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Abstract

Strongly polyphenic social insects provide excellent models to examine the neurobiological

basis of division of labor. Turtle ants, Cephalotes varians, have distinct minor worker, sol-

dier, and reproductive (gyne/queen) morphologies associated with their behavioral profiles:

small-bodied task-generalist minors lack the phragmotic shield-shaped heads of soldiers,

which are specialized to block and guard the nest entrance. Gynes found new colonies and

during early stages of colony growth overlap behaviorally with soldiers. Here we describe

patterns of brain structure and synaptic organization associated with division of labor in C.

varians minor workers, soldiers, and gynes. We quantified brain volumes, determined scal-

ing relationships among brain regions, and quantified the density and size of microglomeruli,

synaptic complexes in the mushroom body calyxes important to higher-order processing

abilities that may underpin behavioral performance. We found that brain volume was signifi-

cantly larger in gynes; minor workers and soldiers had similar brain sizes. Consistent with

their larger behavioral repertoire, minors had disproportionately larger mushroom bodies

than soldiers and gynes. Soldiers and gynes had larger optic lobes, which may be important

for flight and navigation in gynes, but serve different functions in soldiers. Microglomeruli

were larger and less dense in minor workers; soldiers and gynes did not differ. Correspon-

dence in brain structure despite differences in soldiers and gyne behavior may reflect devel-

opmental integration, suggesting that neurobiological metrics not only advance our

understanding of brain evolution in social insects, but may also help resolve questions of the

origin of novel castes.
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Introduction

Adaptive morphology and neuroarchitecture support specialized behavior in complex social

systems [1–5]. In the eusocial Hymenoptera, females exhibit a primary reproductive division

of labor into fertile (queen) and sterile (worker) castes that potentially have identical genomes

[6]. In most species, queens are morphologically and behaviorally adapted for dispersal by

flight; dealate inseminated queens then transition from nest establishment and nursing behav-

iors during colony foundation to reproduction [7,8]. These state changes in behavior are asso-

ciated with neurobiological changes in the brain [9,10]. Division of labor also concerns the

differentiation of sterile workers into physical subcastes that show task specializations [11–18].

The brains of workers in different subcastes as well as those of queens and workers may be dis-

tinguished by the relative proportion of neuropil in functionally specialized brain regions that

correlate with morphological and behavioral differentiation [19–23].

The behavioral demands of colony foundation and reproduction have neurobiological cor-

relates [9,10,20,21] and brain structure has been demonstrated to be associated with subcaste

division of labor in some ants [22,24–26]. In taxa with distinct castes and worker subcastes,

size, form, and behavioral specialization are predicted to be integrated with neuroarchitecture,

but these relationships, and their developmental linkages, are not well understood. Indeed,

worker polymorphism, age, and the development and differentiation of social roles can be

reflected in divergent neuroanatomical phenotypes in some polymorphic ant species [5,22],

but conserved in others [25]. At the cellular level, behavioral differentiation of female pheno-

types may also be associated with the structure of synaptic complexes termed microglomeruli

(MG) formed from sensory neuron projection boutons and dendritic spines of mushroom

body (MB) intrinsic Kenyon cells [27,28]. The organization of these microglomeruli, which

may enable neural plasticity and support behavioral diversity, has been used as a proxy for

information-processing abilities that appear to correlate with task performance demands [28–

32]. However, MG structure may not be consistently associated with worker size-related

behavioral differentiation [25,31–33].

Ant species characterized by exceptional patterns of caste and subcaste evolution provide

important models to examine relationships of morphology, brain structure, and behavioral

specialization in association with division of labor and related elements of social complexity

[5,22,32,34]. Social organization in the turtle ant Cephalotes varians is characterized by a

reproductive (queen) caste and dimorphic subcastes of small minor workers and larger highly

specialized phragmotic soldiers that use their shield-shaped heads as physical barriers to con-

trol entry to the nest (Fig 1). Soldiers, which serve as “living doors,” perform few behaviors

apart from their important role in colony security [35,36]. C. varians gynes, like soldiers, have

shield-shaped heads used to block nest entrances during haplometrotic (single queen) colony

foundation [S. Powell, personal communication] but later in colony development become spe-

cialized on reproduction. The extraordinary polymorphism associated with division of labor

in C. varians thus involves striking variation in size and extreme differences in morphology

and social function. In light of this caste and subcaste differentiation, we hypothesized that

