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Abstract

Depressive symptoms are related to abnormalities in the autonomic nervous system (ANS),

and physiological signals that can be used to measure and evaluate such abnormalities

have previously been used as indicators for diagnosing mental disorder, such as major

depressive disorder (MDD). In this study, we investigate the feasibility of developing an

objective measure of depressive symptoms that is based on examining physiological abnor-

malities in individuals when they are experiencing mental stress. To perform this, we

recruited 30 patients with MDD and 31 healthy controls. Then, skin conductance (SC) was

measured during five 5-min experimental phases, comprising baseline, mental stress,

recovery from the stress, relaxation, and recovery from the relaxation, respectively. For

each phase, the mean amplitude of the skin conductance level (MSCL), standard deviations

of the SCL (SDSCL), slope of the SCL (SSCL), mean amplitude of the non-specific skin con-

ductance responses (MSCR), number of non-specific skin conductance responses (NSCR),

and power spectral density (PSD) were evaluated from the SC signals, producing 30 param-

eters overall (six features for each phase). These features were used as input data for a sup-

port vector machine (SVM) algorithm designed to distinguish MDD patients from healthy

controls based on their physiological responses. Statistical tests showed that the main effect

of task was significant in all SC features, and the main effect of group was significant in

MSCL, SDSCL, SSCL, and PSD. In addition, the proposed algorithm achieved 70% accu-

racy, 70% sensitivity, 71% specificity, 70% positive predictive value, 71% negative predic-

tive value in classifying MDD patients and healthy controls. These results demonstrated that

it is possible to extract meaningful features that reflect changes in ANS responses to various

stimuli. Using these features, detection of MDD was feasible, suggesting that SC analysis

has great potential for future diagnostics and prediction of depression based on objective

interpretation of depressive states.
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Introduction

Major depressive disorder (MDD) is a disabling illness associated with feelings of depression,

hopelessness, pessimism, low self-esteem, and despair. It is an extremely serious condition,

with ~16% of cases having a lifetime prevalence and ~60% being of clinical severity [1–3]. The

characteristics of the disorder mean it can cause significant problems in regard to work perfor-

mance and can also increase the economic burden of society [4,5]. Currently, diagnosis of

depression relies primarily on clinicians’ rating scales and specialized questionnaires, such as

the Diagnostic and Statistical Manual of Mental Disorders (DSM) [6]. However, the accuracy

of this approach is influenced by clinicians’ subjective evaluations and interpretations of

patient interviews. Furthermore, diagnosis based on the DSM categorizes mental illness as a

state in which the boundaries that distinguish moods are ambiguous and overlapping [7,8].

Consequently, there is a need for reliable diagnostic tools that can be used to assess and predict

depressive symptoms easily and in an objective manner, taking psychophysiology into

account.

Physiological signals are potential candidates for objective measures of MDD diagnosis, as

shown by previous studies that have evaluated autonomic nervous system (ANS) dysfunction

in MDD patients by analyzing their physiological signals [9–11]. In fact, some physiological

signals have been tested as clinical evaluation measures, but none have yet been used for clini-

cal purposes. Nonetheless, recent studies have demonstrated the possibility that physiological

signals can be used as biomarkers for depressive symptoms [12,13]. For example, studies have

shown that changes in the clinical status of MDD patients can be detected by monitoring elec-

trocardiograms, respiration [14], pupillary dynamics [15], and electroencephalograms [16]. In

addition, skin conductance (SC) is also a compelling candidate as an objective measure of

MDD, as it is a peripheral indicator of sympathetic arousal in response to changes in emotional

state [17]. Generally, MDD patients show lower levels of SC than do healthy controls. For

example, Lacono et al. reported that patients with unipolar affective disorder showed

decreased phasic and tonic responses regarding SC than do controls [18]. Moreover, Myslo-

bodsky et al. [19] examined bilateral SC in depressive patients during visual and verbal tasks

and a tone habituation sequence, finding that, in patients with endogenous depression, SC was

higher in the left hand than in the right hand, regardless of the given conditions. Additionally,

patients with reactive depression showed higher SC in their left hand during the verbal task

and tone habituation sequence, but the opposite result was observed during the visual task.

