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Abstract

Researchers have a limited understanding of the interactions between development pat-

terns and Ignition Probability. This study explores the variation in Ignition Probability as a

result of differing development patterns. Based on LANDFIRE datasets, development

changes were mapped for two sets of years (2001 and 2012) and the relationship between

development and Ignition Probability was assessed. The study area covered the two adja-

cent counties, Bastrop and Travis located in Texas, USA. These two counties have a high

potential for wildfire, and due to expanding development have high vulnerability. Expanding

lateral development was organized into one of five categories: infill, radial, isolated, clus-

tered, and linear. The Maximum Entropy algorithm predicted the spatial distribution of igni-

tion probabilities based on several physical and land use characteristics coupled with

historic ignition locations. Variation in Ignition Probability was assessed for each category of

development using two-way ANOVA’s and post hoc analysis. Ignition Probability maps indi-

cated a fair sensitivity (Area Under the Curve: 0.77–0.78), suggesting that the spatial config-

uration of development patterns influenced wildfire ignition. Analyses found that isolated,

clustered, and linear outlying development patterns had higher Ignition Probability than infill

and radial development, and that fire probabilities fell along a development gradient. This

trend between the development gradient and ignition probabilities should be used to direct

land use planning to reduce fire risk.

Introduction

Seven of the most destructive fire seasons in the U.S. have occurred in the last 15 years, four of

which have burned over 9 million acres. The 2015 fire season was the first fire season on record

to burn over 10 million acres, and 12,306 structures were burned during the 2017 fire season

[1]. Federal agencies are having to spend more each year to suppress wildfires [2]. Taking infla-

tion into account, suppression expenditures have quadrupled since 1985 (2015 $1.9 billion).

Despite the increased spending, wildfires continue to burn thousands of structures yearly [3].

These structural losses from increased acres burned, are caused by several factors including: a

high percentage of anthropogenic ignitions [4], wildland urban interface (WUI) expansion

[5], and climate change [6, 7].
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Within the United States, the creation of the Federal Housing Administration has reduced

constraints for financing the development of single family homes [8], which in turn has stimu-

lated the growth of single family development into increasingly suburban and exurban areas

[9]. Previously these areas were often wildlands [10]. Areas of developed lands surrounded by

wildland vegetation (i.e. WUI) are vulnerable to wildfire [11], and understanding how devel-

opment patterns influence ignition probabilities in the WUI will help planners and policy-

makers create more resilient communities.

Creating a fire resilient community requires understanding the probability of a disturbance

and the factors that shift this probability. Ignition Probability (IP) models identify where on a

landscape a fire might ignite by predicting the likelihood of wildfire ignitions across space. The

outcome is a raster dataset that denotes, for each cell, its probability of ignition given a set of

spatially explicit environmental predictors. Ignition datasets are presence only and identify the

location of ignitions that have occurred, however, some ignitions may go undetected. IP mod-

els have evolved from species distribution models [12], which are also implemented using

presence-only datasets. By adopting a similar approach, IP modeling can empirically predict a

continuous raster where a fire is likely to begin [13].

Wildland urban interface and development patterns

During the 1980’s and 1990’s research has identified the WUI as a subject area in need of spe-

cial examination in terms of mitigating wildfire risk [14]. Research has illustrated that fires

located within WUI areas were more likely to burn structures at a higher rate than non-WUI

located fires [15]. The WUI makes up a significant proportion of landcover in the U.S.,

approximately 10% in 2010 and has been expanding rapidly in recent decades [15]. An even

larger proportion of homes (33.5%, [5]) are located adjacent to the WUI. The WUI’s develop-

ment composition adjacent to large fuel loads cause structures within these areas to be at high

risk from wildfire [15]. The vulnerability of the WUI, has led researchers to map and under-

stand the risk associated with the WUI [16]. Risk trends show that lower and intermediate

housing densities are more likely to burn than those at higher densities [17]. However, compli-

cating the analysis, the higher densities referenced were in the urban core, where vegetation

and fuels are often highly fragmented by asphalt and concrete. Other research suggests that

buildings within the WUI may increase the chance of those structures burning [18]. Although

mapping the WUI helps identify areas vulnerable to wildfire, the form of development patterns

within the WUI vary greatly.

