to study natu-

ralistic video stimuli, none of the above studies have compared brain activity patterns against a

specific objective or subjective preference criterion (e.g., box office performance, participant

preference, etc.). Such criterion validation was the aim of a recent study that investigated rela-

tive efficacy of fMRI and EEG measures in predicting performance of TV advertisement, quan-

tified as a change in market share of advertised products [45]. Results reveal that increased

fMRI activity in the amygdala, dorsolateral prefrontal cortex, ventral striatum, and ventrome-

dial prefrontal cortex (brain areas associated with emotional and cognitive processing) were

most predictive of advertisement in-market performance when added to the traditional self-

report measures [45]. However, when all independent measures were assessed in isolation, a

combined EEG measure was superior in predicting in-market ad performance relative to

fMRI, accounting for 34% of explained variance. In this study, the combined EEG measure

was a composite of frontal left-to-right asymmetry in the alpha frequency band (~8–12 Hz;

often linked across studies with positive emotional states and approach motivation [53–62])

and a decrease in occipito-parietal alpha power (commonly associated with sensory attentional

processing [63–72]). These findings highlight efficacy of EEG-based techniques in assessing

viewers’ preference for creative content of complex naturalistic stimuli.

The observed predictive utility of EEG metrics has been confirmed by several other studies

that have explored the link between EEG-derived measures of brain activity and empirically

established effectiveness of media and TV advertisements [29–33, 36, 42–44, 55, 66, 73–81].

For example, researchers have been able to predict preferences for movie trailers as well as

eventual box office success of the corresponding movies using either a single composite EEG

score (similarity index) [29] or power within individual frequency bands, such as beta (~13–25

Hz) and gamma (~30–55 Hz) [30–31]. Similarly, several studies have observed correlations

between EEG measures and self-reported TV show preference [43] or online view counts for

Super Bowl ads [32]. While these studies examine a plethora of different EEG signatures, a

common thread has emerged, suggesting that advertisement effectiveness and processing of

naturalistic video stimuli depend on cognitive processes of attention, memory, and emotion,

the relative weight of which varies with the outcome variable, such as ad memorability or sub-

jective preference [33, 42–45, 80–81].

EEG correlates of TV viewership and Twitter activity
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Specifically, a decrease in occipito-parietal alpha power has been typically associated across

a variety of consumer neuroscience studies with increased alertness and sensory attention [63–

64, 67]. Decreases in posterior alpha power have also been found to track visual scene changes

[66, 72–74] and subjective arousal [73]. In contrast, fronto-centrally distributed decreases in

alpha power have been linked to perceived interest in ad content and subsequent ad memora-

bility, suggesting that fronto-central alpha power is more sensitive to cognitive aspects of atten-

tional focus than parietal alpha [67, 74]. Another EEG metric used to evaluate creative content

is left-to-right frontal alpha asymmetry, with greater decrease in alpha power over the left rela-

tive to right hemisphere correlating with approach motivation, often expressed as positive

affect [33, 41, 53–61, 76]. This greater left-to-right frontal alpha lateralization has been

observed in response to positively judged TV content [55], positively perceived movie clips

[59–61], and has been linked with activation of the dopaminergic reward system [79–80] as

well as self-reported levels of behavior activation [81–82]. Thus, it has been proposed that the

alpha asymmetry serves as a biomarker of the behavioral activation system (BAS), as proposed

by Gray [81–84]. Specifically, the alpha asymmetry is thought to extend beyond positive affect

or valence and reflect a broad trait or state behavioral and motivational approach (as opposed

to inhibition) [59, 62, 85–87]. Finally, Vecchiato and colleagues have examined EEG correlates

of ad memorability across a number of studies, demonstrating that subsequently recalled TV

ads are characterized by power increases in the fronto-central theta (~4–8 Hz) and gamma fre-

quency bands during encoding (either as a single composite EEG score–impression index–or

as individual frequency band measures) [36, 76–77]. These results are in line with other reports

of greater theta and gamma power over the fronto-central regions during successful memory

encoding and recollection of various types of stimuli [88–94], confirming the viability of these

EEG measures in examining memory-related processes during viewing of naturalistic stimuli,

such as TV shows [76–77].

In combination, these results suggest that emotional motivation, memory, and attention

are all important factors contributing to favorable perception of complex naturalistic stimuli,

such as video advertisements or movie excerpts and trailers [33, 76–77]. These factors can be

used to predict real-world success and relevance of naturalistic stimuli [29–32] and are likely

to represent success predictors of TV programming–shows have to be memorable, attention-

ally engrossing, and emotionally engaging to prompt viewers to stay with the program or

return for more episodes. These cognitive processes, especially emotional motivation, are also

likely to compel viewers to share personal impressions of the show via social media, given pre-

liminary research demonstrating that the desire to share information is associated with activity

in brain areas linked with emotional processing, including the theory of mind and social per-

ception (i.e., the medial prefrontal cortex and temporo-parietal junction [95–96]).

Although there have been a number of studies, as described above, that have used EEG met-

rics to examine efficacy of TV commercials or assess brain activity during watching movies

and video clips, few studies have applied EEG methodology to examine viewership or social

media engagement of TV shows. In a recent study, Fischer and colleagues correlated frontal

EEG asymmetry with whether participants were more or less likely to “share” a short video in

a laboratory context, approximating sharing behavior on YouTube or Facebook platforms

[97]. While this study had a low number of participants and a high number of tested stimuli, it

revealed that shared videos also elicited greater decreases in alpha power over occipital and

fronto-central sites, potentially indicating greater visual and cognitive attention to stimuli that

are deemed worthy to be shared. A different, “second screen”, study has examined cognitive

engagement (as indexed by the Steady State Topography—SST) while participants watched a

live reality TV show and were free to use social media, including Twitter [98]. The authors

reported increased SST-measured engagement during second screen activity periods (as

EEG correlates of TV viewership and Twitter activity
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participants were tweeting) as well as an increase in engagement during subsequent TV show

segments. Although the increased engagement during live tweeting may be explained by the

dual-task nature of the activity as well as greater cognitive load during active tweeting relative

to passive viewing, these results indicate that social media participation during a live TV show

may increase interest and promote viewership for the entire episode. Finally, the sole study

that has examined the relationship between EEG-measured brain activity and moment-by-

moment fluctuations in TV viewership and Twitter activity in participants watching a single

TV episode (the premier episode of “The Walking Dead” TV series) found that global synchro-

nization of EEG activity across participants watching the TV program was correlated with

both TV viewership and Twitter volume measured for the audience as a whole [99]. This single

EEG measure of cross-subject synchronization is conceptually similar to increases in BOLD

signal and is in line with previous fMRI and ECoG studies demonstrating similarities across

participants in sensory brain areas (i.e., temporal and occipital) when processing complex nat-

uralistic stimuli such as movies or video clips. Thus, EEG synchronization observed in this

study was likely driven by attention to common auditory and visual features of the stimulus

[38–40, 46].

Taken together, these studies suggest that TV viewership and social media engagement

with a particular creative content can be estimated using EEG-derived measures. However,

given the lack of generalizability among existing research (as only a single episode of a TV

show [98–99] or YouTube videos with low view numbers [97] have been explored), several key

questions remain. First, none of the studies have examined whether TV viewership and Twitter

engagement depend on specific cognitive processes elicited by TV content. In particular, as

discussed above, multiple reports highlight the role of emotional motivation, attention, and

memory in viewer preference for TV content [33, 42–45, 80–81]. Thus, it is likely that these

factors also contribute to episode-specific indicators of TV show success such as viewership

and Twitter volume. Second, both single composite EEG metrics and individual EEG measures

based on specific frequency bands have been employed in previous studies without a clear

analysis of whether these metrics are comparable in their predictive ability. Finally, it remains

under debate whether EEG measures can add additional predictive power beyond traditional

measures and explain more variance in TV viewership and Twitter activity than other behav-

ioral variables [45].

