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Abstract

This study’s objective was to determine the accuracy of using current computed tomography

(CT) scan and software techniques for rapid prototyping by quantifying the margin of error

between CT models and laser scans of canine skull specimens. Twenty canine skulls of

varying morphology were selected from an anatomy collection at a veterinary school. CT

scans (bone and standard algorithms) were performed for each skull, and data segmented

(testing two lower threshold settings of 226HU and -650HU) into 3-D CT models. Laser

scans were then performed on each skull. The CT models were compared to the corre-

sponding laser scan to determine the error generated from the different types of CT model

parameters. This error was then compared between the different types of CT models to

determine the most accurate parameters. The mean errors for the 226HU CT models, both

bone and standard algorithms, were not significant from zero error (p = 0.1076 and p =

0.0580, respectively). The mean errors for both -650HU CT models were significant from

zero error (p < 0.001). Significant differences were detected between CT models for 3 CT

model comparisons: Bone (p < 0.0001); Standard (p < 0.0001); and -650HU (p < 0.0001).

For 226HU CT models, a significant difference was not detected between CT models (p =

0.2268). Independent of the parameters tested, the 3-D models derived from CT imaging

accurately represent the real skull dimensions, with CT models differing less than 0.42 mm

from the real skull dimensions. The 226HU threshold was more accurate than the -650HU

threshold. For the 226HU CT models, accuracy was not dependent on the CT algorithm. For

the -650 CT models, bone was more accurate than standard algorithms. Knowing the inher-

ent error of this procedure is important for use in 3-D printing for surgical planning and medi-

cal education.
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Introduction

The standard imaging modalities available, including computed tomography (CT) scans, are

limited in their ability to clearly and accurately represent three dimensional (3-D) space on

two dimensional (2-D) viewing screens; such representation is helpful to understand structural

complexities in medicine [1]. Therefore, in recent years, rapid prototyping technology—the

transformation of a computer model to a physical 3-D model—has begun to be used in the

human and veterinary medical fields in several settings [2].

In human surgery, 3-D printing research has focused on the creation of patient-specific

implants and cutting guides, which have both been shown to have several advantages [3,4].

Advantages of cutting guides include a decrease in anesthesia time, a reduced need for analge-

sics, decreased blood loss, possibly reduced infection rates along with a decreased need for

antibiotic use, reduced intraoperative fluoroscopic navigation causing a decrease in radiation

exposure, and improved surgical outcome [3,4]. In the field of neurology specifically, 3-D

printing has been reported for surgical planning, including for neurosurgery and cranial/

orbital surgery [5], as well as for the creation of custom implants and cranial plates for patients

with head injuries [5,6]. Anatomical models are utilized to shape the implant prior to surgery

resulting in an improved fit of the implant [5]. Although 3-D printing has been extensively

reported in human medicine, the literature has mostly been case-based, which does not neces-

sarily extrapolate to the population.

In veterinary medicine, research is even more sparse than that of human medicine.

Research in canines has recently focused on experimental models of bone tissue engineering

[7–10]. Three-dimensional printing has been utilized in surgical applications including pros-

thetic lung implantation [11], as well as surgical guides in dental implant surgery [12], rostral

mandibular reconstruction [13], and ophthalmology [14]. These few cases suggested that the

3-D models had a positive impact on veterinary medicine and should therefore be utilized in

surgical planning and education for students and clients, but this data is clearly lacking in neu-

rosurgical applications.

In 3-D printing research specifically, there is not yet a standard printing process in human

or veterinary medicine that those new to the field might follow [15]. There have been several

proposals made for a protocol in human medicine, including recommended CT scan guide-

lines which give the ideal image for creating 3-D printed models [16], a quality assurance

framework for all steps of the medical 3-D printing process [17], and a description of the step-

by-step instructions for the entire 3-D printing process used for patient-specific brains and

skulls [18]. Unfortunately, these few proposals may not be useful overall because they are not

yet validated standard protocols and do not give specific and quantifiable data or instructions

that can be replicated.

Thus, although there have been descriptions of the medical applications of 3-D printing, as

well as proposals for accuracy and standardization, a standard process and imaging protocol

remains lacking. There are no reports of the magnitude of error that might be accumulated in

the modelling process using current standard equipment and software. Clear evidence-based

guidelines are needed to optimize the accuracy of the imaging modality and 3-D model used

in these applications. Further, the question arises whether current standard CT scan protocols

might be sufficient for accurate 3-D modelling, without developing a specific 3-D scanning

protocol that may have a higher radiation dose or may only be performed in select cases.