Most development occurring in the WUI is a result of urban sprawl. Sprawl definitions

vary depending on the study and the question addressed [9, 19, 20], but consistently are

focused on low density development [9, 21], which is frequently expressed as the degree of

sprawl [20]. Initially, urban development described cities as monocentric, where the city has

one core business area and development extends outwards from the core. This suggests that

three kinds of development patterns exist: vertical growth, infill growth, and lateral growth

[22]. Contemporary sprawl metrics still resemble these initial patterns [23, 24]. Vertical growth

replaces single family homes with higher density larger structures. Infill growth occurs on

vacant land, either lots or open space in settled areas.

Initially, cities were thought to develop as lateral growth rings extending from the central

business district [22]; however, this description of rings fails to account for multi-nuclearity or

sector type development [25]. Due to the complexity of urban development, more recent

research has focused on expanding the characterization of lateral growth. For example, differ-

entiating between radial growth, where development occurs in an area surrounded by less

than 40% development, and outlying growth, where new development occurs away from
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previous development [26]. Outlying growth is further characterized by three additional

growth patterns including isolated, linear branch, and new clustered development [26]. Iso-

lated outlying growth consists of small patches of development separate from other develop-

ment, which has often been referred to this as “leap frog growth” [9, 23, 27]. Outlying linear

branch growth occurs on transportation corridors such as roads and rail lines, for instance,

strips of commercial development along a road [9, 20]. Outlying clustered development con-

sists of multiple structures (i.e. subdivisions or industrial developments), which are larger than

those found in isolated development.

Lateral growth patterns have also been measured in various ways. For example, measuring

the degree of changes in development between one year to the next, spatial location of new

urban development and the threshold of the percentage of surrounding urban (40%) can pre-

dict whether an area would be infill or radial [26]. Other research has used more complex met-

rics such as contagion [21], fractal dimensions [28] and interspersion and juxtaposition

indices to estimate lateral sprawl. Contagion estimates how urban patches are dispersed [16].

Fractal dimension helps estimate the position of a city on a scale between the states of

completely compact and completely dispersed [28].

Ignition probability

Ignition is the initial step in any fire. While only a limited number of ignitions develop into

large fires, yet each ignition has the potential to grow larger and become destructive. Ignition

based models use historic ignition or fire points to gain a better understanding of the spatial

nature of wildfire. The point data allows for a variety of methods to understand the nature of

the data. Points can be used to understand the landscape’s fire regime, by associating ignition

rates globally [29] or used to create a local IP raster [30]. Overall, these analyses allow research-

ers to understand the fire regime and fire frequency on a landscape and predict deviations

from historic patterns across time or space [12].

While research has identified WUI areas as vulnerable, few studies have assessed how devel-

opment of the landscape interacts with IP. One study indicated differences in fire arrange-

ments between urban patch densities and forest fragmentations [31], but the study was cross-

sectional and did not specifically identify which development patterns were the riskiest. A sec-

ond, broader cross-sectional study found a positive correlation between fire frequency and

population [29]. Of the studies focusing on lateral development, evidence suggests that outly-

ing development results in a higher fire frequency than infill [32], however, this study only

assessed a single landscape at one point in time. Another body of research focused on the like-

lihood of damage to structures by using either statistical or machine learning algorithms to

estimate structural damage. Results indicate that housing density influenced the likelihood of a

home burning [33, 34]. Defensible space and low slopes also help reduce structure damage

[35], while small, high-density clusters of development or low density structures were more at

risk for burning than other development types [33].

The primary objective of this study was to determine whether different categories of devel-

opment had different anthropogenic IP distributions. Specifically, this study hypothesizes that

ignition probabilities will differ based on the nearest development type. To meet this objective

this study categorized new development patterns and then quantified how IP surrounding spe-

cific development types differed between two sets of years. More specifically, using two-way

ANOVA’s and post hoc analyses, this study determines and orders by types of lateral develop-

ment. The paper then discusses these findings in context of previous studies and then summa-

rizes the conclusions of the paper.