The current study aimed to address these questions and to determine whether population-

level success (as expressed in total TV viewership and Twitter volume during live program

broadcasts), of a broad range of TV shows (9 episodes from 8 prime-time TV shows) could be

predicted using a single composite EEG score or EEG-derived metrics of attention (as indexed

by fronto-central alpha decreases and concomitant theta increases [33, 63–64]), memory (as

indexed by the fronto-central power increases in the theta and gamma frequency bands

[36,76–77]), and emotional motivation (as indexed by the left-to-right asymmetry in the alpha

and beta frequency bands [33, 53]). The average magnitude of these EEG measures, recorded

from an independent sample of participants within each contiguous show segment (recorded

in-between commercial breaks; n = 49), was correlated with the average TV viewership (the

overall number of people watching the program, sans commercials, when it first aired) and the

overall number of show-related tweets posted by Twitter users during the original episode

broadcast. Thus, we used EEG measures derived from an independent set of participants who

did not watch the original episode broadcast and who experienced the episode narrative for

the first time during the EEG session to predict the two population-level metrics of TV viewer-

ship and Twitter activity. We hypothesized that all three cognitive processes would be critical

predictors of viewership and tweet numbers, on par with a single composite EEG score. In

addition, given that Twitter activity has been linked with social motivation and is often seen as

EEG correlates of TV viewership and Twitter activity
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driven by emotional content of TV programming [9–13], we hypothesized that Twitter

engagement may be more correlated with the fronto-central EEG asymmetry than TV

viewership.

Methods

Participants

EEG study. 331 individuals were recruited from the San Francisco, Chicago, and Atlanta

metropolitan areas. All prospective participants were screened for neurological, psychiatric,

and other medical disorders and conditions that are known to affect cognitive functioning or

to alter frequency or amplitude of EEG signals. Individuals routinely taking any psychoactive

medications (prescription, over the counter, or recreational) were excluded. Prospective par-

ticipants were also asked to complete a handedness questionnaire and tests of vision acuity

and colorblindness. To minimize across-subject variability, only right-handed individuals with

normal or corrected to normal eyesight qualified for the study.

To control for familiarity with the content of the tested TV episodes and to ensure episode

comprehension, only those individuals who regularly watched a given TV show (but did not

see the tested episode) were included in the study. A representative sample was created by

including individuals who used Twitter regularly, sometimes, or never. On average, 77.1%

(SD = 9.5%) of participants had Twitter accounts, regularly posting tweets (58.4%,

SD = 18.0%) or reading tweets (66.6%, SD = 13.4%); 25% (SD = 10.9%) of participants never

used Twitter, although some of them had active accounts.

Based on their TV show habits and preferences, qualified participants were assigned to one

of nine cells, each corresponding to a given TV episode. Data for each episode were collected

from 36–38 participants, with equal number of males and females. Participants were 21–54

years old, with equal distributions across the low (21–34 years old) and high (35–54 years old)

age ranges in each cell. Race and ethnicity composition of the sample were kept consistent

with the latest national census data. All participants were asked to read and sign an informed

consent document prior to testing. After the study completion, participants were debriefed

and remunerated. All procedures were carried out in accordance with protocols approved by

an external Institutional Review Board–Ethical and Independent Review Services (Corte

Madera, CA).

Twitter volume. Minute-by-minute Twitter volume data (i.e., total number of tweets) for

each TV episode were obtained from the Twitter TV Ratings, provided by Nielsen Social (part

of the Nielsen Company, New York, NY; www.nielsensocial.com) through a direct agreement

with Twitter (San Francisco, CA). Tweet data were obtained and analyzed in accordance with

Twitter policies on data privacy and sharing; only anonymized and aggregated Twitter volume

values were used. Twitter volume data represented all tweets posted by episode viewers in real

time during the initial broadcast of the episode.

TV viewership. Minute-by-minute TV viewership estimations were obtained as volume

totals from the Nielsen TV Ratings database (www.nielsen.com). Only anonymized and aggre-

gated viewership totals were used in this study. TV viewership data represent the estimated

number of individuals who watched the episode in real time as it aired.

Stimuli

Selected TV shows (Table 1) had comparable characteristics and were representative of the

current TV landscape. Only hour-long prime-time serial shows that were airing new episodes

at the time of the study were used. Eight shows (nine episodes) were originally chosen to pro-

vide a representative range (low to high) of Twitter engagement, as measured by the Nielsen

EEG correlates of TV viewership and Twitter activity
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Twitter TV Ratings, and TV viewership, as measured by the Nielsen TV Ratings (see Table 1).

Show selection was performed using Twitter volume and TV viewership data for all episodes

of each show aired prior to the selection process and was aimed to ensure relative indepen-

dence between measures of Twitter engagement and TV viewership–although the Big Brother

episodes drew the most tweets and largest audiences. Since recruitment age for the EEG por-

tion of the study was limited to 21–54 y/o, shows for which over 50% of viewers or Twitter

users were outside of that age range were excluded to ensure demographic commonality

among each show’s TV audience, Twitter users, and EEG study participants.

Out of the eight selected shows, six aired on network TV, and two shows aired on cable TV.

Three shows were reality or competition programs (e.g., MasterChef), four shows were dramas

(e.g., Suits), and one show was a documentary serial show (NYMed). For one of the shows, Big
Brother 16, two episodes were used, as the episode originally selected for testing was aired 2

hours later on the East Coast due to a delay in sport programming preceding the episode. The

replacement episode of Big Brother 16 was also delayed (by 51 mins) on the East Coast for a

similar reason. Since West Coast air times were not affected for either episode, and given that

Twitter volume and TV ratings for these two episodes did not appear to be significantly differ-

ent from previous episodes of the show, we decided to include both episodes in the final analy-

ses, bringing the total number of tested TV episodes to nine. Episodes were selected to allow

EEG data collection to be completed within 3–4 days after the initial broadcast to minimize

potential exposure to the tested episode prior to the EEG session. All tested episodes came

from the second half of their respective seasons, which made it easier to recruit participants

who were familiar with the show and watched it on a regular basis.

For the EEG portion of the study, each episode was recorded in high definition (1366x768)

when it originally aired and was edited off-line to remove commercial breaks. Commercial

breaks were omitted to remove potential cross-influences of advertisement content on the

overall cognitive and emotional processing of the subsequent show segments [100–102]. In

addition, our goal was to maximize comparability between EEG measurements and content-

Table 1. TV episode information and pre-processing details.

Show Network Network type Show type Average Twitter volumea Average TV viewersa Twitter lagb Omit startc Omit endd

Big Brother Ep. 1 CBS Broadc. Reality 979.0 3,345,932 2 3 2

Big Brother Ep. 2 CBS Broadc. Reality 502.3 4,109,862 0 2 1

Gang Related Fox Broadc. Drama 66.2 1,288,583 2 0 0

MasterChef Fox Broadc. Reality 101.7 2,825,495 1 3 2

Naked and Afraid Disc. Cable Reality 58.1 1,205,048 0 3 2

NY Med ABC Broadc. DS 41.4 4,025,144 1 0 0

Reckless CBS Broadc. Drama 30.2 2,897,098 2 2 2

Suits USA Cable Drama 120.4 1,438,171 1 2 2

Taxi Brooklyn NBC Broadc. Drama 22.0 3,324,714 1 2 3

Broadc.–broadcast, Ep.–episode, Disc.–Discovery, DS–documentary series.
a For each episode, numbers of tweets and TV viewers were calculated for each minute of the show and then averaged across the show duration.
b Twitter lag (in minutes) was used to align minute-by-minute Twitter volume values with EEG and TV viewership values, correcting for the lag between what people

see on the screen and when they type and post tweets online. For example, a lag of 2 minutes means that tweets from minute (t+2) are aligned with EEG and viewership

values for minute t.
c Omit start (in minutes) reflects the number of minutes at the beginning of each show that were omitted from analyses due to outlier Twitter or viewership values

(audiences tuning in late or tweeting about the show in general rather than about the content of the specific episode).
d Omit end (in minutes) reflects the number of minutes at the end of each show that were omitted from analyses due to outlier Twitter or Viewership values (audiences

for the next show tuning in early or tweeting about the upcoming episode rather than about the content of the current episode).

https://doi.org/10.1371/journal.pone.0214507.t001
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specific Twitter activity and TV viewership. Thus, we used uninterrupted episodes for the EEG

portion of the study to provide a close match with Twitter and audience measurements.