Similarly, Williams et al. [20] observed differences in SC between individuals with affective

disorder and normal controls when the results for a verbal task were compared, but no differ-

ences were observed for the results of a visual task or between individuals with unipolar and

bipolar affective disorders, except in regard to psychomotor status (retarded/non-retarded dis-

tinction). Finally, Greco et al. suggested that phasic SC during emotional stimulation can be a

suitable indicator of mood status in patients with bipolar disorder [21].

Despite the above findings and several years of research, it remains difficult to find reliable

and consistent results from previous studies of depressive disorder, largely because MDD pres-

ents heterogeneous profiles with respect to clinical symptoms, clinical severity, age of onset,

duration of episodes, clinical progress, and possession of other disorders (comorbidity) [22].

The effect of stress on depression is an emerging topic in psychiatric and psychological

research, and many clinical studies have shown that depression and stress are related [23–26].

For example, one study showed that, in patients with MDD, exposure to psychological stress

reduced sensitivity to the anti-inflammatory properties of glucocorticoids but, in healthy con-

trols, such exposure increased this sensitivity [27]. Furthermore, for individuals experiencing

stress, depression has been shown to induce changes in cognition such that the stress-causing
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situation is perceived as severe and unsolvable [28]; to delay recovery from stressors as a result

of the negative cognitive style fostered; and to diminish heart rate recovery from laboratory

stress [29]. For this reason, in this study, we hypothesized that there is a difference between

MDD patients and healthy controls regarding the level of perceived arousal before, during,

and after an episode of mental stress that is then followed by a relaxation task. A perception-

based task can be beneficial for negotiating the differences in heterogeneous reactivity reported

across many previous depression studies. Therefore, in this study, we are proposing a method

of using SC to measure the physiological manifestations of psychological processes induced by

stress and relaxation tasks. This would allow individuals with MDD to be distinguished from

healthy individuals. To verify this, we use a support vector machine (SVM) to evaluate the fea-

sibility of SC features in terms of detecting MDD.

Method

Subjects

Thirty patients with MDD and 31 healthy controls who had no history of psychiatric disorder

participated in the current study. Patients were diagnosed by a senior psychiatrist, and those

who scored� 16 on the Hamilton Depression Rating Scale (HAM-D; comprising 21-items)

were allocated to the MDD group. We also used the stress response inventory (SRI) and per-

ceived stress scale (PSS) to evaluate depressive symptoms in the participants. All subjects were

informed of the purpose of the experiment and the methods involved, and they then provided

written informed consent. All participants were paid approximately $50 in return for their par-

ticipation. This study was approved by the Institutional Review Board of Samsung Medical

Center of Seoul, Korea (No. 2015-07-151) and performed in accordance with the relevant

guidelines.

Experimental paradigm

The study protocol comprised five phases, and each phase persisted for 5 min: the baseline, a

mental stress task, recovery from the mental stress task, a relaxation task, and recovery from

the relaxation task; the experimental paradigm is shown in Fig 1. Both the mental arithmetic

task (MAT) [30] and relaxation task [31,32] were designed to evaluate the differences between

the MDD patients and the healthy controls regarding the reactivity of their ANSs. This

approach accords with previous studies that have utilized MATs as standard stressors for

detecting changes in participants’ ANS [33–35]. The MAT task for this study gradually

increased the subjects’ mental load by asking them to begin at the number 500 and to perform

continuous subtraction in units of seven. Then, during the relaxation task, 10 consecutive pic-

tures of natural landscapes were shown to the subjects, which allowed us to investigate differ-

ences in ANS responses during recovery from the stressor [31].

Physiological signal measurements

Before beginning the measurement, subjects were asked to sit in an armchair, after which a

clinical assistant provided them with a detailed explanation of the experimental procedures.

They were also given an adaptation period prior to the start of the experiment. Then, SC sig-

nals were measured and recorded throughout the experiment, assessing different patterns of

responses experienced by subjects during the five phases.