brain size, compartment scaling, and synaptic organization would correlate with reproductive

and worker roles, particularly the remarkable morphology of soldiers and their specialized

behavior. Due to similarity in body size and head morphology, we predicted soldiers and

gynes would have significantly larger brains than minor workers, and that brain structure in

mature C. varians minor workers would be characterized by large MBs, centers of learning,

memory, and sensory integration, due to their significantly larger behavioral repertoire [35,36]

in comparison to soldiers and gynes. We hypothesized that brains of soldiers and gynes, which

share some morphological characteristics likely due to common developmental pathways,
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would be less differentiated, and that patterns of synaptic organization would be similar across

female phenotypes due to the integration of brain compartment scaling and MB synaptic cir-

cuitry. Based on prior studies of task specialization in polymorphic ants [31–33], we expected

minor workers would have smaller and more dense MG compared to soldiers and gynes,

reflecting higher demands for processing social information and environmental cues, and

potentially, developmental constraints.

Methods

Ant collection and culture

Queenright C. varians colonies and colony fragments containing minor workers, soldiers, and

winged gynes were collected in red mangrove stands in March, 2015 in the Florida Keys: Key

West (24.55793˚ N; 081.76278˚ W), No Name Key (24.69786˚ N; 081.34054˚ W), and Key

Largo (25.12404˚ N; 080.40276˚ W). Collection permits were issued by the U.S. Fish and Wild-

life Service (# FFO4RFKD-2015-0) and the Florida Department of Environmental Protection

(# 0127201515). Collections did not involve endangered or protected species. Colonies were

cultured in an environmental chamber at 25˚C, 65% humidity with a 12h:12h light:dark cycle

in test tubes partially filled with water and plugged with cotton placed inside small (17cm x

12cm) plastic boxes coated with Fluon (BioQuip) with ventilated lids. Colonies were provi-

sioned with 1M sucrose every other day and pine pollen ad libitum. Head width at the widest

Fig 1. Extreme morphological differentiation in C. varians. Soldier (A, left) compared to a minor workers (A, right).

(B) Soldier using shield-shaped head to block nest entrance (minor worker above). Photo credit: Alexander Wild.

https://doi.org/10.1371/journal.pone.0213618.g001
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point (HW) was measured for all individuals sampled, average HW ± standard deviation are

reported. We used female phenotype as a categorical variable in all analyses because HW,

brain volume, and body size appear to be decoupled in C. varians.

Brain size and compartment scaling

Brains of minor workers (HW = 1.15mm ± 0.075, N = 20), soldiers (HW = 1.63 ± 0.075,

N = 20), and gynes (HW = 1.61 ± 0.070, N = 20) sampled from four queenright colonies and

seven colony fragments were processed using a modified immunohistochemical protocol

[37,38]. Brains were dissected in ice cold HEPES-buffered saline (HBS) and fixed overnight at

4˚C on a shaker in 1% zinc formaldehyde. A series of HBS washes (6 x 10 minutes) was fol-

lowed by further fixation in Dent’s fixative (4:1 methanol: dimethyl sulfoxide) for 1–2 hours

before brains were stored in 100% methanol. When ready for further processing, brains were

rehydrated in 0.1 M Tris buffer and blocked for one hour in a normal goat serum (NGS) solu-

tion (PBSTN: 5% NGS + 0.005% sodium azide in 0.2% Triton-X phosphate buffered saline

[PBST]). Brains were then incubated for four nights at 4˚C on a shaker in primary antibody,

SYNORF1 (AB_2315426; Developmental Studies Hybridoma Bank), diluted 1:30 in PBSTN.

Brains were washed again (6 x 10 minutes in 0.2% PBST) and incubated for another three

nights wrapped in foil at 4˚C on a shaker in AlexaFluor488 (ThermoFisher) goat anti-mouse

secondary antibody (1:100 in PBSTN). Brains were washed again (6 x 10 minutes in 0.2%

PBST) and dehydrated in a series of ethanol:PBS solutions (5 minutes each in 30%, 50%, 70%,

95%, 100%, 100%) and stored overnight at -20˚C wrapped in foil. Finally, brains were cleared

and mounted with methyl salicylate in stainless steel well slides. An Olympus Fluoview BX50

laser scanning confocal microscope was used to image cleared brains with either a 10X

(NA = 0.3) or 20X (NA = 0.5) objective. To produce image stacks of slices with a true thickness

of ~5 μm, optical sections in the horizontal plane (3.1 μm steps) were captured and corrected

along the z-axis (by a factor 1.59) because of axial distortion produced by the refractive index

mismatch between air and methyl salicylate [22]. To confirm that the same correction factor

could be used for the two objectives despite their different numerical aperture, we imaged

brains at both 10X and 20X and found that the objectives produced indistinguishable axial

distortion.