Ignition locations and development patterns
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Methods

Study area

The study area encompasses Travis and Bastrop Counties in central Texas (Fig 1). Travis

County consists of 356,000 hectares, and Bastrop county is 310,000 hectares. Travis County is a

large (1.02 million people in 2010), fast-growing community (26% growth over 10 years; [36]).

This population growth has led to an increase in development (21,214 ha 2001–2012 [37]). Bas-

trop County’s smaller population (74,000) is a stark contrast to Travis County. Bastrop County

has a similar growth rate over the 10-year study period (28% growth; [36]). Because of the

smaller population size, Bastrop County has experienced less development growth (1,343 ha

2001–2012). Travis County is higher in elevation (433m peak) compared to Bastrop County.

In 2012, much of the vegetation that existed within the study area was grass cover (229,000

ha), followed by forest (156,389 ha) and shrub lands (17,174 ha [26]). Grasslands have

increased the most (88,998 ha since 2001) as a result of conversion to pasture lands. The largest

changes to the landscape have occurred through tree cover growth (42,000 ha), which has

occurred primarily in Bastrop County.

Bastrop and Travis counties have had approximately 3,000 ignitions from 1999–2015 [38],

most of which started in Forests. The fires within the study area are primarily small (77% are half a

hectare or smaller); however, the study area has also had eleven fires which burned more than a

Fig 1. Study area of Bastrop and Travis County. Fuel types are aggregated to more generalized categories.

https://doi.org/10.1371/journal.pone.0211454.g001
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1,000 acres. Most recent fires have occurred in Bastrop County, which experienced over 2000 fires

between 2010 and 2014. The extensive growth of communities combined with the fires that have

occurred in the area, makes these counties an optimal study area to understand the effects of devel-

opment on the fire landscape. The time period for the study focuses on two sub-groups of years

(1999–2003 & 2010–2014). From this point forward, the 1999–2003 time period will be referred to

as the 2001 model and the 2010–2014 time period will be referred to as the 2012 model.

Development categories

Because landscapes are dynamic, many urban studies focus on lateral growth. This study cate-

gorized development using a decision tree approach (Fig 2), where each step in the decision

tree separates a development type. This separation started with infill followed with radial and

then sub-categorized three outlying development patterns: isolated, clustered, and linear. Iso-

lated growth consists of small patches of development separate from other development. Lin-

ear growth occurs on transportation corridors such as roads and rail lines while new clustered

development consists of multiple structures. This study’s approach was modeled after [26] but

was not identical. The main change for this study, is the use of a recursive iteration on new

development patches that are adjacent to previous development. These pixels are defined as

radial development categories, this approach allows for larger developments to be classified as

radial beyond adjacent pixels.

Fig 2. Categorization flowchart for developed lands. This includes the rules used to identify patch, perforated and interior wildlands.

https://doi.org/10.1371/journal.pone.0211454.g002
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The study focused on two time periods where new development occurred, therefore,

three years of land cover (1992, 2001, and 2012) were used to define the two generations of

development (Fig 3). Each generation was defined as development that had not occurred

previously. For example, the Δt1 occurred on the 2001 landscape but not the 1992 landscape,

while the Δt2 occurred on the 2012 landscape but not the 2001 landscape. The land cover

data came from two different sources, National Land Cover Dataset (NLCD) [39] and

LANDFIRE [37], both of which had a grain size of 30m. Development from 2001 and 2012

were calculated from LANDFIRE, ensuring that the development patterns match with the

fire simulations. LANDFIRE does not publish a land cover dataset pre-2001, so NLCD’s

1992 retrofit dataset was used as a baseline for previous development. A qualitative explor-

atory assessment of NLCD’s 2001 dataset against LANDFIRE’s 2001 dataset showed little

difference between land covers, suggesting that using the NLCD 1992 would not create

inaccuracies in the assessment.

The NLCD land cover dataset provides three classifications for developed area, including high,

medium, and low intensity development, while the LANDFIRE dataset provides one. Within the

NLCD dataset the three development intensities were aggregated into a single class (developed),

while in both datasets the vegetation classes were aggregated into a single class (wildland). Once

the initial developed and wildland areas were classified, new development for each year was iden-

tified. Any development that existed prior to 2001 was classified as core development. New devel-

oped pixels were categorized as wildland pixels that transitioned to urban between years. Any

development that existed prior to 1992 was classified as previous development.