The physiological signals were recorded using ProComp Infiniti (SA7500, Computerized

Biofeedback System, Thought Technology, Ltd., Canada). For each subject, SC sensors were

attached to the distal phalanges of the index and ring fingers of the left hand to measure the
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skin’s sweat secretion responses, which was conducted at a fixed sampling frequency of

256 Hz.

Signal pre-processing and feature extraction

SC was analyzed using MATLAB R2017b (MathWorks, Inc., MA, USA). Artifacts, such as ges-

tures and body movements, which could distort the data, were removed before analysis of the

SC physiological responses. Then, the SC signals were decomposed using a convex optimiza-

tion model (cvxEDA [36]). The cvxEDA model was adapted to each time series after Z-score

normalization. Specifically, the cvxEDA model describes SC as the sum of three components:

tonic component, phasic component, and additive white Gaussian noise. The tonic compo-

nent (skin conductance level; SCL) represents the base level of the signal, whereas the phasic

component (skin conductance responses; SCR) reflects a direct response to an external stimu-

lus (1–5 sec after stimulus onset). The non-specific SCR (NS.SCR) that appears post-stimuli

represents the number of SCRs within a period of time. In the present study, features extracted

from SCL and NS.SCRs were calculated based on 60-sec non-overlapping time windows for

P1–P5, respectively (Fig 2). The features for P1 were calculated based on the last 60-sec period;

for P2 (the MAT task), the first 60-sec period was selected, which reflected responses to the

stimulus; and for P3, P4, and P5, the final 60-sec periods of each phase were used, which

allowed the participants sufficient time to recover. Fig 2 shows the overall SC signal (black

line) decomposed into SCL (blue line) and NS.SCR (yellow line). The SCL presents as a

slowly-varying low-frequency signal, whereas the NS.SCR is depicted as a rapidly varying

high-frequency signal. Three SCL features were obtained in time-domain: the mean amplitude

of the SCL (MSCL), the standard deviations of the SCL (SDSCL), and the slope of the SCL

Fig 1. Experimental protocol. SC signals were obtained across five phases. Each phase had a duration of 5-min.

https://doi.org/10.1371/journal.pone.0213140.g001
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(SSCL). The features of the NS.SCRs were the mean amplitude of the NS.SCRs (MSCR), and

the number of NS.SCRs (NSCR). The same 60-sec segments selected to compute time-domain

features were used for time-invariant spectral analysis. Here, SC signals were down-sampled to

2 Hz prior to spectral analysis. For time-invariant spectral analysis, power spectral density

(PSD) analysis of the SC signals was also performed, using Welch’s periodogram methods with

50% data overlap (for a detailed description, see [37]). Thus, a total of 30 parameters (six fea-

tures from each of the five periods) were calculated.

Statistical analyses

Statistical analyses were performed using MATLAB R2017b and R software 3.5.1 (The R Foun-

dation for Statistical Computing, Vienna, Austria). The Shapiro-Wilk Test was performed to

test the normality assumption. Since age, SRI, PSS, and HAM-D scores were found not to be

normally distributed, we used a non-parametric Mann-Whitney U test to compare MDD

patients and healthy controls. A chi-square test was performed to compare gender. MSCL,

SDSCL, SSCL, MSCR, NSCR, and PSD did not meet the normality assumption, and, therefore,

to test the effects of group and task, we conducted non-parametric analysis of longitudinal

data in factorial designs using the R-software “nparLD” package [38]. The Bonferroni method

was used to correct P values for multiple comparisons.

Classification

All extracted features were used to classify differences between the MDD patients and the

healthy controls in terms of their physiological characteristics. To evaluate the performance of

Fig 2. Decomposition of the SC signal. The SC signal (top black line) was decomposed into SCL (tonic component, blue) and SCR (phasic component,

yellow) using the cvxEDA model. SC features were calculated from the final 60-s period of the baseline phase (P1), the first 60-s period of the MAT task (P2),

and the final 60-s periods of the first recovery (P3), relaxation task (P4), and the second recovery (P5) phases, respectively.

https://doi.org/10.1371/journal.pone.0213140.g002
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the classifier, we applied the leave-one-out (LOO) procedure using an SVM-based classifier.

The SVM is a supervised machine learning method and is used to find an optimal separating

hyperplane for discrimination. The kernel used in this study was the polynomial model, which

allowed learning of non-linear models, as shown in Eq (1) [39]. The polynomial kernel repre-

sents the similarity of training data in a feature space over polynomials of the original data.

The SVM classifier performance is determined by the parameters γ, r, and d. We selected the

best combination, γ = 1, r = 0.2, and d = 3, using a grid search.