Procedures

For each episode, participants for the EEG study were recruited prior to the scheduled on-air

date and were asked not to watch that particular episode or read/watch media coverage related

to it before the experimental session, which was scheduled 2–4 days after the original air date.

Upon arrival to the lab, each participant was asked to read and sign the informed consent

form, after which they were led to a separate prep area, and a trained technician applied EEG

and auxiliary electrodes. During the experimental session, each participant was seated in a pri-

vate soundproof room with comfortable lighting. Episodes were presented without commer-

cial interruptions on a 42” TV screen positioned 5 feet away from the participant’s chair. A

post-session questionnaire was used to verify that participants had not previously watched the

episode or heard about it from family, friends, or traditional and social media. Each experi-

mental session lasted about 1 hr 15 mins. Given each lab’s capacity to collect 3–5 participants

simultaneously (in separate sound-proof booths), data from all participants for each TV epi-

sode were collected within 2–3 days (up to 4 days post original show broadcast). This short fiel-

ding duration minimized potential influences of time elapsed since the initial episode

broadcast and ensured that participants within each group had similar familiarity with the pre-

vious episode and did not have a chance to see the next one. Twitter volume and TV viewer-

ship data were obtained from the Nielsen Company within a week after the original on-air

date for each episode.

EEG recordings and apparatus

Continuous EEG data were collected with a 512 Hz sampling rate using a Biosemi (Amster-

dam, Netherlands) ActiveTwo DC-coupled amplifier and a biopotential measurement system

with 32 active scalp electrodes [103–104] referenced to the linked CMS-DRL electrodes. Data

were digitized at 24 bit per channel, with 31nV LSB. Acquisition software filters (5th order sinc

response) were set at 0.1 Hz high-pass and 250 Hz low-pass. Additional surface electrodes

above and on the side of the left eye were used to measure vertical and horizontal eye move-

ments. Electrodes with bad connections were substituted with Biosemi external sensors prior

to data collection, resulting in loss-free data. To remove common system noise and artifact,

EEG signals were re-referenced offline to the external electrode positioned at the tip of the

nose (to minimize muscle and eye movement contaminations). EEG signal acquisition and

data analyses were performed in compliance with the established practices and guidelines for

EEG research [103].

Data analyses

EEG. All analyses were completed using the Matlab software (Mathworks, Natick, MA).

During EEG preprocessing, muscle noise and eye movement artifacts were corrected using

independent and canonical component analysis algorithms adapted from EEGLab functions

[105], in which components associated with eye movements and muscle noise were isolated

and removed from the raw data [106–107]. Success of artifact correction was visually con-

firmed by trained signal processing engineers. Data segments with residual contaminants were

excluded from subsequent analyses. Participant data containing excessive residual contamina-

tion were excluded. The exclusion rate was about 35% due to long-format programming (con-

tinuous stimulus over 40 min in length) and short turn-around time for recruitment and data

collection to avoid pre-session exposure to the episode. Potential data loss was expected, and
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initial recruitment goals were set with that in mind. Thus, final analyses for each episode were

performed on clean data from 23–24 participants.

EEG data from each channel were subjected to the spectral decomposition, in which power

was extracted within pre-defined frequency ranges for each 1000 ms non-overlapping segment

using the short-time Fourier transform (stft) [108]. In particular, spectral power (stft-extracted

analytic amplitude squared) was calculated in the following frequency bands: theta (4–8 Hz),

alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–55 Hz). Second-by-second power values

within each frequency band were baseline corrected to the 1,000 ms window, corresponding to

a black screen immediately preceding TV episode onset, and averaged across 15 frontal and

fronto-central sites (left: Fp1, AF3, F7, F3, FC5, FC3; midline: Fpz, Fz, FCz; right: Fp2, AF4,

F4, F8, FC4, FC6), creating a composite power estimation, which was then normalized by con-

verting power values to z-scores across time within each participant [33, 36, 76, 103, 109]. This

procedure produces global region-of-interest power estimations within each frequency band

that are more robust than deriving and examining power at individual sites [33, 36, 76]. For

the fronto-central asymmetry measure, detailed below, power values were averaged across

right and left sites separately [54].

Obtained z-scored power values were combined to create three EEG scores. First, a relative

power ratio of left-to-right sites was calculated for the alpha (inverse) and combined with rela-

tive power ratio in the beta frequency bands (denoting motivational approach) [33, 53–62, 76,

84–87]. Second, power values in the theta and gamma frequency bands (denoting memory

processing) were calculated across all preselected sites [36, 76–77, 88–94]. Finally, a decrease

in alpha power combined with a concomitant increase in theta power (denoting content-spe-

cific attention focus) was calculated across all preselected sites [63–69, 72–74]. For each of the

three frequency combinations, second-by-second power values were averaged across partici-

pants and scaled using a sigmoid function unique for each frequency combination. The sig-

moid transformation was used to minimize potential influences of extreme values (both high

and low) and to convert raw power amplitude to values normally distributed along a continu-

ous 10-point scale, which would make results from different frequency bands easier to com-

pare (as the absolute raw power amplitude varies as a function of the frequency of the

oscillation) [110]. These second-by-second scores were then averaged for each minute of the

program to match temporal resolution of Twitter volume and TV viewership. To provide a

more direct comparison between our analyses and other consumer neuroscience research

using a single group-aggregate metric (e.g., impression index, neural similarity or neural reli-

ability measures [29, 36, 99]), we computed an additional composite score (an average of the

minute-by-minute scores for the three frequency combinations), calculated across time within

each participant and then aggregated across participants. Given that the composite EEG score

was in equal part derived from the three frequency combinations known to index motivation,

memory, and attention, this metric could be seen as a reflection of the overall cognitive and

motivational engagement with TV programs at the group level.

Since Twitter, TV viewership, and EEG data fluctuate at different scales, we hypothesized

that the rate of change (i.e., minute-to-minute differences in values. Vt+1-Vt) would be a more

appropriate metric than the raw amplitude values alone. Thus, EEG scores were converted to

the difference scores, which were then averaged within each continuous program segment

originally shown between commercial breaks. Each episode yielded 5 to 6 segments, depend-

ing on the number of commercial breaks (EEG was not available for the last segment of the

Suits episode due to an error in video editing). In total, 49 program segments were analyzed.

The goal of segmentation was to minimize random minute-to-minute fluctuations in brain

activity [111], Twitter volume, and TV viewership. Those minutes when an episode
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transitioned to commercials were allocated as “program” if the duration of the episode seg-

ment was more than 30 seconds, otherwise such minutes were counted as part of the commer-

cial break.

Twitter volume. The Twitter volume measure included all tweets matching pre-defined

show- and episode-specific keywords derived by the Nielsen Social group to estimate Twitter

TV ratings [10, 13]. Per standard Nielsen Social methodology widely used by TV networks,

both tweets and re-tweets were included. Tweets from all time zones were aggregated after the

appropriate time adjustments. Promotional tweets from the network or those related to adver-

tised products within the show commercial breaks were excluded. For the duration of the epi-

sode, the Twitter volume was quantified on a minute-by-minute basis as a number of all tweets

within each minute of the show. Within each episode, Twitter volume values were normalized

by converting them to z-scores in order to remove between-episode variability in Twitter vol-

umes (as seen in Table 1) and to match EEG data analysis procedures (see above).

We observed that Twitter volume data considerably fluctuated at the beginning and at the

end of programming, often resulting in extreme outlier values that did not reflect episode-spe-

cific content (e.g., early tweets reflecting the overall excitement about the upcoming episode or

end-of-show tweets reacting to the whole show or anticipating next-week’s episode). The prev-

alence of content-independent anticipation and wrap-up tweets at the start and end of TV

shows has been previously reported in several studies of TV-related Twitter use dynamics [9–

10]. Given that these extreme values are not related to the immediate episode content and,

thus, skew Twitter volume estimations for the beginning and the end epochs of each show, we

omitted these values from analyses, optimizing omission periods (1–3 minutes at the begin-

ning and the end) for each program (Table 1). The corresponding minutes were also omitted

from the EEG and TV viewership data before segmentation.