Assessing the utility of routine CT scan protocols would open the possibility of retrospective

and prospective data collection such that any patient could have an accurate 3-D model made.

The purpose of this study is therefore to determine the optimal 3-D digital modelling process

for canine skulls, an example of complex anatomical topography, using standard medical

CT accuracy for 3D modelling
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patient CT scan image acquisition protocols. Clarifying the 3-D digitization process for routine

CT images and understanding their inherent error will provide a basis for future accuracy

claims in 3-D design and printing. The objective for this particular study is to quantify the

error between the 3-D models generated from standard medical CT scans and gold-standard

3-D laser scans of canine skulls, by overlaying the digital images and measuring the difference,

in millimeters, to determine the accuracy of 3-D printing for future applications. The hypothe-

sis of this study is that 3-D digital skull models derived from CT imaging accurately represent

the real skull dimensions.

Materials and methods

Sample

Twenty preserved canine skull specimens of varying morphology, and devoid of any soft tissue

structures, were selected from the Veterinary Anatomy Laboratory in the Department of Bio-

medical Sciences at the University of Guelph. These were chosen at random with no exclusion

criteria.

Procedures

Each skull was digitized via two methods: 1) CT scanning and 2) laser scanning.

1. CT scanning. CT scans for each skull were obtained using the medical imaging param-

eters in accordance with the Ontario Veterinary College Health Sciences Centre patient proto-

cols. This procedure was completed using a 16-slice detector GE Brightspeed CT scanner. The

raw data were acquired with a standardized protocol in helical mode, 1.0-second rotation

time, 0.562:1 pitch, 120 kV and 250 mA, 25-cm collimation, 512 x 512 matrix size, 0.488 mm

in plane resolution, 0.625 mm through plane resolution. The dataset underwent reconstruc-

tions using both Bone Plus and Standard algorithms. This protocol gave a total of two CT data-

sets per skull (Fig 1) and forty CT datasets across all skulls. The 2-D CT scans were then

transformed into digital 3-D CT models using Materialise Mimics Research version 19.0, 3-D

medical image processing software. This procedure was completed twice for each CT scan, via

differing systematic threshold adjustments of contrast and brightness. The threshold value was

Fig 1. Procedure flowchart. Flowchart representing the simplified procedure for a single canine skull. This procedure

was repeated for each of the 20 skulls in the sample, resulting in a total of 20 mean errors calculated for each of the four

types of CT model compared to its corresponding laser scan.

https://doi.org/10.1371/journal.pone.0214123.g001
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represented using Hounsfield units (HU), which vary based on the tissue density, more specifi-

cally the linear attenuation coefficient. The first segmentation was done using a software

default minimum threshold of 226HU, and then the Thresholding option was opened up to

include HU to a manual minimum threshold of -650HU for the second segmentation. The

first threshold value was chosen based on the default threshold set for bone tissue CT imaging

in the software, while the second threshold value was selected from a published description of

bone tissue window values for CT scan imaging [19]. For both segmentations, the maximum

threshold varied based on the limit for contrast and brightness determined by the software for

each individual CT scan. The upper skull was then separated from the mandible using the Split
Mask option, by manually highlighting the region of interest in each slice. The articular surface

of the temporomandibular joint was not included in the comparison. These slices were manu-

ally edited to ensure the separation was accurate using the Edit Masks option. The separate

upper skull mask was then made into a 3-D CT model using the Calculate 3-D option. This

procedure therefore created a total of four CT models per skull (Fig 1) and eighty CT models

across all skulls. The CT models were then exported to Materialise 3-matic version 11.0, 3-D

modelling software, and saved in stereolithography (STL) format.

2. Laser scanning. The laser scans for each upper skull were obtained using a NextEngine

3D Scanner HD laser scanner. To capture all angles, a total of 2–4 scans had to be completed

per skull depending on size. The laser scans were processed using Auto-Drive, with setting

preferences consisting of 16 divisions, 17k (HD) points/square-inch, neutral target, macro

range, and either 360 degree positioning or bracket positioning. These preferences were speci-

fied in NextEngine ScanStudio HD version 2.0.2, 3-D modelling software, and the scans were

then processed using the same software. The base used to hold the skull upright for each scan

was removed using the Trim option, and the scans for each individual skull were then com-

bined using the Align option and secured using the Fuse option. This procedure therefore cre-

ated one laser scan per skull (Fig 1) and twenty laser scans across all skulls. The laser scans

were then saved in STL format.