Construction of brain templates

The sizes of functionally distinct brain regions—the optic lobe excluding the lamina (OL,

visual input), antennal lobe (AL, olfactory input), mushroom body calyces (MBC, integrative

sensory input), mushroom body peduncle and lobes (MBP, integrative sensory output and

modulation), central complex (CX, motor integration and spatial navigation), and subesopha-

geal zone (SEZ, gustation and head movement), together with the rest of the undifferentiated

central brain (ROCX)—were quantified for one hemisphere of each brain. Compartment vol-

umes were obtained for each individual by automatic labeling, using brain templates for minor

workers, soldiers, and gynes created in diffeomorphic space [39,40]. Diffeomorphisms are

smooth invertible mappings of 3-D images commonly used in computational neuroimaging;

their topological properties enable the co-registration of brains to measure structural variation

[39,41]. C. varians brain templates consisted of 3-D average-shape brains resulting from the

combination of N co-registered original brains (N = 10) from confocal scans. Difference in

illumination of the original brains were first corrected using histogram matching [42]. Co-reg-

istration was then based on an initial affine transformation that maximizes mutual informa-

tion between brain volumes, thus identifying common neuropil shape, followed by an iterative

refinement based on local non-rigid transformations that maximize the cross-correlation of
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voxel intensities of co-registered brains. Final average shapes were created using a voxel-wise

median over co-registered brains. In a modification of the protocol described in Arganda-Car-

reras et al. [39], we did not build consensus labels, but manually traced brain regions for each

template using Amira (FEI v 6.2.0). Brain regions that span the midline (CX and SEZ) were

traced in their entirety and later divided in half to give volumes equivalent to one hemisphere.

The axis of symmetry was used to demarcate boundaries for the ROCX. All other neuropil

(OL, AL, MBC, and MBP) have clearly delineated boundaries. To automatically trace brain

regions, we registered individual brains against templates and for each brain applied the

reverse transform on the manual labels of a template to automatically label brain regions. All

automatic labels were validated in Amira (FEI v 6.2.0) to reduce the chance of inaccuracies,

and if needed, manual corrections were made before calculating regional volumes. All proce-

dures except the manual tracing of brain regions were implemented using Advanced Normali-

zation Tools (ANTs) software [43].

Statistical analysis of brain structure

We used analysis of variance (ANOVA) to test for the effect of female phenotype on the vol-

ume of the whole brain hemisphere as a proxy metric of total brain size, and post-hoc Tukey

Honest Significant Difference (HSD) tests to determine pairwise differences between female

groups. Scaling relationships (slope, shift, elevation) of brain region volumes with the rest of

the hemisphere volume (RH = OL + AL + MBC + MBP + CX + SEZ + ROCX–region of inter-

est) were determined using standard major axis regression analysis (SMA) to compare female

phenotypes with the package smatr [44] in R (version 3.3.2). If brain regions of female pheno-

types had similar slopes (shared β), 95% confidence intervals (CI) were calculated for the

slope, and Pearson’s chi-squared (χ2) was used to determine if the common slope significantly

differed from one. Differences among shift (axis shift) and elevation (grade shift) were exam-

ined using the Wald statistic (W2). Significant axis shifts indicate differences across groups in

mean size, whereas grade shifts indicate differences in relative investment in a particular brain

compartment at a similar x value.

Hierarchical cluster and discriminate function analyses were employed to examine the

degree of separation of brain phenotypes in multivariate space. To control for variation in

overall brain size, the proportion of neuropil in each functional subregions (OL, AL, MBC,

MBP, CX, SEZ) was calculated by dividing the region of interest volume by the volume of the

whole hemisphere. Hierarchical cluster analysis using Euclidean distance and average linkage

was used to assess groupings according to relative neuropil size without a priori assignment by

caste or subcaste. Multiscale bootstrapping methods (N = 10,000) were used to assign approxi-

mately unbiased (AU) p-values using the package pvclust to determine if clusters had signifi-

cant support [45]. We used discriminate function analyses to determine how accurately

individual brains could be classified into a priori groups. This was visualized by presenting

inertia ellipses overlaid on the biplot of the discriminant factors per female phenotype via

package ade4 [46]. Press’s Q statistic was calculated for both the full model and a leave-one-

out cross-validation model to assess whether groupings were classified at a probability greater

than chance.

