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Abstract

Intravoxel incoherent motion (IVIM) imaging is a magnetic resonance imaging (MRI) tech-

nique widely used in clinical applications for various organs. However, IVIM imaging at low

b-values is a persistent problem. This paper aims to investigate in a systematic and detailed

manner how the number of low b-values influences the estimation of IVIM parameters. To

this end, diffusion-weighted (DW) data with different low b-values were simulated to get

insight into the distributions of subsequent IVIM parameters. Then, in vivo DW data with dif-

ferent numbers of low b-values and different number of excitations (NEX) were acquired.

Finally, least-squares (LSQ) and Bayesian shrinkage prior (BSP) fitting methods were

implemented to estimate IVIM parameters. The influence of the number of low b-values on

IVIM parameters was analyzed in terms of relative error (RE) and structural similarity

(SSIM). The results showed that the influence of the number of low b-values on IVIM param-

eters is variable. LSQ is more dependent on the number of low b-values than BSP, but the

latter is more sensitive to noise.

Introduction

Intravoxel incoherent motion (IVIM) imaging is a magnetic resonance imaging (MRI) tech-

nique widely used in clinical applications for various organs. It consists in extracting perfusion

information from diffusion-weighted (DW) signals [1–3]. In this technique, the attenuation of

DW signals at each image voxel is assumed to be caused by both the diffusion of water mole-

cules in tissues and the microcirculation of blood inside blood vessels, which is also called

intravascular perfusion or pseudo-diffusion. Pseudo-diffusion information was shown to

enable normal and pathological tissues to be distinguished [4–7].

In IVIM imaging, DW signals are first acquired at several b-values, and then a fitting tech-

nique is employed to solve a system of equations. Usually, pseudo-diffusion parameter has

much higher value than diffusion parameter. This implies that, for a given b-value, the

pseudo-diffusion (exponential) term decays much faster than the diffusion (exponential) term.

When the b-value is higher (saying higher than 200 s/mm2), diffusion plays a dominant role
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and the contribution of perfusion to DW signals almost disappears [8–14]. Therefore, to accu-

rately estimate perfusion-related parameters, DW signals must be acquired with not only high

and but also low b-values (saying smaller than 50 s/mm2). Until now, there is not yet interna-

tional standard on the definition of low or high b-value. Often, at a b-value of about 200,

pseudo-diffusion (or perfusion) can be negligible for the estimation of diffusion component.

Therefore, all b-values superior to 200 could be considered high. Likewise, at a b-value of

about 50, pseudo-diffusion can no longer be negligible. In this case, all b-values inferior to 50

could be considered low. Thus, the notion of low or high b-values is dependent on tissues and

applications in question.

IVIM imaging at low b-values is very important [15,16] because IVIM models contain

terms that decrease exponentially with the increase of b-values. At high b-values, the varia-

tion of IVIM models are relatively slow, meaning that relatively few b-values would be nec-

essary to describe the variation trend. In contrast, at low b-values, the IVIM models have a

rapid decreasing, implying that more low b-values would be needed to better describe the

variation trend. In addition, low b-value IVIM imaging is essential for organs whose

pseudo-diffusion has relatively high values, such as liver [10,17–19], pancreas [20], skeletal

muscle [21–23], and kidney [24]. These reported works used low b-values but did not study

how the choice of the number of low b-values will influence the results, in particular in the

presence of noise.

Once the DW data were acquired, the used fitting method would also influence the

parameter estimation accuracy of the IVIM model. Currently, the standard IVIM fitting

technique is the nonlinear least squares (LSQ) method [13], which consists of minimizing

the difference between the real and predicted DW signals. More recent methods include

Bayesian techniques, which were initially proposed by Neil et al. [25]. Unlike the LSQ

method, the principle of Bayesian methods is to maximize the posterior probability of IVIM

parameters given the observed signal [13,26]. In this kind of methods, the likelihood proba-

bility is dependent on the predicted DW signal [14,27,28] that is closely related to the num-

ber of low b-values. Freiman et al. tried to improve the IVIM parameter estimation

accuracy by using a Bayesian model with spatial homogeneity prior (FBM) to obtain the

localized smooth IVIM parameter maps [26]. Orton et al. used a Bayesian fitting method

with Gaussian shrinkage prior (BSP) to make outlying estimations be shrunk towards the

mean of the region of interest (ROI) [14]. Based on these works, While et al. compared sys-

temically the performance of LSQ and Bayesian methods and showed that Bayesian meth-

ods outperformed LSQ methods for IVIM parameter estimation [13]. However, these

studies did not consider the influence of the number of low b-values while too few low b-

values might ignore pseudo-diffusion components.