Next, we considered the fact that there is an inherent lag between events of the program

and when tweets are posted online. In particular, while the lag between events on the screen

and EEG activity in response to these events is on the order of milliseconds, the lag between

on-screen events and Twitter activity is likely to be on the order of seconds-to-minutes and

could vary from show to show depending on the structure and content of each episode [2, 9–

10]. For example, not counting the delay between events in the show and the decision to tweet,

it could take about 30 seconds to write and post an original tweet, while retweeting might take

only a few seconds. Given the variation in original twitter length (mean = 66.03, SD = 5.66;

ranging from 59.63 for Big Brother 1 to 75.97 for Reckless) and the ratio or original tweets to

retweets (mean = 2.60, SD = 1.40; ranging from 0.87 for Taxi Brooklyn to 4.89 for Naked and
Afraid), we assessed lags of 0 to 2 minutes and selected episode-specific lags that were the most

reflective of temporal dynamics of tweeting for that episode (Table 1).

Finally, Twitter volume typically increases during commercial breaks [10, 12], which repre-

sents the remnant impact from the preceding program segments as people tweet about the

content of the previous show segment during breaks in the narrative (Fig 1A). With the excep-

tion of the first show segment of Taxi Brooklyn, which was dominated by promotional network

tweets, all other show segments (n = 48) across all episodes saw a decrease in content-related

Twitter activity relative to commercial breaks (n = 44); t (90) = 2.21, p = 0.03. Thus, to account

for the increase in content-related Twitter volume during commercial breaks, we added tweets

from the first two minutes of a commercial break to the segment average. After correcting for

the temporal lag, accommodating delayed tweet activity during commercial breaks, and

removing beginning and end extremes, the minute-to-minute changes in z-scored Twitter vol-

ume were averaged within each continuous segment between commercial breaks to match

EEG data segmentation.
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TV viewership. The TV viewership was quantified using Nielsen TV Ratings data, which

estimates the number of viewers per minute for the entire household during the show airtime

calculated across time zones (Table 1). To match Twitter data pre-processing, TV viewership

data were also subjected to z-score normalization within each episode to control for inter-epi-

sode variability in TV viewership. One-to-two minutes (optimized by program) were excluded

from the beginning and the end of each show to account for late arrivals and hold-over viewers

from the previous program at the beginning of each show as well as early drop-offs and early

tune-in audiences for the next show at the end of the program (Table 1). Further, it has been

widely reported that commercial breaks experience audience drop-off relative to the program-

ming content, which can, in turn, affect viewership volume for the subsequent program seg-

ment [112–114]. This drop-off was also apparent in our data, with program segments exhibiting

higher TV viewership than commercial pods (t (91) = 4.83, p< 10−5, nShowSeg = 49, nAdBreaks =

44; Fig 1B). The magnitude of the commercial pod drop-off depends on multiple factors,

including advertisement content and quality, commercial pod length and serial position within

the program, program genre, program day and time [114]. Thus, to accommodate the TV view-

ership drop-off during commercial pods and the subsequent reduction in TV viewership for the

beginning of the following program segment, the difference in TV viewership from the end to

the start of the commercial break was subtracted from subsequent segment’s values to remove

this trend. Finally, similarly to the EEG and Twitter volume data, the minute-to-minute changes

in TV viewership were calculated and averaged within each program segment, including the

first minute of the commercial break to compensate for the lag in viewership disengagement

(and channel switching) during the transition from the program to the commercial break.

Results

Episode-level analyses

Confirmatory top-level analyses were performed across episodes to quantify differences in

Twitter activity, TV viewership, and EEG scores. As shows were specifically selected to have a

representative spread on both dependent variables (Twitter volume and TV viewership;

Table 1), we expected to find significant differences across episodes. We performed two one-

way ANOVAs, across all minute-by-minute values (square root normalized), with the main

factor representing the 9 episodes. We observed significant differences across episodes for

Twitter volume; F(8 , 537) = 633.70, p< 10−5. Post-hoc pair-wise comparisons revealed the fol-

lowing pattern of Twitter activity across recorded episodes: Big Brother 1> Big Brother

2> MasterChef = Suits > Gang Related> = Naked and Afraid > = NYMed > = Reckless > =

Taxi Brooklyn (all significant p-values < 10−3, Bonferroni corrected for multiple comparisons;

> = indicates that the Twitter volume for the preceding episode was not significantly different

from the following episode but was significantly greater than Twitter volume for all subsequent

episodes on the list). There were also significant differences in TV viewership among episodes;

F(8 , 537) = 1538.88, p< 10−5. Post-hoc pair-wise comparisons revealed the following pattern

of TV viewership across episodes: Big Brother 2 = NY Med > Big Brother 1 = Taxi Brooklyn

> MasterChef = Reckless > Suits > Gang Related = Naked and Afraid (all significant p-

values< 10−3, Bonferroni corrected for multiple comparisons).

Fig 1. Minute-by-minute changes in Twitter volume and TV viewership across episode duration. (A) Minute-by-minute changes in Twitter volume for a

sample episode (NYMed). Shaded areas denote commercial breaks. Twitter activity increased during commercial breaks relative to show segments. (B)

Minute-by-minute changes in viewership for a sample episode (NYMed). Shaded areas denote commercial breaks. TV viewership decreased during

commercial breaks, with subsequent rebound during the next show segment. These patterns of Twitter and TV viewership fluctuations across the show

duration were typical for most tested TV episodes; p = 0.03 for Twitter volume; p< 10−5 for TV viewership.

https://doi.org/10.1371/journal.pone.0214507.g001
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Similar ANOVA analyses were performed on the minute-by-minute EEG scores (power in

the fronto-central alpha/theta and theta/gamma frequency bands as well as the alpha/beta

asymmetry). Significant cross-episode differences were detected for the alpha/beta asymmetry

and the theta/gamma frequency power. Specifically, for the alpha/beta asymmetry, the NY
Med and Taxi Brooklyn episodes had the lowest EEG scores; F(8 , 368) = 11.79, p< 10−3 (these

episodes were also among the lowest for Twitter volume). For the theta/gamma power, the

MasterChef episode had the lowest EEG scores; F(8 , 368) = 8.12, p< 10−3. Since we expected

to see top-level differences across episodes on the dependent and independent variables in

light of our selection criteria (to have a representative sample of TV episodes) and since the

total number of episodes was low and did not allow for comprehensive analyses at this level, all

further analyses were performed on normalized data (removing cross-episode differences)

averaged within contiguous show segments (removing and/or pre-allocating data from com-

mercial breaks; see Methods).

Segment-level analyses

First, we examined whether individual frequency-based EEG metrics or the composite group-

aggregate score can be used to predict changes in TV viewership and Twitter volume across

program segments. The composite EEG score was calculated for each program segment by

averaging segment values of the individual frequency metrics: the left-to-right fronto-central

alpha/beta asymmetry (commonly associated with emotional motivation), decreases in the

fronto-central alpha power and concomitant increases in theta power (commonly associated

with attention processing), and increases in the fronto-central theta and gamma power (com-

monly associated with memory processing; see Methods). Two separate stepwise linear regres-

sion models were tested, in which the composite EEG score was used to estimate TV

viewership or Twitter volume, respectively. Similarly, individual EEG scores were entered into

two stepwise regressions predicting TV viewership or Twitter volume respectively (Table 2). A

significant relationship was observed between the composite EEG score and Twitter volume;

R2 = 0.63, p< 10−11 (Fig 2A and 2B). There was also a relationship between the composite

EEG score and TV viewership; R2 = 0.57, p< 10−9 (Fig 2C and 2D). When examining contri-

butions of individual EEG scores to Twitter volume and TV viewership, a similar pattern of

results has emerged. In particular, all three independent variables were included in the respec-

tive stepwise regression models suggesting significant explanatory power of each individual

EEG score. For Twitter volume, the order of variables entered into the final stepwise model

was the alpha/theta power (attention), theta/gamma power (memory), and alpha/beta asym-

metry (emotional motivation); R2 = 0.63 (adj. R2 = 0.61), p< 10−5. For TV viewership, the

order of variables entered in the final stepwise model was the alpha/theta power (attention),

alpha/beta asymmetry (emotional motivation), and theta/gamma power (memory); R2 = 0.68

(adj. R2 = 0.66), p< 10−5. These results indicate that EEG activity in a restricted sample of par-

ticipants watching naturalistic TV stimuli can be successfully used to predict population-level

behavior such as Twitter activity and TV viewership. Notably, predictive power of the single

composite EEG score was comparable to the predictive power of all three individual EEG

scores in combination, confirming the utility of both composite and individual EEG measures

and suggesting that Twitter and viewership behaviors can be explained through the overall

engagement of the audience.