Microglomeruli (synaptic) structure

Brains from minor workers (HW = 1.08 ± 0.073, N = 14), soldiers (HW = 1.54 ± 0.052,

N = 10) and winged gynes (HW = 1.54 ± 0.034, N = 11) sampled from three queenright lab col-

onies were processed according to modified protocols [30,47]. Brains were dissected in ice-

cold HEPES-buffered saline and fixed at 4˚C overnight on a rotator in 4% paraformaldehyde
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in 0.1 M PBS. Brains were washed (3 x 20 minutes) in 0.1 M PBS, before embedding in low

melting point agarose (5.5 g/mL PBS). A Leica VT1200S vibratome was used to produce

100 μm thick sections in the horizontal plane. Sections were treated with 2% and 0.2% PBST

each for 20 minutes to permeabilize the tissue before blocking for one hour at room tempera-

ture on a plate shaker in NGS (2% in 0.2% PBST). Sections were then incubated for at least

three nights at room temperature while covered in foil on a plate shaker in SYNORF1 (1:50)

and AlexaFluor488-phalloidin (1:500) in 0.2% PBST. Brain sections were then washed in 0.1

M PBS (5 x 20 minutes) and incubated overnight at room temperature while covered in foil on

a plate shaker in AlexaFluor568 goat anti-mouse secondary antibody (1:250) in 1% NGS-PBS.

Lastly, sections were incubated overnight in 60% glycerol-PBS followed by 80% glycerol-PBS

(30 minutes) and then mounted in 80% glycerol-PBS on glass slides sealed with nail polish.

Prepared slides were imaged without digital zoom at 1024 x 1024 pixel resolution on an Olym-

pus Fluoview FV10i (NA = 1.4) inverted laser scanning confocal microscope with a 60X oil

immersion lens. Snapshot images (1.55 μm thick) in a plane which the MB peduncle bisects

the MB calyxes were captured.

One lateral and one medial calyx, coded to blind the observer to female phenotype during

image processing, were imaged for each individual. Modified protocols [30–32,47,48] were

used to measure MG density and size. Two adjacent circles (400 μm2 each) were overlaid in

the non-dense lip region and one circle (400 μm2) was overlaid on the collar region of each

calyx. All MG, excluding those intersecting the circumference lines of the circles, were counted

using Fiji software at high digital magnification (300X). To measure the longest aspect of MG

boutons, a grid (10 μm2 squares) was overlaid on the predefined circles and a random number

generator was used to select five squares in which all MG within the square or intersecting the

top and right borders were measured. Average density of the lip and collar MG (MG/μm3)

were calculated for each individual from counts of MG and divided by the volume of the

region. Similarly, average bouton length was calculated for each individual for the lip and col-

lar region.

Statistical analysis of MG structure

ANOVA was used to examine effects of female phenotype on MG density and size in the lip

and collar regions. Shapiro and Bartlett tests were used to assess the assumptions of residual

normality and homoscedasticity, and assumptions were met for all four MG metrics. Post-hoc

Tukey HSD tests were employed to determine the significance of pairwise comparisons if the

overall effect of female phenotype was determined to be significant. All analyses were con-

ducted in R (version 3.3.2).

Results

Brain size and compartment scaling

There was a significant effect of female phenotype on hemisphere volume (ANOVA: F2, 57 =

5.29, p = 0.008; Fig 2A). Post-hoc Tukey tests revealed that gynes had significantly larger brain

volumes than minors (p = 0.01) and soldiers (p = 0.02), which did not differ from each other

(p = 0.98). All six brain subregions had similar slopes (p> 0.05) across castes and subcastes;

therefore, grade shifts and axis shifts were examined to explore differences in compartment

proportional investment and overall mean size, respectively (Table 1 and S1 Fig). All subre-

gions with the exception of the positively allometric AL and MBP displayed isometry with the

RH. There were overall size differences indicated by axis shifts in all but the MBC and MBP.