Categorizing lateral development patterns was performed for both time periods beginning

with 2001 and followed by 2012. First, infill was identified as new development that occurred

in areas with > = 60% developed pixels. The initial infill pattern was generated using a square

moving window size of 1920 m (64 pixels) per side. The window size was derived from a lacu-

narity analysis of new development in the study area [40].

Fig 3. Generations of development. Note the transitions in development between 1996–2001 and 2001–2012.

https://doi.org/10.1371/journal.pone.0211454.g003
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After infill was identified, radial development was categorized. Pixels were categorized as

radial development if it was adjacent to a previously developed pixel. The radial decision process

was iterated until no more pixels were categorized as radial. All newly developed pixels, that

were not categorized as either infill or radial were categorized as outlying development.

Outlying development occurs in three categories: isolated, clustered, or linear. Patches of

newly developed pixels were used instead of individual pixels to identify the appropriate class.

The Patch Area and Perimeter Area Ratio (PARA) were calculated for each patch. PARA mea-

sures the perimeter of the patch over the area [41]:

PARA ¼
p
a

ð1Þ

Where p is the perimeter of a patch and a is the area of that same patch.

Since linear and clustered development have larger areas, isolated development was the first

to be classified of the three outlying patterns. Isolated development patterns consist of a small

number of buildings, often individual structures or with detached sheds, in an area. Because

NLCD resolution is not fine enough to determine individual structures, the study assumed

that the number of structures was correlated with patch size. Isolated patches were assessed

and categorized using the distribution of patch areas for new outlying development. Any new

outlying development patch that had an area below the median value (0.54 hectare) was classi-

fied as isolated. The median value was used due to a flooring effect of the distribution of patch

areas. Those developments, that were not classified as isolated were then classified based on

their linearity using PARA.

Any new outlying-development patch with a PARA that exceeded median value (592.59 m-1)

was designated as linear development, while any patches below that value were designated as

clustered development. Using the PARA metric is not without its downside; the PARA metric

struggles to differentiate between linear patches and patches with complex edges [41]. However,

because the PARA metric was used solely on new clustered development, the edges were not

complex and an inspection of the two classifications showed the threshold to be acceptable.

Once all development types were added, the aggregate median center was calculated for

each development category. The median center addresses where both Δt1 and Δt2 are primarily

developing as compared to the previous development. Development patterns, such as infill,

should be developing closer to previous development, while outlying patterns should occur

further away.

IP model

The MaxEnt Software v3.3 was used to predict IP. Previous research has demonstrated that

MaxEnt provides accurate results for predicting the occurrence of natural hazards [12, 42].

MaxEnt predicts the probability of an event based on point observations of occurrence (i.e.,

the dependent variable) and background environmental data (i.e., independent variables)

[43]. The independent variables may be continuous, categorical, or binomial. IP is calcu-

lated by maximizing entropy in covariate space [44] and also takes into account non-lineari-

ties and interactions between variables [45]. Machine learning algorithms, such as MaxEnt,

are more robust when dealing with issues caused by statistical assumptions. For instance,

MaxEnt provides a stable model in the face of highly correlated independent variables [44].

The dependent variable, fire events, was sourced from the historic fire datasets provided by

Texas Forest Service and USGS and consisted of all documented wildfires between 1999 and

2014. The output of MaxEnt is the map of the probability of occurrence of the dependent

variable (here, IP).

Ignition locations and development patterns
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Variables

Dependent. The IP model was based on anthropogenic ignition locations gathered from local

fire departments, the Texas Forest Service, and federal agencies [38]. This dataset covers fires from

1999–2015 (see Table 1). Of the 3,027 fires that were recorded during this time, 98% were caused

by humans and over half of the fires were caused by debris burning. On average fires between 2010

and 2014 were larger than those between 1999 and 2003, burning 29 and 11 hectares respectively.