In addition, it is well known that DW signals are corrupted by noise [29]. Therefore, the sig-

nal-to-noise ratio (SNR) is a factor to be taken into account in the estimation of IVIM

parameters.

To account for the above-mentioned problems of low b-value, fitting method and noise, we

propose to study in a systematic and detailed manner the influence of the number of low b-val-

ues on IVIM parameter estimation by also taking into account the factors of SNR and fitting

method. To this end, DW data with different numbers of low b-values and SNRs were simu-

lated to get insight into the distributions of subsequent IVIM parameters. Then, in vivo DW

data with different numbers of low b-values and different number of excitations (NEX, also

called average times in the following) were acquired. Finally, least-squares (LSQ) and Bayesian

shrinkage prior (BSP) fitting methods were used to estimate IVIM parameters under different

combinations of low b-values and average times.

Estimation of IVIM parameters using low b-values
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Materials and methods

Simulations

To assess the joint effects of low b-value, SNR and fitting method on the estimation of IVIM

parameters, we simulated the IVIM signals with a bi-exponential model with the influence of

noise [14],

Sn ¼ S0ðFe
� bnD� þ ð1 � FÞe� bnDÞ þ εn ð1Þ

where Sn is the signal obtained with the nth b-value bn, S0 is the signal with b = 0, F is the perfu-

sion fraction, D
�

and D represent the pseudo-diffusion and diffusion coefficients respectively,

and εn designates the noise.

For the choice of b-values in the simulation, to account for the influence of low b-values,

three b-value distributions were considered according to the number of low b-values (0<b<50

s/mm2), namely, the b-value distribution with two low b-values

(0,10,20,50,70,100,200,400,600,800 s/mm2), the b-value distribution with one low b-value

(0,20,50,70,100,200,400,600,800 s/mm2), and the b-value distribution without low b-value (0,

50,70,100,200,400,600,800 s/mm2). For the choice of noise in the simulation, Gaussian noise

was used with three different SNRs of 10, 30 and 50 dB. There are various methods to derive

SNR; in this work, SNR was calculated as the ratio of mean signal intensity to standard devia-

tion of noise intensity [8,30]. For the choice of the IVIM parameters, the regions of in vivo

thigh images were first selected and the corresponding F, D
�

and D at each voxel of the regions

were then estimated. The signal at a voxel was finally calculated using Eq (1). Note that S0 at

each voxel is equal to S0 of the corresponding voxel in in-vivo data. Repeating the above calcu-

lation for each voxel generates a realistic simulated DW image.

DW image acquisitions

This prospective study was approved by the Ethics Committee of Guizhou People’s Hospital

and written informed consents were obtained from all volunteers. The in vivo data of the

human thigh was acquired on 3.0 Tesla MRI scanner (GE Discovery MR750) using a DW echo

planar imaging (EPI) sequence within about 3 minutes. The main acquisition parameters are

as follows: field of view (FOV) = 40×32 cm, matrix size = 96×128, slice thickness = 8 mm, repe-

tition time (TR) = 6000 ms, echo time (TE) = 61 ms, diffusion gradient pulse duration (small

delta δ) = 19 ms, time delay between gradient pulses (big delta Δ) = 29 ms, effective diffusion

time = 23 ms (approximately equal to Δ-δ/3), and b-values (for fixed diffusion time) = (0, 10,

20, 50, 70, 100, 200, 400, 600, 800 s/mm2). To get different SNRs, DW images of the thigh were

acquired 6 consecutive times (i.e. NEX = 6, or 6 acquisitions or still 6 average times). Then, we

averaged 2, 3, 4, 5, and 6 acquisitions respectively to obtain different SNR improvements. In

the real acquisitions, the noise was estimated by subtracting two acquisitions and calculating

the standard deviation of the resulting image [31]. By averaging over N consecutive original

images, the SNR improved by
ffiffiffiffi
N
p

[30,32]. Different average times or simply averages in what

follows, lead to different SNRs.

To investigate the influence of low b-values, the DW images were divided into three groups

according to the three different b-value distributions mentioned in the simulation section.