K ðxi; xjÞ ¼ ðgxi; xj þ rÞd ð1Þ

Within the LOO procedure, the features were normalized by subtracting the median value

and dividing by the median absolute deviation. The LOO was repeated N = 61 times, and the

performances were averaged. Classification results were represented using accuracy, sensitiv-

ity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The PPV

was defined as the proportion of correctly classified MDD patients, and NPV was defined as

the proportion of correctly classified healthy controls. All analyses were performed using

MATLAB R2017b with the additional toolbox “LIMSVM” [40].

Results

Demographic and clinical characteristics of the MDD patients and healthy

controls

Table 1 shows the statistical characteristics of gender, age, and psychological parameters such

as SRI, PSS, and HAM-D scores, of the MDD patients and healthy controls. The MDD group

included 12 males and 18 females, with an average age of 42.5 years. Meanwhile, the control

group included 13 males and 18 females, with an average age of 43.7 years. There were no sig-

nificant differences between the two groups regarding gender (p = 1.00) or age (p = 0.79).

However, we observed significant differences between the groups regarding SRI (p< 0.001),

PSS (p< 0.05), and HAM-D (p< 0.001) scores.

Comparison of the features of the MDD patients and healthy controls

The mean values of MSCL, SDSCL, SSCL, MSCR, NSCR, and PSD for each respective phase in

the MDD and control groups are shown in Table 2. Comparing the SC features of the two

groups, all six features were lower in the MDD patients than in the healthy controls for all

phases.

We tested the effects of group and task using the non-parametric equivalent of a repeated-

measures ANOVA. Consequently, we determined that MSCL (F = 5.84, p< 0.05), SDSCL

Table 1. Demographic and clinical characteristics of subjects.

Characteristics MDD (N = 30) Control (N = 31) P
Gender, male (%) ¶ 12 (40%) 13(42%) 1.00

Age, yearsª 42.5 (19,70) 43.7 (20,77) 0.79

SRIª 69.8 (15,133) 12 (0,41) < 0.001���

PSSª 17.8 (0.34) 15.4 (0, 22) 0.049�

HAM-Dª 19.48 (11,31) 1.6 (0, 6) < 0.001���

Abbreviations: SRI, Stress Response Inventory; PSS, Perceived Stress Scale; HAM-D, Hamilton Depression Rating Scale.
¶ Chi-square test was performed.
ª The factors were compared using Mann-Whitney U test (�p < 0.05, ���p < 0.001).

https://doi.org/10.1371/journal.pone.0213140.t001
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(F = 4.70, p< 0.05), SSCL (F = 4.29, p< 0.05), and PSD (F = 5.93, p < 0.05) were significantly

affected by group, but that MSCR (F = 3.79, p = 0.052) and NSCR (F = 2.78, p = 0.095) were

not (Table 3 and Fig 3). All features were significantly affected by the main effect of task

(p< 0.001; Table 3). However, there was no significant interaction between group and task

(Table 3). The results of post-hoc comparisons between tasks are shown in Table 4 and Fig 3.

The MSCL from P1 was significantly lower than those from P2-P5 (p< 0.001). The MSCL was

significantly lower in P2 than P3 (p< 0.05). The SDSCL from P1 was significantly lower than

those from the other phases (P1 and P2: p< 0.001; P1 and P3: p< 0.001; P1 and P4: p< 0.01;

P1 and P5: p< 0.05). Meanwhile, the SDSCL from P2 was significantly higher than those from

P3, P4, and P5 (p< 0.001). The SSCL from P1 was significantly lower than those from the

other phases (P1 and P2: p< 0.001; P1 and P3: p< 0.001; P1 and P4: p< 0.05; P1 and P5:

p< 0.01), while the SSCL from P2 was significantly higher than those from P3, P4, and P5

(p< 0.001). The MSCR from P1 was significantly lower than those from the other phases (P1

and P2: p< 0.001; P1 and P3: p < 0.01; P1 and P4: p< 0.05; P1 and P5: p< 0.01), while the

Table 2. Mean (SD) values of the SC features of the MDD patients and the healthy controls during P1-P5.