Part of this high average is due to the Bastrop complex which burned 14,000 Ha. The Bastrop Com-

plex fire was driven by extreme weather conditions during a long drought in 2011 [46]. A prelimi-

nary model suggested that a smaller subset of years (5 years) produced a more sensitive model

when compared to a larger subset of years. This is likely because ignition’s drivers (e.g. land cover)

shift over time, and studies with a larger temporal range cannot take this into account [47]. A five-

year sample surrounding the date of each land cover classification helped reduce the model’s

potential for errors. Therefore, two subsets were created from the initial dataset for the two study

periods (1999–2003 and 2010–2014), which yielded sample sizes of n = 123 and n = 1156, respec-

tively. The earlier ignition sample (2001) is much smaller than the more recent (2012) group

because Texas fire departments did not keep records of fire locations prior to 2005. Initially, the

2012 model was run twice, with and without the extra Texas Fire Departments data. Using Area

Under the Curve (AUC), the model with all ignitions included produced a better sensitivity as

compared with the reduced ignition 2012 model, however, mean probabilities by development

type were lower for the reduced ignition model. Because of this, the reduced ignition 2012 model

was used as findings would be more conservative. Since each ignition group was centered on spe-

cific land cover years, minimal change was assumed in socio-economic and landscape variables.

Independent. Previous research has used various spatial measurements for IP modeling,

and most variables come from three categories: socio-economic, biophysical, and topographic.

Some relationships are well documented (e.g. the closer a pixel is to a road, the more likely an

ignition is to occur), while others have been used sparingly (e.g. number of livestock in an

area). The following independent variables from the literature were used as drivers of the IP

model (Table 2).

Distance to roads was measured using Euclidean distance and the Tiger 2010 road file from

the U.S. Census Bureau. Roads that existed in 2000 were marked using aerial images, while

new roads to 2010 were designated for the 2012 model. Housing density was calculated using

census blocks normalized by hectares. Land cover uses 13 fire behavior fuel models (FBFM 13)

which was provided by LANDFIRE (www.LANDFIRE.GOV). The elevation and slope datasets

were also collected from LANDFIRE as products of the National Elevation Dataset (NED).

The NED has a 900 m2 grain size and 1-meter vertical resolution. Other datasets may offer a

higher resolution or grain size, the NED has the same grain size as the land cover and other

inputs, which eliminated the need to upscale and resample. Proportion urban measures the

percent of surrounding cells that are urban, and urban edge density. These variables were mea-

sured using the same 1920-m window size used above to categorize new development. This

helped measure the amount of exposure each raster cell has from populated areas.

Model validation

MaxEnt tests for sensitivity given a user-provided test dataset and background pixels using the

Area Under the Curve (AUC) from the Receiver Operating Characteristic (ROC) analysis. The

Table 1. Ignitions within the study area separated by year.

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Ignitions 25 40 19 15 24 5 136 440 139 606 391 54 518 191 300 93 31

https://doi.org/10.1371/journal.pone.0211454.t001
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ROC measures each model’s sensitivity by assessing true positives and false positives between

possible values. AUC values can range from 0–1 with AUC = 0.5 being completely random.

Values are categorized as an excellent (>0.9) fit, a good (0.8–0.9) fit, and fair (0.7–0.8) fitting

[48, 49]. Due to the limited sample size, the 2001 model used a smaller test dataset (n = 20)

compared with the 2012 model (n = 99). The maximum AUC for an IP model is based on the

area in which the presence sample covers as compared to the total study area [43]. It can be

used to standardize the AUC and help determine if the model is maximizing its efficiency [50].

Additionally, using a Jackknife method MaxEnt provides the influence of each independent

variable on the model’s sensitivity. This output is shown as the sensitivity for each individual

variable, and if that predictor variable was removed from the final model.

Goodness of fit is assessed through gain values [44], which describes how much variation in

the model is explained by each variable if all others are held constant. Maximizing the gain

value is similar to other optimization measures (e.g. AIC or BIC) and is one way of determin-

ing the optimal model [51].

Mean IP values were calculated surrounding development patches for the eleven categories:

Urban Core, and 5 categories, infill, radial, clustered, linear, and isolated development for both

Δt1 and Δt2 using a 30-meter buffer and associated with the development patch category. Dif-

ferences in the probabilities were then tested using a two-way parametric ANOVA, followed

by the Tukey post hoc assessment to determine the rankings of development type.