Grade shifts were evident in all regions except the AL and SEZ; gynes and majors had dispro-

portionately large OL and CX, but minors had larger MBC and MBP.

Turtle ant brain structure
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Although groups appeared to separate according to neural phenotype, clusters were not sta-

tistically supported by multiscale bootstrapping (gyne cluster: AU p-value = 0.84, SE = 0.01,

soldier cluster: AU p-value = 0.18, SE = 0.05 minor worker cluster: AU p-value = 0.44, SE =

0.07; Fig 2B). However, when assigned group membership a priori in discriminate function

analyses, individual brains were correctly classified to caste and subcaste in at least 80% of

cases, a result that was significant (full model: Press’s Q = 102.68, p< 0.0001; leave-one-out:

Press’s Q = 67.5, p< 0.0001; Fig 2C; see discussion).

Fig 2. Multivariate analyses of caste and subcaste differences in brain structure. (A) False-colored template brains

of gynes, soldiers, and minor workers (OL: blue, AL: green, MBC: yellow, MBP: orange, CX: purple, ROCX: gray, SEZ:

not shown). (B) Dendrogram with AU p-values (%) at nodes from hierarchical analysis. (C) Inertia ellipses with center

of mass determined from discriminate function analysis. (B-C) Minor: red, soldier: green, gyne: blue.

https://doi.org/10.1371/journal.pone.0213618.g002
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Synaptic structure

Minor workers, soldiers, and gynes varied in the density and size of MG (Fig 3). Female phe-

notype significantly affected MG density in the lip (ANOVA: F2, 32 = 8.94, p< 0.001; Fig 4A)

and collar regions of the MB (ANOVA: F2, 32 = 9.84, p< 0.001; Fig 4B). Minor workers had

significantly less dense MG than soldiers and gynes. Caste and subcaste identity significantly

affected average bouton size in the lip (ANOVA: F2, 32 = 9.21, p< 0.001; Fig 4C); minor work-

ers had larger boutons. Similarly, minor workers had larger boutons in the collar, but the dif-

ference was not significant (ANOVA: F2, 32 = 2.62, p = 0.088; Fig 4D). In all comparisons,

soldiers and gynes did not significantly differ in MG metrics (Tukey HSD tests p> 0.05).

Discussion

Contrary to our body-size based prediction, C. varians gyne brains were significantly larger

than those of soldiers and minors, which did not differ. However, our predictions regarding

brain substructure scaling across castes and subcastes were supported: minors invested pro-

portionally more in MBs and gynes had absolutely and relatively larger OLs and CXs. Soldier

brain structure appeared to be intermediate between that of minors and gynes. Although the

three groups separated neuroanatomically in multivariate space, significant differences were

found only when group identity was specified a priori in discriminate analysis, indicating

greater overlap in brain structure between castes and subcastes, but differences in relative vol-

umes of the OLs and MBs.

Functional significance of C. varians brain compartment scaling and

synaptic structure

Cephalotes varians minor workers had proportionally larger MBs and smaller OLs than gynes.

Increased relative size of the OL is associated with the use of vision during flight in paper wasp

workers [21], and C. varians gynes would appear to overlap in the demands for processing

visual information during dispersal by flight from the parent nest and thus show neurobiologi-

cal convergence. However, allometrically large MBs in paper wasps may involve cognitive

demands associated with reproductive competition [20], whereas the diverse task repertoire of

sterile C. varians minor workers may require greater processing capabilities and larger MB

size. Whether the relatively small OLs of minor workers represent adaptive size variation due

Table 1. SMA analyses of log-transformed regions of interest and RH volumes for different female groups.

OL AL MBC MBP CX SEZ

Shared β 1.25 1.20 1.11 1.28 1.06 1.07

95% CI 1.03, 1.52 1.07, 1.34 0.98, 1.25 1.25, 1.43 0.89, 1.25 0.94, 1.22

β 6¼ 1? no yes no yes no no

χ 2 5.15 9.95 4.23 18.22 4.98 2.45

p value 0.16 0.02 0.24 0.0003 0.17 0.48

Grade shift G = S > M no M > S > G M > S > G G = S > M no

W2 113.2 4.66 66.71 93.46 19.45 1.86

p value < 0.0001 0.10 < 0.0001 < 0.0001 <0.0001 0.39

Axis shift G >S > M G > S = M no no G > M; S intermediate G > M; S intermediate

W2 51.96 9.82 3.83 3.79 17.51 9.56

p value < 0.0001 0.007 0.15 0.15 0.0002 0.008

Abbreviations of brain regions given in Methods, G (gynes); S (soldiers); M (minors).