MSCL (μS)

P1 P2 P3 P4 P5

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MDD 0.58 (0.46) 0.79 (0.69) 1.01 (0.96) 0.88 (0.78) 0.86 (0.82)

Control 1.14 (1.64) 1.55 (2.01) 1.58 (2.01) 1.48 (1.95) 1.58 (1.95)

SDSCL (μS)

P1 P2 P3 P4 P5

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MDD 0.00 (0.00) 0.06 (0.14) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

Control 0.01 (0.03) 0.19 (0.33) 0.01 (0.01) 0.01 (0.02) 0.03 (0.09)

SSCL (μS)

P1 P2 P3 P4 P5

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MDD 0.00 (0.00) 0.01 (0.02) 0.00 (0.01) 0.00 (0.01) 0.00 (0.00)

Control 0.00 (0.01) 0.03 (0.05) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

NSCR

P1 P2 P3 P4 P5

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MDD 0.87 (1.50) 4.47 (4.37) 1.83 (2.21) 1.37 (1.85) 1.57 (2.40)

Control 1.58 (2.88) 6.65 (5.8) 2.26 (2.90) 1.94 (2.05) 3.03 (3.16)

MSCR (μS)

P1 P2 P3 P4 P5

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MDD 0.02 (0.03) 0.09 (0.14) 0.05 (0.09) 0.03 (0.06) 0.04 (0.06)

Control 0.08 (0.22) 0.27 (0.45) 0.11 (0.23) 0.09 (0.14) 0.17 (0.31)

PSD

P1 P2 P3 P4 P5

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MDD 2.50 (4.18) 6.98 (11.47) 9.04 (14.98) 6.31 (10.62) 6.68 (13.31)

Control 17.74 (51.32) 51.07 (128.02) 32.42 (88.65) 28.2 (74.37) 32.18 (81.53)

Abbreviations: MSCL, mean amplitude of the SCL; SDSCL, standard deviations of the SCL; SSCL, slop of the SCL; NSCR, the number of NS.SCRs; MSCR, mean

amplitude of the NS.SCRs; PSD, power spectral density of SC

https://doi.org/10.1371/journal.pone.0213140.t002
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MSCR from P2 was significantly higher than those from P3 (p< 0.001), P4 (p< 0.001), and

P5 (p< 0.01). The NSCR from P1 was significantly lower than those from the other phases (P1

and P2: p< 0.001; P1 and P3: p < 0.01; P1 and P4: p< 0.05; P1 and P5: p< 0.01), while the

NSCR from P2 was significantly higher than those from P3, P4, and P5 (p< 0.001). The PSD

from P1 was significantly lower than those from the other phases (p< 0.001).

We evaluated whether the features extracted from the SC signals were capable of distin-

guishing the MDD and control groups using an SVM (for further details, see the Methods sec-

tion). Table 5 shows the performance results of the SVM classifier with selected features. The

best performance, with 70.49% accuracy, 70.00% sensitivity, 70.97% specificity, 70.00% PPV,

and 70.97% NPV, was achieved using the MSCL, SDSCL, SSCL, and NSCR features, demon-

strating that MDD patients can be distinguished from healthy controls using features from SC

signals.

Discussion

We have explored the feasibility of distinguishing between MDD patients and healthy controls

based on patterns in ANS dynamics produced in response to stimulation. To examine this, we

used an experimental protocol that included baseline, a mental stress task, recovery from the

mental stress task, a relaxation task, and recovery from the relaxation task. The main finding is

that SC features measured during arousal and recovery can distinguish MDD patients from

healthy controls, suggesting that SC features may represent biomarkers for MDD.

First, we tested whether our experimental protocol for SC features could reflect changes in

ANS activity. To perform this, participants’ SC signals were decomposed into tonic and phasic

components using through the cvxEDA model, and then six SC features were extracted using

time-frequency analyses. The responses of all SC features were lower in the MDD patients

than in the healthy controls (Table 2 and Fig 3). Also, the change in the SC response between

the protocol phases was less in the MDD patients than in the healthy controls. These results

are consistent with previous studies, which found that SC arousal levels were typically lower in

subjects with depression [41–46], suggesting that the reactivity of SC features during arousal

and recovery phases could be used to distinguish depressed and non-depressed subjects.