Results

Qualitative assessment suggested that the recursive radial decisions, as well as the decision tree

using patch area and PARA, were reasonable in categorizing development. Radial develop-

ment occurred more often than all other development types combined. Clustered and isolated

development were the least likely to occur.

Results showed that the center of all development occurred within the center of Travis

County. Radial and infill occurred near this center of development, while the outlying develop-

ment occurred further from the center. Δt1 development tended to occur further from the

development center than Δt2 (Fig 4). Clustered development occurred to the western part of

the study area, while isolated and linear development occurred further to the east. Within the

Δt2, all three outlying development patterns occurred to the east.

Development pattern growth was similar between Δt1 and Δt2 (Table 3). More development

occurred in Δt2 than Δt1 across all development patterns. This was most noticeable with clus-

tered development. The primary development patterns were radial and infill; however, more

Table 2. Independent variables and descriptive statistics for the study area.

2001 (2012) Range Mean St. Dev. Source Data Type Measurement

Independent Variables
Distance to Road Way 0–4273.08

(0–1679.2)

323.72

(249.11)

411.59

(260.83)

U.S. Census Tiger Files Continuous Euclidean Distance in Meters from Road

Housing Density 0–391.249

(0–347.72)

0.72

(0.94)

3.18

(3.64)

U.S. Census Continuous Population per Hectare

Proportion Urban 0–100

(0–100)

19.88

(21.58)

31.34

(29.71)

HGAC Continuous Percent of Surrounding Cells Urban

Edge Density 0–178.698

(0–136.56)

29.46

(27.45)

23.61

(18.76)

LANDFIRE Continuous Urban Edge Density surrounding a pixel.

Land Cover - - - LANDFIRE Discrete 13 fire behavior fuel models

Elevation 79–433 183.51 62.09 USGS National Elevation Dataset Continuous Meters relative to NAD83

Slope 0–47 2.47 3.31 Derived from USGS National Elevation Dataset Continuous Degree Slope

https://doi.org/10.1371/journal.pone.0211454.t002
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infill was developed in Δt2 as the amount of growth was lower. This pattern was also seen with

linear development which had the same amount of development.

Across the landscape, mean ignitions probabilities were the same for both models (ip2001 =

0.28 and ip2012 = 0.28), while IP near development were higher in 2012 than 2001 across all

development types (Fig 5). High ignition areas changed for the two models: in 2001 the high IP

areas were located in southeastern Bastrop, while in the 2012 model higher IP’s were in north-

western Travis County. Roads were clearly a major driver of ignitions, as most of the road net-

work is outlined by high IP rates, however the relationship appears clearer in 2012 than 2001.

Fig 4. Generational development centers. Old generations tended to occur further from the urban core than the newer counter parts. This could

potentially show evidence of a coalescing landscape.

https://doi.org/10.1371/journal.pone.0211454.g004

Table 3. New development in ha and percentage of total development.

Development Type Δt1 Δt2

Area (ha) Percentage Area (ha) Percentage

Infill 1143 24.89% 1272 15.82%

Radial 3248 70.74% 5997 74.53%

Isolated 11 0.24% 83 1.04%

Clustered 61 1.35% 566 7.03%

Linear 127 2.78% 127 1.58%

Total 4592 8046

https://doi.org/10.1371/journal.pone.0211454.t003
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Fig 5. Variation in ignition probabilities across years. Ignition models were developed using MaxEnt software.

Higher IP’s tended to occur in the Bastrop County, with the highest probabilities occurring in 2001. The basemap for

this image uses census county data.

https://doi.org/10.1371/journal.pone.0211454.g005
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The 2001 and 2012 sensitivities were not statistically different (AUC: 0.776–0.782, Table 4)

when compared with its earlier counterpart (AUC: 0.771). The 2001 model (0.797) outper-

formed the 2012 models (0. 0.613) in gain values.

Sensitivity

Removing any single independent variable within the 2012 model decreased the overall sensi-

tivity. Distance to roadway had the most impact, while removing elevation had the least

impact. For the 2001 model, distance to roadways was still the most influential variable affect-

ing the model’s sensitivity (+0.033 to AUC), while housing density had the most negative effect

(-0.0087 to AUC). Elevation was the only other variable that negatively influenced the model’s

sensitivity (-0.003 AUC when removed).