All STL models for the eighty CT models and the twenty laser scans were imported into

Materialise 3-matic version 11.0, 3-D modelling software. The laser scan represents the outside

skull surface, therefore the outside surface of each CT model was highlighted using either the

Brush Mark option or Area Mark option and copied to a new part. Each CT model outside sur-

face was then aligned to its corresponding laser scan using the Align option, first by N Points
Registration and then by Global Registration. The aligned 3-D images were then compared

using a least squares fitting algorithm via the Create Part Comparison Analysis option and

Signedmethod (Fig 2), the latter algorithm calculating the signed error from the comparison

indicating whether the target entity was inside (negative error) or outside (positive error) the

selected entity. The output for this comparison determined the mean error between the CT

models and the laser scan, measured in millimeters. This procedure was repeated across all

skulls for each of the four types of CT models compared to its corresponding laser scan (Fig 1).

Statistical analysis

Overall mean error ± standard deviation (SD) and 95% confidence interval were calculated

across all skulls for each of the four types of CT models. In addition, a 2-sided tolerance limit

was calculated across all skulls for each of the four types of CT models to determine the error

range in which 99% of the population of CT skull models would fall into with 95% confidence.

Student’s t-tests were used to determine if the CT model mean errors were significantly dif-

ferent from zero error, indicating a significant difference from the laser scan or real skull

dimensions. The level of significance was set at 0.05.

CT accuracy for 3D modelling
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Wilcoxon signed-rank tests were used to determine if there was a significant difference

between the different CT model parameters: 1) Bone CT models: 226HU threshold compared

to -650HU threshold; 2) Standard CT models: 226HU threshold compared to -650HU thresh-

old; 3) 226HU threshold CT models: bone algorithm compared to standard algorithm; 4)

-650HU threshold CT models: bone algorithm compared to standard algorithm. The level of

significance was set at 0.05.

In addition, a trend in the data appeared which suggested that larger skulls tended to have

larger mean errors and standard deviations. Nineteen skulls were weighed without their man-

dibles. One skull (specimen 2) could not be accurately weighed due to the fact that the mandi-

ble and C1 were permanently mounted to it. To examine this trend, Pearson correlation

coefficients were calculated between average skull weight and both the mean error and average

SD across all skulls for each of the four types of CT models. The Spearman correlation was

used to determine if there was an effect of skull weight measured in grams with the coefficient

of variation (CV) for the four types of CT models.

All analyses were performed by use of Base SAS version 9.4 statistical analysis software.

Results

Of the 20 skulls included in the study, the breed was known for 14 (6 were of indeterminate, or

mixed, breed). Breeds were Pomeranian, Boston Terrier, Dalmatian, Beagle, Dachshund, Col-

lie, Chow Chow, Boxer, Bullmastiff, Pit Bull, Great Dane, Newfoundland, Irish Wolfhound,

and Saint Bernard. The 19 weighed skulls ranged in weight from 22g to 430.7g, with mean

178.98g and standard deviation 114.25.

The CT scanner had an in-plane resolution of 0.488mm and a through-plane resolution of

0.625mm. To detect differences (errors) of this size would require 4 skulls with 93% and 99%

power respectively. The Pearson correlation test had 83% power with 20 skulls to detect

r = 0.6.

Overall mean error and variance data were calculated for each of the four types of CT

models as reported in Table 1. Detection of a significant difference between the overall CT

model mean error and zero error varied depending on the threshold of the CT model (Fig 3).

The mean errors calculated for both 226HU threshold CT models using the bone algorithm

and the standard algorithm were not statistically significant (p = 0.1076 and p = 0.0580,

Fig 2. Sample error maps. Shown is an image of the aligned CT model and its corresponding laser scan for two

different skulls. The colour map indicates the deviation in millimeters between the two models as determined by the

software analysis. (A) Skull 20, indicating a small mean error. (B) Skull 9, indicating a relatively larger mean error.

https://doi.org/10.1371/journal.pone.0214123.g002

CT accuracy for 3D modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0214123 March 25, 2019 5 / 10

https://doi.org/10.1371/journal.pone.0214123.g002
https://doi.org/10.1371/journal.pone.0214123


respectively). In contrast, the mean error calculated for both -650HU threshold CT models

using the bone algorithm and the standard algorithm were statistically significant

(p< 0.0001).