Estimation of IVIM parameters

The estimation of the parameters in Eq (1) is performed voxel by voxel. For the given Sn, S0
and bn, the IVIM parameters D, D

�

and F are estimated respectively using the LSQ or BSP.

Estimation of IVIM parameters using low b-values
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LSQ-based method. The family of LSQ methods consists of adjusting the parameter val-

ues of the bi-exponential model (Eq (1)) by minimizing the sum of squared error between the

fitted signal and acquired signal, thus yielding the estimates of IVIM parameters. The objective

function of the minimization problem is given by:

min
XN

n¼0

ðSn � S0nÞ
2

ð2Þ

where Sn represents the acquired signal, S0n the fitted signal provided by the model after LSQ

fitting, and N the number of b-values.

The most commonly used LSQ methods are full least squares fitting and segmented least

squares fitting [6,9,33]. With the full least squares fitting method, all the parameters of the

IVIM model are fitted at the same time in a single whole process. This method is simple and

easy to implement, but the estimates of the parameters are not accurate because of the interac-

tion between diffusion and perfusion components on signals. To improve the estimation accu-

racy of fitting parameters, the segmented least squares fitting method adopts a step-by-step

fitting mechanism. In the first step, assuming that the signal of perfusion component at high

b-values (b>200 s/mm2) is completely attenuated to zero, the parameter D is fitted using the

mono-exponential model

Sn ¼ S0e
� bnD ð3Þ

Then, the parameter F is estimated using the extrapolated signal of the fitted mono-expo-

nential model as follows [6]:

F ¼ ðS0 � interceptÞ=S0 ð4Þ

where “intercept” is the fitted S0 in Eq (3). In the second step, after fixing D and F estimated in

the first step, the remaining parameters of the bi-exponential model expressed in Eq (1) are

finally estimated. Since D and F are estimated under the assumption that the signal of perfu-

sion component at high b-values is almost attenuated to zero, such estimation will be biased if

the assumption is not strictly satisfied. In other words, to improve the fitting accuracy of IVIM

parameters, images acquired with low b-values may be necessary.

In the present work, we combined the full and segmented least squares methods to fit the

IVIM parameters, as illustrated in the fitting process scheme of Fig 1. We first used the seg-

mented least squares method (Eqs (3) and (4)) to obtain D and F that serve as initializations.

The final parameter values of D F and D� were then estimated simultaneously using the full

least squares method. To stabilize the fitting when computing voxel-wise estimates, the follow-

ing constraints were chosen as done in [14]: 0.0005 < F< 0.9995; 0.045< D< 18 (x 10−3

mm2/s); 0.34< D� < 1000 (x 10−3 mm2/s).

BSP-based method. Another fitting method we used is the BSP method proposed by

Orton et al. It improves the quality of parameter estimates using a Gaussian shrinkage prior.

The basic idea of BSP is to maximize a joint posterior probability of IVIM parameters, given

the observed data:

pðy1:M; m;Smjy1:MÞ /
YM

i¼1

pðyijyiÞpðyijm;SmÞ ð5Þ

where θ is a vector of three IVIM model parameters (f, d and d�) in transformed form with f =

log(F)−log(1−F), d = logD and d� = logD�, M is the number of voxels, μ is a vector containing

the mean value of the transformed parameter over all voxels, ∑μ is a 3 � 3 covariance matrix of

Estimation of IVIM parameters using low b-values
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Fig 1. The flow chart of LSQ fitting.

https://doi.org/10.1371/journal.pone.0211911.g001

Estimation of IVIM parameters using low b-values
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μ, and yi represents the signal at the current voxel. The likelihood function p(yi|θi) is a multi-

variate conditional probability that takes the form [14]:

pðyjF;D;D�Þ / ½yTy � ðyTgÞ2=ðgTgÞ�� N=2
ð6Þ

where g is the expected signal vector obtained with different b-values without error term nor-

malized by the signal S0 at b0, and N is the number of b-values. The prior function p(θi|μ,∑μ)
subjects to a multivariate Gaussian distribution, the formulation of which is [14]:

pðyijm;SmÞ ¼ j2pSmj
� 1=2expð�

1

2
ðyi � mÞ

T
Sm
� 1ðyi � mÞÞ ð7Þ

The iteration process for fitting was realized by Markov chain Monte Carlo (MCMC) algo-

rithm that is illustrated in Fig 2 [14].