Variable influence

Holding all other variables constant, each independent variable initially increases the IP,

and as the variable increases, IP decreases (Fig 6). The response curves for the 2001 model

had several differences compared with the latter model. More specifically, the edge density

and housing density variables within the 2001 and 2012 model had opposite effects on IP,

where increases in both housing density and edge density increased IP in the 2001 model

and decreased probability in the 2012 model. The slope in 2012 had a negative quadratic

effect increasing up to 25 degrees and then decreasing, while the slope in the 2001 model

increased IP over the range. Qualitatively, distance to roadways and proportion urban show

exponential decay. The maximum IP for the variable distance to roadways occurs adjacent

to roads.

Statistical results

The two-way ANOVA for the 2001 and 2012 model (Table 5) demonstrated statistically signif-

icant differences among the 11 development types (p<0.000) and years (p<0.00). The total

sample size between years was n = 95,390 for the eleven development categories.

Most tests using the Tukey Kramer HSD showed a significance of at least p<0.01. For

example, all development patterns, except for Δt1 isolated, increased in ignition probability

between 2001 and 2012. In 2001, Δt1 infill had the lowest IP, while outlying development pat-

terns of Δt1 linear and Δt1 isolated had the highest Ignition Probabilities. In the 2012 model

Table 4. IP Sensitivity and deviation from model AUC.

Sensitivity

2001 2012

AUC 0.782 0.7709

Gain 0.797 0.613

Without Specified Variable With Only Specified Variable

2001 2012 2001 2012

Distance to Roadway -0.0333 -0.1553 -0.1152 -0.079

Housing Density 0.0086 -0.015 -0.1926 -0.1568

Elevation 0.0036 -0.0013 -0.1494 -0.2718

Land Cover -0.0073 -0.0058 -0.2183 -0.2521

Slope 0.0008 -0.0132 -0.2601 -0.3207

Proportion Urban -0.0326 -0.0107 -0.2301 -0.1867

Edge Density -0.0165 -0.0048 -0.2446 -0.2334

https://doi.org/10.1371/journal.pone.0211454.t004
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the Δt2 Infill had the lowest IP, while Δt1 isolated remained the highest. Δt1 clustered and both

Δt1 and Δt2 radial had the highest increases. Similar trends occur in the order of development

pattern by Ignition Probability, with one exception, Δt1 clustered has the third highest ignition

probability.

Fig 6. Variable influence on MaxEnt across years. Note the opposite effects of housing density and slope between years.

https://doi.org/10.1371/journal.pone.0211454.g006

Ignition locations and development patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0211454 February 7, 2019 13 / 18

https://doi.org/10.1371/journal.pone.0211454.g006
https://doi.org/10.1371/journal.pone.0211454


Discussion

The trends found in this study coupled with the broader research focusing on development

and IP suggest that policy makers should focus more on land use patterns in wildfire protec-

tion plans. The development patterns help explain the IP found on the landscape. The high

amount of radial and infill development suggests that most development is occurring at a

higher density and in the relatively lower IP areas near Travis County’s urban core. For exam-

ple, Δt2 outlying development was often much closer to previously developed areas. Currently,

the County Wildfire Protection Plans’ in Texas recommend (1) the spatial examination of the

WUI, and (2) the setting of zoning standards to focus on structure level mitigation efforts [52].

These Wildfire Protection Plan recommendations fail to address better land use planning.

The results of this study support the hypothesis that Ignition Probabilities differ based on

the nearest development type. Ignition Probabilities fell along a gradient from lower-to-higher

probabilities for lateral development types of infill, radial, and outlying respectively. Despite

adding new development between the 2001 and 2012 model, the Δt2 development categories

could not be statistically differentiated from the Δt1 counterparts. This occurs despite locations

of these development patterns being distinctly different within the study area. This risk gradi-

ent is similar to ones found in [34]. The response curve for the proportion urban variable adds

support to the probability gradient finding, as both the 2001 and 2012 model reduce in proba-

bility as proportion urban increases. This gradient is likely due to a higher fuel to development

ratio, where outlying development has a more surrounding fuel that could ignite. Researchers

and historians have called for revisiting wildfire protection policies [53, 54], and focusing on

the probability gradient could give distinct boundaries for where protection policies should

shift. However, this gradient will need to be explored through wildfire behavior as well.