The effects of group and task on the SC features were statistically tested (Tables 3 and 4 and

Fig 3). Notably, the significant increases observed in all six features during the MAT task indi-

cated that the stress task had successfully induced changes in sympathetic activity [34]. In addi-

tion, the SC features for the recovery from stress phase (P3) were significantly lower than those

for the stress task phase (P2), with the exception of the MSCL and PSD. However, the SC fea-

tures for the relaxation task (P4) and the recovery from the relaxation (P5) phases were not

Table 3. Effects of group and task on SC features. Statistical analyses were performed using the non-parametric

equivalent of a repeated-measures ANOVA through the R statistics package “nparLD.”. Group was used as the

between-subjects factor and task as the within-subject factor (�p< 0.05, ���p< 0.001).

Feature Group effect

(MDD vs. control)

Task effect

(5 phases)

Interaction

(group × task)

F p F p F P

MSCL 5.87 0.015� 28.81 < 0.001��� 0.90 0.436

SDSCL 4.70 0.030� 38.55 < 0.001��� 1.03 0.383

SSCL 4.29 0.038� 28.10 < 0.001��� 1.09 0.358

MSCR 3.79 0.052 16.53 < 0.001��� 0.80 0.519

NSCR 2.78 0.095 28.63 < 0.001��� 1.67 0.158

PSD 5.93 0.015� 25.47 < 0.001��� 0.75 0.527

https://doi.org/10.1371/journal.pone.0213140.t003
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significantly different from those of P3, suggesting that the relaxation task did not induce fur-

ther sympathetic relaxation. These results were not consistent with previous studies, in which

relaxation tasks were determined to facilitate recovery from stress [32]. Considering this, it is

likely that the recovery from the stress phase (P3) was not sufficiently long for subjects to

completely recover from the mental stress, which makes comparisons to subsequent P4 and P5

phases problematic. Interestingly, in the healthy controls, all features were higher in the recov-

ery from the relaxation phase (P5) than in the relaxation phase (P4), which is consistent with

previous findings that natural scenery increased ANS activity and improved mood and self-

esteem [47]. Our results also demonstrated that the relaxation task did not increase ANS

Fig 3. Mean ± SE of (A) MSCL, (B) SDSCL, (C) SSCL, (D) MSCR, (E) NSCR, and (F) PSD. Effects of group and task on the (A)-(F) features of the MDD

patients (N = 30) and the healthy controls (N = 31) were analyzed using the non-parametric equivalent of a repeated-measures ANOVA (#p< 0.05). Post-hoc

comparisons of tasks were corrected using the Bonferroni method (�p< 0.05, ��p< 0.01, ���p< 0.001).

https://doi.org/10.1371/journal.pone.0213140.g003
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activity in the MDD patients, suggesting that this task may help to distinguish responses in

ANS activity between MDD and healthy subjects.

Finally, we applied an SVM algorithm to detect MDD patients. In previous studies, several

well–known machine learning algorithms have been used in attempts to determine an optimal

method of identifying the ANS patterns of MDD patients and controls. For example, Sun et al.

[48] applied logistic regression analysis to HRV features to differentiate 44 MDD and 47

healthy control subjects and achieved a sensitivity and specificity of 80% and 79%, respectively.

Liao et al. [49] distinguished 20 normal and 20 depressed subjects with 81% accuracy using

EEG signals and an SVM classifier. The performance in the current study (70% accuracy, 70%

sensitivity, and 71% specificity) is relatively low compared to these previous studies. However,

some of these studies lacked descriptions of their validation methods. Also, classification of

MDD using SC signals is rarely studied, which makes direct comparisons difficult. In a future

study, we will attempt to improve the model performance by including various SC features.

The limitation of this study is its small sample size. The sample size used in this study may

not be optimal for reducing variances in accuracy, sensitivity, and specificity of classification.

We are currently recruiting more subjects to expand our findings and believe that these efforts

can help us to develop a tool for objectively diagnosing depression.

Conclusion

We demonstrated that SC features measured in various states of ANS activity were highly rele-

vant to depressive symptoms, suggesting that these physiological features can be used as

Table 4. Post-hoc pairwise comparisons. Post-hoc pairwise comparisons between tasks were corrected using the Bonferroni method (�p< 0.05, ��p< 0.01,
���p< 0.001).