Quantitative analysis

The IVIM parameters obtained using different combinations of b-values, SNRs, and fitting

methods were compared using several criteria. For the simulation results, due to the existence

of the ground-truth, the relative error (RE) and the structural similarity (SSIM) for IVIM

parameters were calculated at each voxel. RE is defined as

REi:n ¼
jðTi � PiÞj

Ti
� 100 ð8Þ

with Ti and Pi representing respectively the ground-truth and predicted IVIM parameters at

the ith voxel.

SSIM was calculated to measure the similarity between estimated and ground-truth param-

eter maps with the value range between 0 and 1. The closer the SSIM value is to 1, the closer

the estimated parameter map is to the ground-truth.

Finally, the differences in RE and SSIM between different combinations were compared

using two-sample t-test and all analyses were performed using Matlab (R2013b).

Results

Estimation of IVIM parameters for simulated images

To compare quantitatively the joint effects of low b-value, SNR and fitting method on the esti-

mation of IVIM parameters, several simulations were performed with different combinations.

The IVIM parameters including D, D� and F obtained on the simulated data are shown in Fig

3. We observe that, in almost all the situations, D and F maps estimated using both LSQ and

BSP are very close to the ground-truth. In contrast, the estimation of D� is greatly dependent

on imaging conditions, especially on the number of low b-values, noise levels and fitting meth-

ods. When the number of low b-values is enough (two low b-values are enough in our present

study), the estimated D� is not sensitive to noise level or fitting method, which implies that

both LSQ and BSP allow estimating accurately D� map and are not influenced by noise (2nd

and 3rd columns in Fig 3B). However, when the number of low b-values was decreased, D� was

underestimated by LSQ at some voxels, especially for the case without low b-values (4th and 6th

columns in Fig 3B). As to the D� map obtained by BSP, its variation with the number of low b-

values was not obvious, except in the case without low b-values or with low SNR. In the latter

case, the estimation accuracy of BSP in D� was decreased but still much better than LSQ (5th

and 7th columns in Fig 3B.

Estimation of IVIM parameters using low b-values
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To quantitatively evaluate how the estimated IVIM parameter map is close to the ground-

truth, in Fig 4 and Fig 5 are shown the SSIM and RE maps for different combinations of low b-

values, SNRs and fitting methods. The SSIM maps of D or F generated by LSQ and BSP were

very close (P>0.1) although the SSIM obtained by BSP was a little higher than that by LSQ. As

to D�, its SSIM map obtained by BSP was better than that derived from LSQ (P<0.001). Note

that for the SSIM map of D� obtained by LSQ, the less the low b-values, the worse the SSIM

map. At the same time, the SSIM map obtained by BSP was more sensitive to the noise level

whereas the influence of low b-values was not significant. The RE map shows the same results;

the IVIM parameters estimated by BSP was more accurate than LSQ, especially in the case of

few low b-values involved.

Fig 2. The flow chart of BSP inference. r~U, U is a uniform distribution between 0 and 1.

https://doi.org/10.1371/journal.pone.0211911.g002

Estimation of IVIM parameters using low b-values
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Estimation of IVIM parameters for in vivo images

The IVIM parameter maps of the in vivo thigh are shown in Fig 6. The SNRs corresponding to

2, 3, 4, 5 and 6 averages represents 26, 37, 46, 59 and 65 dB respectively. All the parameter

maps obtained by BSP were clearer than those by LSQ. Concerning the effects of noise and low

b-values on the parameters estimation, results similar to the case of simulation were observed.

Low b-values and SNR had relatively limited influence on D or F map with respect to D� map

in which the impact of low b-values and SNR was obvious. As the average times were

increased, SNR increased and the D� maps obtained by both BSP and LSQ became cleaner due

to the reduction of erroneous heterogeneity. With the use of low b-values, the D� map gener-

ated by LSQ became cleaner as the average times increases, but such change was much less

important when using BSP. If using two low b-values, the latter resulted in poor D� maps in

the case of averaging 2, 3 and 4 times. When averaging 5 and 6 times, the D� maps obtained by

BSP were much clearer than those obtained by LSQ. When using one low b-value, the results

were close to the case of using 2 low b-values, but the erroneous heterogeneity was slightly

increased. BSP generated a superior D� map when the average times was set to 6. With the

decrease of the number of the low b-values, the D� values of most voxels obtained by LSQ were

obviously reduced, which agrees with the results in the simulation study. In this case, some

voxels tended to exhibit extreme D� values (part of the red region with high D� values, esti-

mated D�>800 x10-3 mm2/s), and such results were not obvious when using BSP.