Moving beyond urbanization from remotely sensed urban land cover housing density

response curves had opposite impacts for the 2001 and 2012 models. On average, housing den-

sity increases from 2001 to 2012. The flipping of the housing density response curve may be

Table 5. Two-way ANOVA, and Tukey’s post hoc analysis.

Number of obs = 95390 Residual = 3642.739022

Df F Prob>F

Year 1 3715.87 0.00

Development Type 10 756.33 0.00

Year & Development Type 10 17.35 0.00

Development Type Δt1

Infill�
Δt2

Infill�
Core� Δt2

Radial�
Δt1

Clustered�
Δt1

Radial�
Δt2

Clustered�
Δt2

Linear�
Δt2

Isolated�
Δt1

Linear�
Δt1

Isolated

2001 Mean 0.1424 0.1533 0.2061 0.2785 0.2802 0.2803 0.3597 0.3776 0.3845 0.4184 0.4578

2012 Mean 0.2180 0.200 0.2715 0.3705 0.4496 0.3817 0.4058 0.4306 0.4404 0.4703 0.5069

2001 Post Hoc

Significance

2012 Post Hoc

Significance

Note �denotes significance at 0.01 level. While underlines at the bottom of the table show development patterns which were not statistically different.

https://doi.org/10.1371/journal.pone.0211454.t005
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explained by areas of increased density becoming unburnable. This housing density change

suggests that land use planners should focus on densifying area, which could also reduce over-

all suppression costs. While increasing the number of structures near a fire increases the cost

to suppress that fire [33], suppression costs also vary by development pattern-individual

homes disproportionately increasing the suppression costs compared to areas with clustered

homes [55].

The other biophysical variables within the model were consistent with previous studies. For

example, distance to roadways is often a primary driver, and the probabilities decay the further

away from a road [47]. Slope is shown to have a positive effect on IP [30], but results indicate

the relationship may be quadratic.

Limitations and future research

One of the primary limitations of this research is driven by limited sample size. During 2001,

local departments were not logging wildfire locations, resulting in lower sampling for 2001

and subsequent a subsample in 2012 to eliminate the local fire department ignitions. The sensi-

tivity of the model with and without these ignitions was similar, however Ignition Probabilities

were lower overall without the local fires. This could lead to bias of the spatial ignition pattern

but is the more conservative model for the objectives. Future research would benefit from

more comprehensive historical ignition data.

Second, the NLCD urban classifications had an 0.05% standard error in Texas [56], and the

30-meter resolution may omit homes and other structures. This may impact the findings, espe-

cially in the outlying developments. However, this was the best available data for the study. In

addition, while this study focused on ignition probabilities, fire spread was not accounted for

in this assessment. Future research should examine how the movement of wildfires on the

landscape impact differing developments ignition probabilities.

Conclusions

This paper built an Ignition Probability model to assess how IP varied with development

changes. The model used the MaxEnt software along with several physical and environmental

variables to predict historic ignition locations for two time periods (1999–2003 and 2010–

2014) in Bastrop and Travis Counties. Using test subsets of the ignitions, sensitivities for the

two models could not be statistically differentiated (AUC: 0.776–0.782). The results demon-

strate that both physical factors and location influence wildfire ignition. Distance to Roadways

and Proportion Urban were two primary factors influencing the models sensitivity in 2001,

while Distance to Roadways and Slope were the two primary factors in 2012. A two-way

ANOVA showed significance of IP between 2001 and 2012 and between lateral development

type.

Post hoc analysis during this study provides evidence for an Ignition gradient along lateral

development. Those areas nearest previous urban development have lower probabilities, while

outlying development patterns in the wildlands have higher probabilities. Proportion urban

response curves in the MaxEnt model corroborates this ignition gradient. The gradient should

inform future wildfire protection policies through land use planning and informed boundaries

for mitigation practices. In addition, the Housing Density response curves suggests that land

use planners should focus on densifying development to reduce IP.
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