Pairwise comparison Bonferroni adjusted P
MSCL SDSCL SSCL MSCR NSCR PSD

P1 vs. P2 < 0.001��� < 0.001��� < 0.001��� < 0.001��� < 0.001��� < 0.001���

P1 vs. P3 < 0.001��� < 0.001��� < 0.001��� 0.009�� 0.005�� < 0.001���

P1 vs. P4 < 0.001��� 0.005�� 0.034� 0.043� 0.072� < 0.001���

P1 vs. P5 < 0.001��� 0.024� 0.008�� 0.002�� 0.002�� < 0.001���

P2 vs. P3 0.025� < 0.001��� < 0.001��� < 0.001��� < 0.001��� 1.000

P2 vs. P4 1.000 < 0.001��� < 0.001��� < 0.001��� < 0.001��� 1.000

P2 vs. P5 1.000 < 0.001��� < 0.001��� 0.005�� < 0.001��� 1.000

P3 vs. P4 0.682 1.000 1.000 1.000 1.000 1.000

P3 vs. P5 1.000 1.000 1.000 1.000 1.000 1.000

P4 vs. P5 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0213140.t004

Table 5. Performance measures of the SVM classifier based on input features.

Input features Number ACC (%) SE (%) SP (%) PPV (%) NPV (%)

MSCL, SDSCL 10 54.10 52.63 56.52 66.67 41.94

MSCL, SDSCL, SSCL 15 63.93 62.50 65.52 66.67 61.29

MSCL, SDSCL, NSCR 15 67.21 63.89 72.00 76.67 58.06

MSCL, SDSCL, SSCL, NSCR 20 70.49 70.00 70.97 70.00 70.97

MSCL, SDSCL, SSCL, MSCR, NSCR 25 68.85 67.74 70.00 70.00 67.74

MSCL, SDSCL, SSCL, NSCR, PSD 25 67.21 66.67 67.74 66.67 67.74

MSCL, SDSCL, SSCL, MSCR, NSCR, PSD 30 67.21 67.86 66.67 63.33 70.97

Abbreviations: ACC, accuracy; SE, sensitivity; SP, specificity.

https://doi.org/10.1371/journal.pone.0213140.t005
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suitable bio-markers for discriminating MDD. These results can contribute to the develop-

ment of a new technique for diagnosing and predicting depression, such as through the use of

a wearable system that monitors SC signals during various arousal and recovery states in natu-

ralistic environments.

Supporting information

S1 File. Dataset of skin conductance (SC) features in major depressive disorder patients

and healthy controls.
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activity based on time-frequency spectral analysis of electrodermal activity. Am J Physiol-Regul Integr

Comp Physiol. 2016; 311: R582–R591. https://doi.org/10.1152/ajpregu.00180.2016 PMID: 27440716

38. Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: An R Software Package for the Nonparametric

Analysis of Longitudinal Data in Factorial Experiments. J Stat Softw. 2012; 1: 1548–7660. https://doi.

org/10.18637/jss.v050.i12

39. Boser B, Guyon I, N. Vapnik V. A Training Algorithm for Optimal Margin Classifier. Proc Fifth Annu ACM

Workshop Comput Learn Theory. 1996;5. https://doi.org/10.1145/130385.130401

40. Chang C-C, Lin C-J. LIBSVM: A Library for Support Vector Machines. ACM Trans Intell Syst Technol.

2011; 2: 27:1–27:27. https://doi.org/10.1145/1961189.1961199

41. Mirkin AM, Coppen A. Electrodermal Activity in Depression: Clinical and Biochemical Correlates. Br J

Psychiatry. 1980; 137: 93–97. https://doi.org/10.1192/bjp.137.1.93 PMID: 7459546

42. Lader MH, Wing L. Physiological measures in agitated and retarded depressed patients. J Psychiatr

Res. 1969; 7: 89–100. https://doi.org/10.1016/0022-3956(69)90014-4 PMID: 5387035

43. Thorell L-H, D’elia G. Electrodermal Responsivity and Suicide Risk. Arch Gen Psychiatry. 1987; 44:

1112–1112. https://doi.org/10.1001/archpsyc.1987.01800240088017 PMID: 3689101

44. Thorell LH, Kjellman BF, D’Elia G. Electrodermal activity in relation to diagnostic subgroups and symp-

toms of depressive patients. Acta Psychiatr Scand. 1987; 76: 693–701. https://doi.org/10.1111/j.1600-