Discussion

To investigate quantitatively IVIM imaging at low b-values, we have chosen to take also into

account the influence of fitting method and SNRs. The investigation of the joint effect of low

b-value, SNR and fitting method using both simulation and in vivo thigh images showed that

the estimation of D and F was not influenced greatly by the imaging conditions and fitting

methods. However, D� estimated using both LSQ and BSP depends greatly on the number of

low b-values used or noise level.

According to the simulation results, the estimation accuracy of D� using LSQ is significantly

degraded and the values of D� are underestimated when the number of low b-values is

reduced. This finding is consistent with that reported by Cohen et al [10] in which only a fixed

SNR was considered. When varying the SNR, the variation of D� is not evident except when

SNR is very low. This implies that the performance of LSQ method is much more sensitive to

the number of low-b values than to SNR. In contrast, the dependence of BSP performance on

the number of low b-values is less strong with respect to LSQ. This also explains why for any

number of low b-values, the estimation accuracy of BSP for D� was better than LSQ when the

SNR was high enough. However, if SNR is too low, the performance of BSP was not good

either, its degradation also depending on the number of low b-values. When using one or two

low b-values, we obtained results similar to those of While [13], namely, BSP has better perfor-

mance than LSQ in the estimation of IVIM parameters. In the case there are no low b-values

(zero low b-value), the estimation accuracy of D� was seriously affected by noise. These results

are different from those reported in the work of While, in which it was concluded that the

Bayesian methods consistently outperform the LSQ-based ones even when the SNR is very

low.

Fig 3. Estimation of IVIM parameters on simulated data with different b-value distributions, SNRs and fitting

methods. “Two low-b-values”: the b-values of 10 and 20 s/mm2 are included in the fitting. “One low b-value”: the b

value of 20 s/mm2 is included in the fitting. “No b-value”: all the b-values used in the fitting are greater or equal to 50 s/

mm2. In the following figures, the same expression is used.

https://doi.org/10.1371/journal.pone.0211911.g003

Estimation of IVIM parameters using low b-values
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Fig 4. SSIM maps of the estimated IVIM parameters for different combinations of low b-values, SNRs and fitting

methods.

https://doi.org/10.1371/journal.pone.0211911.g004
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The above findings can be explained by the difference of mechanism between LSQ and

BSP. LSQ aims to minimize the difference between real and fitted signals through solving a

system of equations. If the number of low b-values is not sufficient, the contribution of high-

perfusion components to the fitted signals is attenuated to about zero, which results in estima-

tion errors for perfusion coefficient. To deal with this problem, the higher the perfusion

parameter value, the more low-b-values required. Thus, the performance of LSQ method relies

more on the number of low b-values. In contrast, the nature of BSP is to maximize the poste-

rior probability of parameters given the observed data, which is calculated by multiplying the

prior and likelihood probabilities. Since the likelihood and subsequently the predicted signal is

related to low b-values, D� estimated by BSP still depends on the low b-values. Nevertheless,

such dependence will be reduced by the priori probability, the shrinkage property of which is

so strong that it can shrink the outliers toward the mean of ROI. As a result, low b-value

dependence is less strong in BSP than in LSQ.

Concerning the influence of SNR, our results suggest that the estimation accuracy of BSP

for D� is more sensitive to noise; the fewer the number of low b-values, the more obvious the

effect. This phenomenon can also be explained by the nature of Bayesian method. Although

the prior distribution can reduce the dependence of BSP on the number of low b-values, it can,

however, be corrupted heavily by noise if SNR is low. In such case, the superiority of prior

probability is decreased and consequently the performance of BSP on the pseudo-diffusion

parameter estimation degrades, especially when SNR is low as well as low b-values are absent.