When the respective contribution of individual EEG scores to Twitter activity and TV view-

ership were examined, we observed that while all three EEG scores were entered into the

respective stepwise regression models, not all variables had equal predictive power in isolation

versus in combination with other variables. In particular, zero-order Pearson correlations
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between TV viewership and individual EEG scores revealed that fronto-central alpha power

decrease/theta power increase (typically associated with attention allocation) was the best pre-

dictor of TV viewership (r = 0.74, R2 = 0.55, p< 10−5; Fig 3) relative to other frequency combi-

nations, which did not have significant correlations with TV viewership and had significantly

smaller correlation coefficients (alpha/beta asymmetry: r = 0.14, p = 0.34, Zdifference = 3.88,

p< 10−4; theta/gamma increases: r = 0.07, p = 0.63, Zdifference = 4.22, p< 10−5, quantified by

the Fisher’s z-to-r transform test for two correlation coefficients). For Twitter activity, alpha/

theta power (associated with attention) had a significant zero-order correlation (r = 0.48, R2 =

0.23, p< 10−3) that was similar to the correlation between Twitter volume and the alpha/beta

asymmetry score (associated with emotion motivation; r = 0.44, R2 = 0.19, p< 0.002; Fig 3). In

fact, the fronto-central asymmetry score had higher correlation with Twitter Volume than TV

viewership (Zdifference = 1.59, p = 0.05). The theta/gamma power score (associated with mem-

ory) did not have a strong correlation with Twitter activity (r = 0.23, R2 = 0.05, p = 0.11), with

the trend difference in the magnitude of this correlation and correlations for alpha/beta asym-

metry and alpha/theta power (Zdifference = 1.39, p = 0.08).

Given that the fronto-central alpha/beta asymmetry and theta/gamma power measures had

significant contributions to the regression models but did have significant zero-order correla-

tions with TV viewership and marginal correlations with Twitter activity (for theta/gamma

power), these EEG scores are likely to reflect suppressor variables, indicating a potential

Table 2. Regression results predicting TV viewership and Twitter volume.

Dependent Variable Model Independent Variable(s) Model R2 Model Adj. R2 Model p-value Beta Coefficient (standardized) Beta p-value

TV viewership LR Composite EEG score 0.57 .57 <10−5 0.76 <10−5

TV viewership SWMR Full model 0.68 .66 <10−5

Alpha/theta power 1.07 <10−5

Alpha/beta asym. 0.41 <10−3

Theta/gamma power 0.30 0.003

High TV viewershipa SWMR Full model 0.72 0.69 <10−5

Alpha/theta power 1.10 <10−5

Alpha/beta asym. 0.52 0.002

Low TV viewershipa SWMR Alpha/theta power 0.17 0.13 0.048 0.41 0.048

Twitter volume LR Composite EEG Score 0.63 0.62 <10−5 0.80 <10−5

Twitter volume SWMR Full model 0.63 0.61 <10−5

Alpha/theta power 0.71 <10−5

Theta/gamma power 0.50 <10−5

Alpha/beta asym. 0.39 <10−3

High Twitter volumea SWMR Alpha/beta asym. 0.48 0.44 <10−3 0.68 <10−5

Low Twitter volumea SWMR - - - - - -

TV viewership LR Twitter volume 0.51 0.50 <10−3 0.72 <10−5

TV viewership SWMR Full model 0.67 0.66 <10−5

Composite EEG score 0.51 <10−5

Twitter volume 0.40 0.001

Twitter volume SWMR Full model 0.67 0.66 <10−5

Composite EEG score 0.58 <10−3

TV viewership 0.29 0.027

Adj.–adjusted, Asym.–assymmetry, LR–linear regression, SWMR–step-wise multiple regression.
a For these analyses, TV viewership and Twitter volume values were split along the median for each variable and full step-wise multiple regression models were

conducted on each median-split subgroup of data.

https://doi.org/10.1371/journal.pone.0214507.t002
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interaction effect [115]. Detailed model analysis revealed that when TV episode segments were

divided along the median split on TV viewership, the only EEG score with predictive power

for segments with low TV viewership was the alpha decrease/theta increase; R2 = 0.17 (adj. R2

= 0.13), p = 0.048 (Table 2). In contrast, the stepwise regression model for segments with high

TV viewership accounted for more variance and relied on both alpha/theta power as well as

left-right alpha/beta asymmetry, in that order; R2 = 0.72 (adj. R2 = 0.69), p< 10−5. Similar anal-

yses for Twitter activity revealed that no significant predictive model could be estimated for

segments with low Twitter volume, while left-to-right alpha/beta asymmetry was the only EEG

score that significantly predicted Twitter activity for segments with high Twitter volume; R2 =

0.47 (adj. R2 = 0.44), p< 10−5. These results indicate that while the alpha/theta power EEG

score, commonly associated with attention processes, is required to predict TV viewership,

higher levels of Twitter and TV utilization uniquely rely on the left-to-right alpha/beta asym-

metry EEG score, commonly associated with emotion motivation.

Finally, we also observed a strong relationship between the two dependent outcome vari-

ables reflecting population-level behaviors—TV viewership and Twitter volume (r = 0.72, R2 =

Fig 2. Composite EEG score predicts Twitter volume and TV viewership across program segments. (A) Correlation between minute-by-minute changes in

the composite EEG score (consisting of a z-scored average of the fronto-central left-to-right alpha/beta asymmetry, alpha power decrease/theta increase, and

theta and gamma power increases) and Twitter volume across discrete program segments (n = 49). (B) Minute-by-minute changes in Twitter volume are

plotted against changes in Twitter volume predicted based on the composite EEG score. (C) Correlation between minute-by-minute changes in composite EEG

score and TV viewership across discrete program segments (n = 49). (D) Minute-by-minute changes in TV viewership are plotted against changes in

Viewership predicted based on the composite EEG score.

https://doi.org/10.1371/journal.pone.0214507.g002
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0.52, p< 10−5; Table 2), which was expected, as real-time tweeting is only possible if people are

watching the program. Given the significant regression models outlined above predicting TV

viewership and Twitter volume based on EEG scores, we next examined whether the relation-

ship between TV viewership and Twitter volume can be explained by changes in EEG activity

elicited by program content. The partial correlation between Twitter volume and TV viewer-

ship, controlling for variance accounted by the composite EEG score, revealed a less robust

link between the two dependent variables: r = 0.34, R2 = 0.12, p = 0.02. This decrease in the

magnitude of the relationship between TV viewership and Twitter volume when controlled for

EEG activity was statistically significant, Zdifference = 2.56, p = 0.01 (quantified by the Fisher’s z-

to-r transform test for two correlation coefficients). This suggests a moderating effect, with

Fig 3. The relationship between individual EEG metrics and TV viewership, Twitter volume. Correlation coefficients were calculated to assess the

relationship between individual EEG metrics (n = 49) and TV viewership as well as Twitter volume. Correlation coefficients were computed for fronto-

central alpha power decreases/theta power increases typically associated with content-specific attention, alpha/beta asymmetry typically associated with

motivational approach, and theta/gamma power increases typically associated with memory processing. The fronto-central alpha power decreases/theta

power increases were significant predictors of minute-by-minute changes in both TV viewership and Twitter volume, while the alpha/beta asymmetry was

exclusively linked with minute-by-minute changes in Twitter volume.

https://doi.org/10.1371/journal.pone.0214507.g003
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significant proportion of shared variance in both TV viewership and Twitter volume explained

by the overall neural engagement indexed by the composite EEG score.