https://doi.org/10.1371/journal.pone.0213618.t001

Turtle ant brain structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0213618 March 27, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0213618.t001
https://doi.org/10.1371/journal.pone.0213618


to less demanding processing of visual information or developmental constraint due to their

smaller body size is unclear. Soldiers have the largest body size of army ant (Eciton) workers,

but brain size (specifically MBs and ALs) in this subcaste is allometrically small [26], further

supporting an association of brain investment pattern and social function. However, brain

structure in army ant reproductives has not been studied.

Comparisons of MG structural variation across C. varians female phenotypes support the

hypothesis that extreme behavioral specialization is reflected in synaptic organization,

although not consistently in the manner we predicted. MG metrics were similar in soldiers

and gynes, suggesting morphology and this aspect of cellular brain organization are coupled,

in spite of apparent caste and subcaste life-history differences in behavior. Gynes fly from their

parental nest, mate, shed their wings, and then initiate new colonies. Flight likely requires nav-

igational abilities, and colony foundation involves performing diverse tasks ranging from

Fig 3. Representative micrographs of MG structure. Minor (A), soldier (B), and gyne (C) brains shown with scale bars = 50μm (A-C). MG quantification

method in an image of a gyne brain (D). Inset magnification shows distal lip circle.

https://doi.org/10.1371/journal.pone.0213618.g003
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nursing immatures to blocking intruders from entering nests. Only nest-entrance guarding by

gynes appears to overlap with the soldier repertoire, although soldiers could function in food

storage [12]. Nevertheless, MG organization in gynes and soldiers is similar, suggesting they

share genetic architectures that guide brain development.

Microglomeruli were larger and less dense in minor workers than in soldiers and gynes;

this pattern of MG density and size across female phenotypes was contrary to our prediction

that minor workers would have more densely packed MG, underpinning the need for cogni-

tive processing associated with their pluripotent task repertoire. We can interpret the signifi-

cance of this result by evaluating findings of prior studies that describe diverse correlates of

MG structure in eusocial hymenopterans. For example, MG density, size, and number have

been associated with temperature during development [49–51], learning and memory [52,53],

behavioral maturation [48,54–59], resilience to aging [47], robustness to sensory injury [60],

and division of labor [25,31,33]. Higher MG density correlates interspecifically with greater

social complexity [25,30], supporting a role for MG density in processing social information.

Intraspecific comparisons of patterns of MG structure between reproductives and workers or

across polymorphic workers, however, are inconsistently associated with division of labor.

Honeybee queens, which specialize on egg-laying, have larger and less dense MG in smaller

MBCs than workers, perhaps contributing to their relatively weak learning performance

[51,61]. In the strongly polymorphic fungus-growing ant Atta vollenweideri, MG density is

constant across size-variable workers; larger workers have correspondingly larger brains and

absolutely more MG than smaller workers [33]. Although fewer MG could constrain cognitive

processing abilities, reduced task repertoires may not reflect MG number. Kamhi et al., for

example, found no significant differences in MG between task-generalist weaver ant (Oeco-
phylla smaragdina) major workers and apparently behaviorally limited brood-care specialist

minor workers when interactions with age were excluded [25]. Increases in MG density may

be transient, occurring in response to learning [52,53], and decreases in MG density may be

associated with age, visual experience, and development of navigational ability [48,54].

Fig 4. MG density and size varies across C. varians castes. MG density (A, B) and size (C, D) in the lip (A, C) and

collar (B, D) in minors (N = 14), soldiers (N = 10), and gynes (N = 11). Tukey HSD p-value: NS> 0.05; � <0.01;
�� <0.001.

https://doi.org/10.1371/journal.pone.0213618.g004
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However, in some ant species MG density in the collar [59] or lip [52] increases for several

weeks post eclosion. Comparisons between mature (20 day) and 95 day (old) Pheidole dentata
minor workers show no significant differences in lip MG density or behavioral performance,

suggesting MG structure in this ant resists aging [47].