With regard to the results on in vivo data, they were somewhat different from those

reported by Cohen et al [10]. When the number of low b-values were not sufficient, LSQ gen-

erated lower D� values at most voxels with respect to the case of using a sufficient number of

Fig 5. Relative error (RE) of the estimated IVIM parameters for different combinations of low b-values, SNRs and fitting methods. The coordinates of each point

represent the RE of each voxel obtained using different fitting methods.

https://doi.org/10.1371/journal.pone.0211911.g005

Estimation of IVIM parameters using low b-values
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low b-values, which confirms the findings of Cohen et al [10], except the fact that, at some vox-

els, the estimated D� tended to have extreme values. This is because, with LSQ, parameter esti-

mation depends greatly on the selection of initial values. When pseudo-diffusion parameter

has relatively high values, the influence of perfusion component on the predicted signals is lim-

ited, and different D� may generate in this case similar predicted signals and residuals. There-

fore, if perfusion faction F is low, the contribution of D� values to signal residual is limited,

and the results are easier to tend to be extreme in the process of iteration if the selection of ini-

tial values is not appropriate. However, such results are not obvious when using BSP.

As to the influence of SNR on in vivo data estimation, when temporal average times are

increased, the outlying estimation of D� generated by BSP or LSQ was reduced and the param-

eter map became clearer. These results were slightly different from those of simulation. The

reason is that the IVIM model used in the simulation totally conformed to the ground-truth

whereas the IVIM model applied on in vivo data was approximate [7,34–36]. Moreover, the

noise added in the simulation data was strictly Gaussian distribution while, in real data cases,

noise did not conform to exactly an analytical noise model.

Finally, in the present study, we have used an IVIM acquisition protocol on clinical GE

MRI machine, in which b-values are varied by varying gradient strength with fixed δ and Δ.

However, the mathematical formula of b-values is a function of three variables: gradient

strength, diffusion gradient duration (δ) and interval between pulses (Δ). So, there are mathe-

matically many possibilities of varying b-values. It would then be interesting in the future to

vary b-values through varying diffusion time while fixing gradient strength. Since diffusion

time is approximately equal to Δ-δ/3, one can vary either Δ with fixed δ or δ with fixed Δ, or

vary both of them. Obviously, for fixed gradient strength and δ, changing diffusion time gives

rise to different b-values and thus different DW signals, the estimation of IVIM parameters

will be impacted. Such estimation will however not be trivial, because it depends on the

unknown microstructure of the organ under investigation and on how to choose diffusion

time, IVIM model, and fitting technique while accounting for noise influence. For instance,

when gradient strength and δ are fixed, too long diffusion time will lead to too big b-values

and consequently too important signal attenuation, which may cause too small signal-to-noise

ratio (SNR). Microscopically speaking, long diffusion times will leave water molecules to have

more chances to encounter obstacles such as cell membranes and fibers, which may lower

water diffusion coefficient [37]. In the opposite case, too small diffusion time (with fixed gradi-

ent strength and δ) may make it difficult to achieve the desired low b-values, because the latters

highly depend on MRI hardware and software and instabilities in gradient amplifiers may ren-

der low b-values unreliable [38]. Likewise, at a microscopic scale, short diffusion time may

make water molecules to have less chance to experience their environment. In all cases, the

recently reported findings [37,39] clearly show that there is a need to routinely provide diffu-

sion time (and TE) when reporting and interpreting IVIM parameter values, both in preclini-

cal and clinical settings. Our future work would then be to extend the present work to the case

of multiple diffusion times and ultimately establish the relationship between the observed DW

signals (as well as IVIM parameters) and the underlying organ (or tissue) microstructure

inside the voxel.

Fig 6. IVIM parameter maps of in vivo thigh for different combinations of low b-values, average times and fitting

methods. (a) D. (b) D�. (c) F. Different averages correspond to different SNRs: 2 averages (SNR = 26 dB), 3 averages

(SNR = 37 dB), 4 averages (SNR = 46 dB), 5 averages (SNR = 59 dB), 6 averages (SNR = 65 dB).

https://doi.org/10.1371/journal.pone.0211911.g006
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Conclusions

When using a sufficient number of low b-values, both BSP and LSQ generate close IVIM

parameters (D, F and D�) to the ground-truth in the simulation case. Nevertheless, BSP gener-

ates better IVIM parameter maps than LSQ by generating fewer outliers, lower RE and higher

SSIM. However, if the image is corrupted heavily by noise, the performance of BSP will more

rapidly degrade and begin to rely on the number of low b-values. Nevertheless, even in this

case, BSP is still more performant than LSQ. In contrast, LSQ is less sensitive to noise by gener-

ating rather stable IVIM parameter maps. Without using low b-values, neither LSQ nor BSP

will be able to give a meaningful estimation of IVIM parameters.
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