To further examine whether EEG measures add any explanatory power above and beyond

the reciprocal relationship between TV viewership and Twitter activity, we conducted separate

step-wise regression analyses where TV viewership and Twitter activity were treated as either

dependent or independent variable along with the composite EEG score (Table 2). For TV

viewership, both Twitter volume and the composite EEG score were included in the final

model, with the composite EEG score explaining more variance in TV viewership than Twitter

volume; R2 = 0.67 (adj. R2 = 0.66), p< 10−5. Similarly, for Twitter volume, the composite EEG

score and TV viewership were both included in the model, with the composite EEG score

explaining more variance in Twitter activity than TV viewership; R2 = 0.67 (adj. R2 = 0.66),

p< 10−5. These results indicate that EEG metrics add significant explanatory power to predic-

tive models and that the composite EEG score is a better predictor of population-level behavior

than either of the behavioral variables taken in isolation.

Discussion

In this study, we examined whether brain activity, indexed by power changes in the theta,

alpha, beta, and gamma EEG frequency bands, recorded in laboratory settings can be used to

explain population-level success of TV shows, as measured by TV viewership and the extent of

social media engagement with programming content. Three EEG score combinations were

analyzed: decreases in the fronto-central alpha range concomitant with increases in theta

power, commonly associated with attention processing [33, 63–64]; increases in the fronto-

central theta and gamma power, commonly associated with memory processing [36, 76–77];

and the left-to-right fronto-central asymmetry in the alpha and beta frequency bands, com-

monly associated with emotional approach motivation [33, 53]. In addition, a single composite

EEG score was derived by averaging the three individual EEG scores. We report several key

findings that underscore the utility of EEG-derived metrics in predicting population-level

behavioral engagement with TV programming.

Both the composite EEG score and the combination of all three individual EEG scores

entered into a stepwise regression separately had significant correlations and accounted for

over 60% of variance in TV viewership and Twitter activity across segments of the tested TV

shows. Given that the three EEG measures have been extensively linked with attention, mem-

ory, and emotional motivation processing, these results suggest that TV programming perfor-

mance is dependent on the overall cognitive and emotional engagement of audiences with the

show content, as measured by EEG. These results are in line with previous behavioral and

neurophysiological reports of the importance of these cognitive factors in perception and

engagement with TV content [33, 76–77]. Notably, while there was a strong correlation

between the two behavioral measures (i.e., Twitter activity and TV viewership) across episode

segments, the composite EEG score was a better predictor of each of the population-level out-

come variables than the other behavioral measure. Mediation analysis revealed that the com-

posite EEG score explained a significant portion of the relationship between the two

behavioral measures. The relationship between TV viewership and Twitter activity appears to

be mechanistic–if more people are watching the show, it is likely that more people will be

tweeting about it; and if more people tweet about it, then more audiences are likely to join [8,

14–16]. However, here we demonstrate that although there is a direct reciprocal connection

between the two behaviors (e.g., audiences typically tweet about a show only if they are watch-

ing it), a large proportion of this relationship is accounted for by brain activity, reflecting atten-

tional, memory, and motivational cognitive processes, that is elicited by TV programming.

EEG correlates of TV viewership and Twitter activity
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Specifically, we suggest that creative content that is more evocative, leading to higher levels of

attentional focus, memory processing, and emotional motivation across audiences, will be

more likely to keep viewers on the screen and may compel them to share their experiences

with friends and family in real life or on social media. A key strength of the current study is the

ability to link population-wise dynamics in TV content consumption based on brain activity

of a select sample of participants. TV viewership and Twitter engagement depend on a wide

variety of factors, ranging from current entertainment zeitgeist, to differences in airtime sched-

ules, to population demographics (as seen in the top-level differences across episodes). How-

ever, show content is the core determinant of whether people tune in to watch a program or

are compelled to tweet about it. Here we demonstrate that EEG-measured content-related

brain activity explains up to two-thirds of overall variability in TV viewership and Twitter

engagement.

Although all three EEG metrics had significant contributions to the predictive models, not

all of them had the same pattern of relationship with the two outcome variables. Among the

three EEG metrics, TV viewership (overall or median-split) was best correlated with the

fronto-central decreases in alpha and increase in theta power, indexing attentional processing,

suggesting that TV content must attract and sustain viewers’ attention in order to retain the

audience. While the left-to-right asymmetry, commonly associated with emotional approach

motivation and positive affect, was not a significant predictor of TV viewership overall or for

segments with low viewership, it was the second highest predictor for show segments with

high audience viewership, indicating that approach motivation is an important factor in audi-

ences staying with the show once they are already engaged the content. Emotional motivation

also played a key role in predicting Twitter activity. Specifically, the left-to-right asymmetry

was the second highest predictor for Twitter volume overall and the only significant predictor

for segments with high median-split Twitter activity. These findings indicate that TV shows

not only have to attract audience attention but also evoke strong emotional responses in order

to compel viewers to share their thoughts and impressions on social media. Importantly, it is

not enough for the show content to simply portray emotions or feelings. Previous research

indicates that fronto-central alpha asymmetry is only detected when viewers internalize and

subjectively express and feel the emotion themselves [59]. Thus, it is the subjective experience

of emotion, as measured by the alpha/beta EEG asymmetry, that is likely to be a mediating fac-

tor in the relationship between programming content and show-specific social media engage-

ment. Notably, the EEG measure of emotional motivation was particularly important for

segments with high viewership or Twitter volume, indicating a break-through threshold above

which emotional and cognitive engagement with the show is more closely linked with audi-

ence behavior than show segments with low audience participation. Specifically, the variability

across segments with low TV viewership or Twitter volume is more likely to be dominated by

noise and may be more readily explained by whether audiences are simply paying attention or

not. In contrast, viewership and Twitter activity above a particular threshold are more likely to

have higher signal-to-noise ratio and be influenced by subjective experiences of the creative

content rather than extraneous noise factors. Thus, while EEG measures of attention can serve

as a minimum necessary (e.g., gating) metric for predicting TV consumption behaviors, the

emotional motivation measures appear to reflect a break-through potential for TV program-

ming–attention is necessary for audiences to be aware of the content, but emotional motiva-

tion is what is going to prompt pro-active engagement with the content. These findings are

also consistent with previous reports indicating that the desire to express feelings and emo-

tional responses in response to what is happening on the screen is a key factor in why people

tweet [10, 12]. For example, Wohn and Na found that over 60% of program-specific tweets

were expressing subjective opinions, with about a quarter of tweets explicitly containing
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emotional language [12]. Although these percentage values could vary from show to show,

they indicate the extent to which emotional engagement is important for tweeting behavior.

Future research may use EEG measures to examine a potential link between viewers’ experi-

enced emotional responses, the content of tweets, and the propensity to stay with the show.

In the current study, fronto-central hemispheric lateralization was more closely linked with

proactive behavior (i.e., tweeting), which is in line with the approach motivation interpretation

of this EEG metric [58–62]. However, it would be erroneous to posit that emotional motiva-

tion is less important in attracting viewers to watch the TV content. The current study was

designed as a cross-sectional analysis of continuous watching of a single TV episode. Thus, we

were not able to assess whether EEG-indexed changes in emotional motivation, attention, or

memory may correlate with individuals’ desire to watch the next episode of the show. A longi-

tudinal design, where multiple episodes across a single show are examined (serial episodes

shown weekly or continuously in online-streaming of consecutive episodes), could determine

whether motivational approach predicts TV viewership when proactive behavior is measured

(i.e., increase or decrease in viewership from episode to episode of a single show). Similarly,

memory processes are likely to play a more prominent role in sustaining viewership across

multiple episodes, especially when they are spread out over time vs. watched continuously.

The current findings are in line with previous reports of overall EEG synchrony across sub-

jects correlating with fluctuations in TV viewership and the number of tweets for a single TV

show episode or across TV commercials [99]. Similar single-score EEG measures have been

found to be effective in predicting movie performances based on tested movie trailers [29–31].