The temporal dynamics of MG organization suggest that variation in individual experience

and corresponding variation in MG structure is superimposed on a robust plastic neural archi-

tecture influenced by age and associated with behavioral maturation [27]. Although we did not

examine age effects on brain structure in our present study, the concept of repertoire expan-

sion, the age-related increase in task diversity [62] and efficiency [63], may provide insight

into how higher-order processing demands relate to synaptic organization in C. varians. Elec-

tron microscopy (EM) of P. dentata minor worker brains showed decreases in lip bouton den-

sity and increases in bouton size and number of synapses and vesicles with increasing minor

worker age [64]. Quantifying MG immunohistochemically, as we did here, provides a more

rapid but less detailed assessment of synaptic remodeling that yields similar results to EM [55].

Increased behavioral capability is generally associated with decreased MG density and

increased bouton size [48,54–57], and increased relative volume of MBs [22,65].

Consistent with these patterns, C. varians task-generalist minor workers had larger, less

dense MG in their disproportionately large MBCs compared to more specialized soldiers and

gynes. However, C. varians gynes have a more extensive repertoire than soldiers but similar

MG structure, although minors show more diverse behavior. This may be because we assessed

virgin gyne brain structure, which likely changes after mating and during colony foundation

[9]. MG changes may occur during the incipient stages of colony growth, when queens per-

form a wide array of tasks. Differences in MG density and size may thus be a function of expe-

rience-expectant or experience-dependent development. Soldiers, gynes, and inexperienced

(newly eclosed) minors could have small and more dense MG, but with experience, synaptic

pruning and bouton expansion may occur, reflected in MG structure. Since mature soldiers

are extremely specialized and apparently limited in experience, they may not undergo synaptic

remodeling. However, after leaving the natal nest or following insemination, neuronal activity

that may trigger synaptic remodeling [66] could occur in the brain of gynes.

Comparative analysis of brain structure in extremely polymorphic sister

clades

Our prior analysis of the integration of morphology, brain structure, and behavior in workers

of Pheidole rhea, a sister clade also characterized by extreme variation in worker form, found

significant differences in brain structure and morphology between minor workers and the two

larger size classes of soldiers [5], although behavioral repertories broadly overlapped among

worker size classes. Moreover, we identified only minor differences in social information pro-

cessing (trail-pheromone responsiveness) across P. rhea size-variable workers [34]. In this spe-

cies, MG density mainly varied between the smallest (minors) and largest (supersoldiers)

worker size classes, and soldiers, which are intermediate in size did not significantly differ

from the other two worker size classes in most measures of MG structure [32]. MG density

and size did not consistently correlate with behavioral repertoire size and relative MB size in P.

rhea workers, thus a robust relationship between synaptic structure and repertoire size could

not be identified. In C. varians, minor worker and soldier brains did not differ in size, but MBs

were disproportionally larger in minors in association with their more pluripotent behavior,

and MG structure in C. varians minors, soldiers, and gynes indicated that the remarkable task

specialization in this species broadly correlates with synaptic organization, but not always as

anticipated.
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Brain structure and caste evolution

Analyses of brain structure may provide insight into caste origins given that neural phenotypes

evolutionarily link morphology and behavior [13,26,67–72]. Soldiers are thought to have origi-

nated by modifying the developmental trajectory of queens [67], reprogramming worker larval

growth rules [73], combining queen and worker developmental modules [68–70], or altering

size-related caste determination mechanisms [72]. Recently, soldier development in Pheidole
was found to be regulated by rudimentary wing discs [74]. Our macroscopic and synaptic

study of caste- and subcaste-related brain structure in C. varians found that soldier brains are

intermediate between minors and gynes. Soldier brain volumes do not significantly differ

from those of minors, but are significantly smaller than those of queens, suggesting that brain

size is developmentally uncoupled from body size. Although brain size does not differ between

minor and soldiers, regions vary in relative volume and average size, and soldier/gyne similar-

ity is reflected in MG structure and OL. Patterns of soldier brain size and compartment scaling

are consistent with a mosaic model of brain evolution. Although this could suggest an inter-

caste origin of soldiers, brain gene expression studies across castes and subcastes are needed to

differentiate between alternative hypotheses of novel caste origins and determine how novel

castes co-opt developmental modules retained in the female genome.

Supporting information

S1 Fig. Scaling relationships of log-transformed volumes of regions of interest against log-

transformed RH. Gynes (blue), soldiers (green), minors (red). Abbreviations of brain regions

of interest given in Methods.
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