Significant differences were detected for three of the four CT model (mean ± SD) com-

parisons (Fig 3). For comparison 1) bone CT models: the difference between the 226HU

threshold (-0.0380mm ± 0.1005mm) and the -650HU threshold (0.2671mm ± 0.1137mm) was

significant (p< 0.0001). For comparison 2) standard CT models: the difference between

the 226HU threshold (-0.0441mm ± 0.1071mm) and the -650HU threshold (0.4139mm ±
0.1284mm) was significant (p< 0.0001). For comparison 4) -650HU threshold CT models: the

difference between the bone algorithm (0.2671mm ± 0.1137mm) and the standard algorithm

(0.4139mm ± 0.1284mm) was significant (p< 0.0001). In contrast to these three comparisons,

for comparison 3) 226HU threshold CT models: the difference between the bone algorithm

(-0.0380mm ± 0.1005mm) and the standard algorithm (-0.0441mm ± 0.1071mm) was not sig-

nificant (p = 0.2268).

Table 1. Summary statistics for the CT model parameters tested.

CT Model Mean±SD

(mm)

CI (95%)

(mm)

TL (99% with 95%) (mm) Significance

(α = 0.05)

Bone 226HU -0.0380 ± 0.1005 -0.0850, 0.0091 -0.4020, 0.3260 0.1076

Standard 226HU -0.0441 ± 0.1071 -0.0985, 0.0018 -0.4360, 0.3400 0.0580

Bone -650HU 0.2671 ± 0.1137 0.2139, 0.3203 -0.1440, 0.6790 <0.0001�

Standard -650HU 0.4139 ± 0.1284 0.3538, 0.4740 -0.0511, 0.8789 <0.0001�

SD = Standard deviation. CI = Confidence interval. TL = Tolerance limit.

� significant difference from zero error.

https://doi.org/10.1371/journal.pone.0214123.t001

Fig 3. Graphical representation of the overall mean error for each of the four types of CT model compared to its

corresponding laser scan. Error bars represent the 95% confidence interval around the mean. Between-group

comparisons are visually represented above the graph. � p< 0.0001 representing a significant difference between the

mean error and zero error, and representing a significant difference detected between the mean errors for comparisons

1) bone CT models, 2) standard CT models, and 4) -650HU threshold CT models. n.s. = Not significant.

https://doi.org/10.1371/journal.pone.0214123.g003
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PLOS ONE | https://doi.org/10.1371/journal.pone.0214123 March 25, 2019 6 / 10

https://doi.org/10.1371/journal.pone.0214123.t001
https://doi.org/10.1371/journal.pone.0214123.g003
https://doi.org/10.1371/journal.pone.0214123


There were no significant correlations between skull weight and mean error for any of the

four types of CT model. In contrast, there were positive correlations between skull weight and

average SD for all of the four types of CT model: bone algorithm with 226HU threshold (r =

0.8674, p =< 0.0001); standard algorithm with 226HU threshold (r = 0.7828, p = 0.0009); bone

algorithm with -650HU threshold (r = 0.7610, p = 0.0016); and standard algorithm with -650HU

threshold (r = 0.8010, p = 0.0004). The Spearman correlation indicated no positive association of

weight with the CV for both the standard and bone algorithms with 226HU threshold (p =

0.2684 and p = 0.5233 respectively). Both the standard and bone algorithms with 650HU thresh-

old were significant for a positive correlation (p = 0.0027 and p = 0.00039 respectively).

Discussion

CT scanning is the gold standard for bone imaging, and laser scanning is the gold standard for

reproducing bone surfaces in exact detail. Therefore, this study was completed to quantify the

error generated in 3-D digital canine skull models, compared to laser scans, by using routine

veterinary patient CT scans as templates.

The data supported the original hypothesis. This study quantified the error generated when

routine CT models are used for rapid prototyping and provided evidence for which commonly

used CT algorithm and threshold parameters are the most accurate. Independent of the differ-

ent parameters tested, the 3-D skull models derived from CT imaging accurately represent the

real skull dimensions for use in a clinical veterinary setting within 0.42 mm. This error is less

than the 0.488 mm CT scanner in plane resolution and also less than the 0.625 mm slice thick-

ness [20].

CT threshold windows differ in order to view specific tissue types in better detail [19]. Inde-

pendent of the image acquisition algorithm used, both types of 226HU threshold CT models

had a negative mean error on average, indicating that these CT models are smaller than the

laser scans. Despite this difference, the actual size difference was not significantly different

from zero. This finding indicates that the 226HU threshold CT models accurately represent

the laser scans, and therefore they statistically represent the real skull dimensions. In contrast,

both types of -650HU threshold CT models had a positive mean error on average, indicating

that these CT models are larger than the laser scans. Both of these types of CT models had a

mean error that was significantly different from zero. While this result might suggest that the