Single-score EEG measures have also been correlated with memory for creative content of TV

advertisement [36] and in-market performance of tested TV ads [45]. Interestingly, all these

composite or single-score EEG measures have been based on different features of the EEG sig-

nal. The neural similarity score derived by Barnett and Cerf was calculated in the alpha fre-

quency band [29]. Boksem and Smidts as well as Christoforou and colleagues found that the

best predictor of movie performance in wide release was the power in the beta and gamma fre-

quency ranges over the frontal sites [30–31]. Dmochowski and colleagues found that inter-

subject temporal reliability of the EEG signal in the low frequencies, especially within the 8–10

Hz alpha frequency range over the fronto-central sites, was predictive of preference, viewer-

ship and Twitter activity for the Walking Dead pilot as well as Super Bowl ads [99]. Kong and

colleagues correlated TV commercial memorability with a composite EEG metric (the impres-

sion index) based on the power within theta and alpha frequency bands [36]. Finally, Venka-

traman and colleagues examined in-market prediction performance of a composite EEG

metric consisting of the left-to-right frontal asymmetry and power over the occipital sites in

the alpha frequency band [45]. Some of these EEG measures were derived empirically by

searching for the most predictive combination across frequency bands or scalp locations [30–

31, 99], while other studies, including the one presented herein, relied on hypothesis-driven

derivation of EEG measures that was based on previous literature [29, 36, 45].

Despite the mentioned differences in composition and derivation of these EEG metrics, all

of them have been found to correlate with behavioral measures of efficacy of the creative con-

tent, which is not surprising given that many of these measures rely on common features of

the EEG signal. For example, a decrease in alpha power, indicating attentional processing, has

been used as a base or a component of single-score EEG measures across many of studies [29,

36, 45, 99]. As we demonstrate here, attention processing, instantiated in the power fluctua-

tions within the alpha and theta frequency bands, is the most common predictor of both TV

viewership and Twitter activity and is often the minimum necessary cognitive process associ-

ated with successful stimulus perception and behavioral output [116]. And since most con-

sumer behaviors rely on more than one cognitive process, it is expected that EEG measures
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that use signal features associated with other cognitive processes will also correlate with behav-

ioral outcomes in these studies. In fact, some of the variability in the strength of the relation-

ship between EEG metrics and outcome variables, as well as which features of the EEG signal

are found to be most predictive, can be explained by the choice of the behavioral outcomes. It

is reasonable to hypothesize that different performance criteria (e.g., box office ticket sales,

Twitter volume, TV viewership, purchase intent, etc) will rely on different cognitive processes

to various degrees and, thus, will be reflected in different features of the EEG signal. Similarly,

while we found in the current study that the single-score EEG metric was similar in its predic-

tive power to the three individual EEG measures that were also represented in the single-score

metric, we would not expect the same concordance between the single-score measure pre-

sented herein and individual EEG measures that index other cognitive processes, such as sur-

prise or implicit associations. Finally, some differences in results among existing studies could

also be explained by the choice of EEG features used to index specific cognitive processes. For

example, many studies use alpha desynchronization alone as a measure of attentional focus

[29, 36, 45]. However, attentional processing has been associated with changes not only in the

alpha power but also in the power within the theta frequency band [116–117]. This could

account for the increased explanatory power of the attention metric in the current study,

which is similar in its composition to the impression index proposed by Kong and colleagues

[36]. Thus, prediction accuracy for both single-score and individual EEG measures undoubt-

edly depends on the careful selection of component features of the EEG signal.

Although single-score EEG metrics are simple to use and often correlate with and are able

to accurately predict consumer behavior, they are also limited in their explanatory depth and

scope. The validity and usability of single-score EEG metrics are contingent on their compo-

nent elements–the more features that reflect diverse cognitive processes are used, the more

accurate such composite metrics will become. However, we also demonstrate that the use of

individual EEG metrics reflecting specific cognitive and emotional processes provides a more

rich and nuanced examination of different aspects of consumer behavior.

Interpretation of the current study results should be taken cautiously in light of several limi-

tations. First, as it is common in consumer neuroscience research, we employed the reverse

inference approach. Specifically, we did not directly manipulate stimulus properties to interro-

gate a specific cognitive process. Rather, we relied on extensive literature repeatedly detailing

associations between changes in EEG power in particular frequency bands and corresponding

cognitive processes, including attention, memory, and motivation. As discussed above, the

exact composition of EEG metrics that are taken to index each of these cognitive processes is

likely to affect accuracy and reliability of obtained results. It is also possible that other cognitive

processes may have contributed to changes in EEG power within specific frequency bands; for

example, anxiety and cognitive control are sometimes associated with increased midline theta

[118]. However, given the extant literature, the effect of these secondary contributions to cur-

rent results is likely to be minor. Second, the design of the current study was cross-sectional,

where a single episode of each TV show was examined. This approach has considerable bene-

fits since it allows generalizability across shows of various genres, popularity, broadcast charac-

teristics, etc. However, we did not test whether EEG measures in response to a single episode

(such as a pilot) can be used to predict TV show viability (viewership and social media engage-

ment) for subsequent episodes. Several previous studies have demonstrated that such predic-

tions are possible by linking EEG activity in response to movie trailers with subsequent

box office performance of the corresponding movies [29–31]. Our study serves as a proof of

concept that EEG measures can be successfully used to assess performance of TV program-

ming, and future research is needed to establish longitudinal prediction value of EEG indices

of attention, memory, emotional motivation, and overall engagement. It is also unknown
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whether the success of all television show genres relies on similar cognitive and emotional pro-

cesses or whether we are likely to find different patterns of EEG responses, indicating different

weights for attention, memory, or motivation, for documentaries vs. dramas vs. reality TV.

Finally, the current study used population-level behaviors as the output variables. We did not

assess whether EEG measures correlated with viewers’ subjective self-reported opinions about

and preferences towards the tested show episodes. Future research should address the above

questions and aim to replicate and extend these findings, providing more in-depth analysis of

core factors that contribute to TV show success.

In summary, we demonstrate that the best predictors of TV viewership and Twitter engage-

ment for prime-time TV shows are a combination of attention, emotional motivation, and

memory processes. Attentional focus towards the show content translated to both continuous

single-episode TV viewership and greater Twitter activity. In contrast, emotional motivation

processes were critical for Twitter activity but not TV viewership. These results reveal that suc-

cessful TV shows are able to capture viewers’ attention and evoke positive emotional responses

and demonstrate that EEG-derived measures of specific cognitive processes can predict success

or failure of TV content and can be used to predict naturalistic population behaviors.

Supporting information
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87. Rodrigues J, Müller M, Mühlberger A, Hewig J. Mind the movement: Frontal asymmetry stands for

behavioral motivation, bilateral frontal activation for behavior. Psychophysiology. 2018: 55: 12908.

Available from: http://onlinelibrary.wiley.com/doi/epdf/10.1111/psyp.12908.

88. Alekseichuk I, Turi Z, de Lara GA, Antal A, Paulus W. Spatial working memory in humans depends on

theta and high gamma synchronization in the prefrontal cortex. Curr Biol. 2016; 26: 1–9. https://doi.

org/10.1016/j.cub.2015.11.020

89. Benchenane K, Tiesinga PH, Battaglia FP. Oscillations in the prefrontal cortex: A gateway to memory

and attention. Curr Opin Neurobiol. 2011; 21: 475–485. https://doi.org/10.1016/j.conb.2011.01.004

PMID: 21429736

90. Després O, Lithfous S, Tromp D, Pebayle T, Dulour A. Gamma oscillatory activity is impaired in epi-

sodic memory encoding with age. Neurobiol Aging. 2017; 52: 53–65. https://doi.org/10.1016/j.

neurobiolaging.2016.12.019 PMID: 28113088

91. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review

and analysis. Brain Res Rev. 1999; 67: 157–182.

92. Osipova D, Takashima A, Oostenveld R, Fernandez G, Maris E, Jensen O. Theta and gamma oscilla-

tions predict encoding and retrieval of declarative memory. J Neurosci. 2006; 26: 7523–7531. https://

doi.org/10.1523/JNEUROSCI.1948-06.2006 PMID: 16837600

93. Summerfield C, Mangels JA. Coherent theta-band EEG activity predicts item-context binding during

encoding. NeuroImage. 2005; 24: 692–703. https://doi.org/10.1016/j.neuroimage.2004.09.012 PMID:

15652304

94. Werkle-Bergner M, Müller V, Li S-C, Lindenberger U. Cortical EEG correlates of successful memory

encoding: Implication for lifespan comparisons. Neurosci Behav Rev. 2006; 30: 839–854.