0447.1987.tb02941.x PMID: 3442261

45. Sponheim SR, Allen JJ, Iacono WG. Selected Psychophysiological Measures in Depression: The Sig-

nificance of Electrodermal Activity, Electroencephalographic Asymmetries, and Contingent Negative

Variation to Behavioral and Neurobiological Aspects of Depression. The Behavioral High-Risk Para-

digm in Psychopathology. Springer, New York, NY; 1995. pp. 222–249. https://doi.org/10.1007/978-1-

4612-4234-5_8

46. Argyle N. Skin Conductance Levels in Panic Disorder and Depression. J Nerv Ment Dis. 1991; 179:

563. PMID: 1919559

47. Gladwell VF, Brown DK, Barton JL, Tarvainen MP, Kuoppa P, Pretty J, et al. The effects of views of

nature on autonomic control. Eur J Appl Physiol. 2012; 112: 3379–3386. https://doi.org/10.1007/

s00421-012-2318-8 PMID: 22270487

48. Sun G, Shinba T, Kirimoto T, Matsui T. An Objective Screening Method for Major Depressive Disorder

Using Logistic Regression Analysis of Heart Rate Variability Data Obtained in a Mental Task Paradigm.

Front Psychiatry. 2016; 7. https://doi.org/10.3389/fpsyt.2016.00180 PMID: 27867364

49. Liao S-C, Wu C-T, Huang H-C, Cheng W-T, Liu Y-H. Major Depression Detection from EEG Signals

Using Kernel Eigen-Filter-Bank Common Spatial Patterns. Sensors. 2017; 17. https://doi.org/10.3390/

s17061385 PMID: 28613237

Skin conductance responses in Major Depressive Disorder (MDD)

PLOS ONE | https://doi.org/10.1371/journal.pone.0213140 April 3, 2019 13 / 13

https://doi.org/10.1021/es305019p
https://doi.org/10.1021/es305019p
http://www.ncbi.nlm.nih.gov/pubmed/23590163
https://doi.org/10.1016/S0272-4944(05)80184-7
https://doi.org/10.1016/S0272-4944(05)80184-7
https://doi.org/10.1152/jappl.2001.91.5.2093
https://doi.org/10.1152/jappl.2001.91.5.2093
http://www.ncbi.nlm.nih.gov/pubmed/11641349
https://doi.org/10.1016/j.compbiomed.2013.08.021
https://doi.org/10.1016/j.compbiomed.2013.08.021
http://www.ncbi.nlm.nih.gov/pubmed/24290935
https://doi.org/10.1109/TBME.2015.2474131
https://doi.org/10.1109/TBME.2015.2474131
http://www.ncbi.nlm.nih.gov/pubmed/26336110
https://doi.org/10.1152/ajpregu.00180.2016
http://www.ncbi.nlm.nih.gov/pubmed/27440716
https://doi.org/10.18637/jss.v050.i12
https://doi.org/10.18637/jss.v050.i12
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1192/bjp.137.1.93
http://www.ncbi.nlm.nih.gov/pubmed/7459546
https://doi.org/10.1016/0022-3956(69)90014-4
http://www.ncbi.nlm.nih.gov/pubmed/5387035
https://doi.org/10.1001/archpsyc.1987.01800240088017
http://www.ncbi.nlm.nih.gov/pubmed/3689101
https://doi.org/10.1111/j.1600-0447.1987.tb02941.x
https://doi.org/10.1111/j.1600-0447.1987.tb02941.x
http://www.ncbi.nlm.nih.gov/pubmed/3442261
https://doi.org/10.1007/978-1-4612-4234-5_8
https://doi.org/10.1007/978-1-4612-4234-5_8
http://www.ncbi.nlm.nih.gov/pubmed/1919559
https://doi.org/10.1007/s00421-012-2318-8
https://doi.org/10.1007/s00421-012-2318-8
http://www.ncbi.nlm.nih.gov/pubmed/22270487
https://doi.org/10.3389/fpsyt.2016.00180
http://www.ncbi.nlm.nih.gov/pubmed/27867364
https://doi.org/10.3390/s17061385
https://doi.org/10.3390/s17061385
http://www.ncbi.nlm.nih.gov/pubmed/28613237
https://doi.org/10.1371/journal.pone.0213140