-650HU threshold CT models do not accurately represent the laser scans, this is a statistical

difference. Clinically, these results may not have practical impact due to the very minimal

error generated on the millimeter scale. All types of CT models had a mean error within 0.42

mm from the laser scans, with all confidence intervals spanning a range within 0.13 mm mean

error with 95% confidence. The tolerance limits indicate that 99% of all canine skull CT mod-

els will fall within a range of only 0.93 mm mean error with 95% confidence. Clinically, these

values indicate that regardless of the HU minimum threshold used, the CT models are a very

accurate representation of the real skull dimensions for use in rapid prototyping for surgical

planning and medical education. Moreover, the default minimum threshold set by the soft-

ware (226HU) and the manual minimum threshold determined from previous literature

(-650HU) [19] were statistically compared. Testing the minimum thresholds for both the bone

window for the software as well as the optimal bone window as drawn from the literature

determines which threshold is the most accurate for creation of the 3-D CT models. For both

bone CT models and standard CT models, there was a significant difference between the mean

error for the 226HU threshold compared to the -650HU threshold, with the 226HU threshold

mean error being closer to the real skull dimensions in both cases. This finding indicates that

the default threshold of 226HU is more accurate than the manual threshold of -650HU.

CT accuracy for 3D modelling
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In addition, this study tested the difference between the CT image acquisition algorithm,

bone versus standard, for use in rapid prototyping. The different algorithms are used for opti-

mal viewing of specific tissue types, with the bone algorithm being optimal for visualizing

bone tissue and the standard algorithm being optimal for visualizing soft tissue. For the -650

threshold CT models, there was a significant difference between the mean error for the bone

algorithm compared to the standard algorithm, with the bone algorithm mean error being

closer to the real skull dimensions. This was not the case for the 226HU threshold CT models,

where a significant difference between the mean error for the bone algorithm compared to the

standard algorithm was not detected. This indicates that for the 226HU threshold CT models,

the accuracy of the procedure is not dependent on the original CT algorithm used.

This study is not free of limitations. The data suggested that skull size, and therefore canine

breed, may have had an impact on the accuracy of this procedure using the 650HU threshold.

It was determined that as the weight of the skulls increased, the average standard deviation

also increased, which indicates that the 650HU CT models of larger skulls are less likely to pro-

duce an accurate result when used for rapid prototyping. It has been suggested that different

threshold values may be required for different skull sizes [21]. This theory could explain why

the larger skulls appear to be less accurate using this threshold. The data reported here are

absolute errors rather than relative errors, and therefore it is possible that the relative error

average standard deviation may not have showed this same trend across the spectrum of skull

weights. Unfortunately, not enough data was obtained from the software for this analysis. The

coefficient of variation for the four models showed no positive correlation with weight for the

standard and bone algorithms with 256HU.

Another limitation is that it was not possible to measure the registration error raised by the

software default registration procedure. Therefore, this unknown error is propagated to the

measured mismatch between our two models. The results reported here are also limited

because they are an indicator of this particular moment in time. The data reported here was

based on CT scanning technology with a minimum through plane resolution of 0.625mm.

Future technology will have an impact on this CT scanning threshold. Although the current

results indicate a highly accurate procedure for the use of canine skull CT scans for rapid pro-

totyping in veterinary medicine, improved procedures will be developed. Further, the model

mismatch error data provided herein should be compared with the resolution of the eventual

3-D printers as the error may be within the output parameters.

The results of this study establish an efficient and accurate basis for 3-D patient-specific

rapid prototyping using routine procedures. Rapid prototyping via 3-D printing has been

explored in human medical fields but has only recently begun to be explored in veterinary

medicine. It promises a surgeon-independent and a patient-specific approach in the veterinary

neurosurgical field that could significantly shorten anesthesia times. It offers to revolutionize

veterinary medical education and animal use for research through accurate anatomically

detailed models. To capitalize on these opportunities, protocols must be established in the

translation of veterinary medical imaging to 3-D printing. Future research should continue to

establish an optimal CT imaging protocol and 3-D modelling process in veterinary medicine.

The process for creating accurate 3-D skulls will have immediate clinical impact in terms of

surgical planning and patient-specific implant creation. For example, the design of patient-

specific cutting guides would ensure exact drilling margins compared to free-hand drilling.

Both patient-specific cutting guides and implants are expected to reduce the duration of anes-

thesia and the risk of human error. The data obtained from this study has formed the basis for

future developments in personalized medicine, patient-specific surgery, and veterinary medi-

cal education enhancement.

CT accuracy for 3D modelling
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Supporting information

S1 Table. Table of means and standard deviations for each skull under each CT acquisition

algorithm (bone vs standard) and at each software threshold setting (226HU and -650HU),

including skull weights.

(XLSX)
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