95. Falk EB, O’Donnell MB, Lieberman MD. Getting the word out: Neural correlates of enthusiastic mes-

sage propagation. Front Hum Neurosci. 2012; 6: 313. https://doi.org/10.3389/fnhum.2012.00313

PMID: 23189049

96. O’Donnell MB, Bayer JB, Cascio CN, Falk EB. Neural bases of recommendations differ according to

social network structure. Soc Cogn Affect Neurosci. 2017; 12: 61–69. https://doi.org/10.1093/scan/

nsw158 PMID: 28100830

97. Fischer NL, Peres R, Fiorani M. Frontal alpha asymmetry and theta oscillations associated with infor-

mation sharing intention. Front Behav Neurosci. 2018; 12: 166. Available from: https://doi.org/10.

3389/fnbeh.2018.00166 PMID: 30116183

98. Pynta P, Seixas SAS, Nield GE, Hier J, Millward W, Silberstein RB. The power of social television:

Can social media build viewer engagement? A new approach to brain imaging of viewer immersion. J

Advert Res. 2014; 54: 71–80.

99. Dmochowski JP, Bezdek MA, Abelson BP, Johnson JS, Schumacher EH, Parra LC. Audience prefer-

ences are predicted by temporal reliability of neural processing. Nat Commun. 2014; 5: 4567. https://

doi.org/10.1038/ncomms5567 PMID: 25072833

100. Broach VC Jr, Page TJ Jr, Wilson RD. Television programming and its influence on viewers’ percep-

tions of commercials: The role of progpram arousal and pleasantness. J Advert. 1995; 24: 45–54.

101. Manning S, Larsen V. Ad pod effects in TV advertising: Order, adjacency, and informational/emotional

appeal. Acad Mark Stud J. 1999; 3.

102. Roy M. Effects of commercial breaks placement on television advertisement effectiveness. Int J Bus

Soc Sci. 2013; 4: 73–79.

103. Keil A, Debener S, Gratton G, Junghofer M, Kappenman ES, Luck SJ, et al. Committee reports: Publi-

cation guidelines and recommendations for studies using electroencephalography and magnetoen-

cephalography. Psychophysiology. 2014; 51: 1–21. https://doi.org/10.1111/psyp.12147 PMID:

24147581

104. Lau TM, Gwin JT, Ferris DP. How many electrodes are really needed for EEG-based mobile brain

imaging? J Behav Brain Sci. 2012; 2: 387–393.

EEG correlates of TV viewership and Twitter activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0214507 March 28, 2019 26 / 27

https://doi.org/10.1111/j.1469-8986.2007.00609.x
http://www.ncbi.nlm.nih.gov/pubmed/17910730
http://www.ncbi.nlm.nih.gov/pubmed/14986837
http://www.ncbi.nlm.nih.gov/pubmed/12751808
http://onlinelibrary.wiley.com/doi/epdf/10.1111/psyp.12908
https://doi.org/10.1016/j.cub.2015.11.020
https://doi.org/10.1016/j.cub.2015.11.020
https://doi.org/10.1016/j.conb.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21429736
https://doi.org/10.1016/j.neurobiolaging.2016.12.019
https://doi.org/10.1016/j.neurobiolaging.2016.12.019
http://www.ncbi.nlm.nih.gov/pubmed/28113088
https://doi.org/10.1523/JNEUROSCI.1948-06.2006
https://doi.org/10.1523/JNEUROSCI.1948-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16837600
https://doi.org/10.1016/j.neuroimage.2004.09.012
http://www.ncbi.nlm.nih.gov/pubmed/15652304
https://doi.org/10.3389/fnhum.2012.00313
http://www.ncbi.nlm.nih.gov/pubmed/23189049
https://doi.org/10.1093/scan/nsw158
https://doi.org/10.1093/scan/nsw158
http://www.ncbi.nlm.nih.gov/pubmed/28100830
https://doi.org/10.3389/fnbeh.2018.00166
https://doi.org/10.3389/fnbeh.2018.00166
http://www.ncbi.nlm.nih.gov/pubmed/30116183
https://doi.org/10.1038/ncomms5567
https://doi.org/10.1038/ncomms5567
http://www.ncbi.nlm.nih.gov/pubmed/25072833
https://doi.org/10.1111/psyp.12147
http://www.ncbi.nlm.nih.gov/pubmed/24147581
https://doi.org/10.1371/journal.pone.0214507


105. Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics

including independent component analysis. J Neurosci Methods. 2004; 15: 9–21.

106. Hoffmann S, Falkenstein M. The correction of eye blink artefacts in the EEG: A comparison of two

prominent methods. PLoS ONE. 2008; 3: e3004. Available from: https://doi.org/10.1371/journal.pone.

0003004 PMID: 18714341

107. Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order

statistics and independent component analysis. Neuroimage. 2007; 34: 1443–1449. https://doi.org/10.

1016/j.neuroimage.2006.11.004 PMID: 17188898

108. Pampu NC. Study of effects of the short time Fourier transform configuration on EEG spectral esti-

mates. Acta Technica Napoc Electron Telecommun. 2011; 52: 26–29.

109. Grandchamp R, Delorme A. Single-trial normalization for event-related spectral decomposition

reduces sensitivity to noisy trials. Front Psychol. 2011; 2: 236. Available from: https://doi.org/10.3389/

fpsyg.2011.00236 PMID: 21994498

110. Freeman WJ, Holmes MD, Burke BC, Vanhatalo S. Spatial spectra of scalp EEG and EMG from

awake humans. Clin Neurophysiol. 2003; 114: 1053–1068. PMID: 12804674

111. Ignaccolo M, Latka M, Jernajczyk W, Grigolini P, West BJ. The dynamics of EEG entropy. J Biol Phys.

2010; 36: 185–196. https://doi.org/10.1007/s10867-009-9171-y PMID: 19669909

112. Danaher PJ. What happens to television ratings during commercial breaks? J Advert Res. 1995; 35:

37–47.

113. Schweidel DA, Kent RJ. Predictors of the gap between program and commercial audiences: An inves-

tigation using live tuning data. J Mark. 2010; 17: 124–138.

114. Wilbur KC. Advertising content and television advertising avoidance. J Media Econ. 2016; 29: 51–72.

115. Thompson FT, Levine DU. Examples of easily explainable suppressor variables in multiple regression

research. Multiple Linear Regres Viewp. 1997; 24: 11–13.

116. Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P. Dynamics of active sensing and per-

ceptual selection. Curr Opin Neurobiol. 2010; 20: 172–176. https://doi.org/10.1016/j.conb.2010.02.

010 PMID: 20307966

117. Fiebelkorn IC, Pinsk MA, Kastner S. A dynamic interplay within the frontoparietal network underlies

rhythmic spatial attention. Neuron. 2018; 99: 843–853.

118. Cavanagh J, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: Meta-analytic

evidence. J Physiol Paris. 2015; 109: 3–15. https://doi.org/10.1016/j.jphysparis.2014.04.003 PMID:

24787485

EEG correlates of TV viewership and Twitter activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0214507 March 28, 2019 27 / 27

https://doi.org/10.1371/journal.pone.0003004
https://doi.org/10.1371/journal.pone.0003004
http://www.ncbi.nlm.nih.gov/pubmed/18714341
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://doi.org/10.1016/j.neuroimage.2006.11.004
http://www.ncbi.nlm.nih.gov/pubmed/17188898
https://doi.org/10.3389/fpsyg.2011.00236
https://doi.org/10.3389/fpsyg.2011.00236
http://www.ncbi.nlm.nih.gov/pubmed/21994498
http://www.ncbi.nlm.nih.gov/pubmed/12804674
https://doi.org/10.1007/s10867-009-9171-y
http://www.ncbi.nlm.nih.gov/pubmed/19669909
https://doi.org/10.1016/j.conb.2010.02.010
https://doi.org/10.1016/j.conb.2010.02.010
http://www.ncbi.nlm.nih.gov/pubmed/20307966
https://doi.org/10.1016/j.jphysparis.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24787485
https://doi.org/10.1371/journal.pone.0214507

