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Abstract

Despite the importance of predicting evacuation mobility dynamics after large scale disas-

ters for effective first response and disaster relief, our general understanding of evacuation

behavior remains limited because of the lack of empirical evidence on the evacuation move-

ment of individuals across multiple disaster instances. Here we investigate the GPS trajecto-

ries of a total of more than 1 million anonymized mobile phone users whose positions were

tracked for a period of 2 months before and after four of the major earthquakes that occurred

in Japan. Through a cross comparative analysis between the four disaster instances, we

find that in contrast to the assumed complexity of evacuation decision making mechanisms

in crisis situations, an individual’s evacuation probability is strongly dependent on the seis-

mic intensity that they experience. In fact, we show that the evacuation probabilities in all

earthquakes collapse into a similar pattern, with a critical threshold at around seismic inten-

sity 5.5. This indicates that despite the diversity in the earthquakes profiles and urban char-

acteristics, evacuation behavior is similarly dependent on seismic intensity. Moreover, we

found that probability density functions of the distances that individuals evacuate are not

dependent on seismic intensities that individuals experience. These insights from empirical

analysis on evacuation from multiple earthquake instances using large scale mobility data

contributes to a deeper understanding of how people react to earthquakes, and can poten-

tially assist decision makers to simulate and predict the number of evacuees in urban areas

with little computational time and cost. This can be achieved by utilizing only the information

on population density distribution and seismic intensity distribution, which can be observed

instantaneously after the shock.

Introduction

Severe earthquakes such as the Kobe earthquake (1995), the Tohoku earthquake (2011) and

more recently the Kumamoto earthquake (2016) caused mass evacuation activities owing to
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considerable damage to buildings and urban infrastructure [1–4]. Human mobility prediction

in disaster scenarios is crucial for various recovery efforts, including the planning of locations

and capacities of evacuation shelters, and the allocation of various emergency supplies. Many

of the conventional methods use urban infrastructure failure data to predict the number of

evacuees in upcoming disasters. For example, the Tokyo Metropolitan Government uses a

model that utilizes variables such as building collapse rate, lifeline damage rate, and inundation

area data to estimate the number of evacuees [5]. However, it is difficult to use this model

shortly after an earthquake because typically, several days are required for government organi-

zations to inspect and gather information about the status of lifelines and infrastructure. In

fact, after the Kumamoto earthquake (2016, magnitude 7.3), authorities failed to obtain an

accurate estimate of the number of evacuees due to difficulties in data collection. This caused

delays in rescue and inefficient distribution of emergency supplies [6].

Traditionally, transportation surveys were used to understand the city-scale human mobil-

ity [7]. In recent years, large scale datasets collected from mobile phones and smartphones are

beginning to be utilized to understand the behavior of individuals at a low cost [8–13]. These

data are used in applications in various fields such as traffic management [14–16], monitoring

pandemic spreading [17], tourist mobility analysis [18] and the prediction of population distri-

butions and dynamics [19–22]. Many works have applied this new data source for applications

in disaster management [23]. Studies have shown the effect of weather patterns on human

mobility [24], and its predictability using socio-economic factors [25]. In terms of understand-

ing human mobility during larger scale disasters, a recent study analyzed call detail records to

investigate the predictability of evacuation destinations of individuals after the Haiti earth-

quake and showed that most evacuation destinations were places that individuals have visited

earlier (e.g., the home of a relative or a friend) [26]. Also, population decline was observed in

various areas affected by the Tohoku Earthquake using mobile phone data [27]. Other works

have used Twitter data to observe the perturbation in the radius of gyration of affected individ-

uals during disasters [28], and to understand the tweeting behaviors of affected individuals

and the transition of sentiments after large scale disasters [29, 30]. More recent studies con-

ducted after the Nepal earthquake and Kumamoto earthquake showed that evacuation behav-

ior could be monitored after an earthquake by using mobile phone location data (e.g. GPS, call

detail records) obtained from the evacuees [31–33]. Although these works provide valuable

insights into the human mobility patterns during a individual disaster case studies, they fail to

provide general insights that could be applicable across different disasters. Moreover, results

obtained from mobile phone data are usually delivered to decision makers several days or even

weeks after the initial shocks because the use of real-time mobile phone location data is highly

sensitive against privacy issues [34]. This motivates us to perform a cross-comparative analysis

of human evacuation behavior after various disaster cases, to obtain a general understanding

of evacuation behavior after earthquakes which can be used in planning evacuation strategies

for future disasters.

Several works have performed a cross-comparative analysis across different disasters. How-

ever, to the best of our knowledge, none of the works provide analyses of detailed evacuation

behavior which can be utilized by emergency management practitioners. The analysis of call-

ing behavior after various types of disasters has shown that increase in communication after

emergencies are both spatially and temporally localized, but information about emergencies

spreads globally [35]. Here in this study, we focus more on the physical movements of individ-

uals rather than communication patterns. Similar to [28], the radius of gyration of individuals

across different disaster cases using Twitter Geo-tag data has been studied [36]. Although

using the radius of gyration measures the perturbation of human mobility due to disasters, it

does not provide direct measures of evacuation movements. In this study, we provide detailed
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analysis of evacuation rates and evacuation distances of individuals after multiple earthquakes

using large scale mobile phone location datasets from Japan. More specifically, we analyze the

mobility of individuals who were affected by the Tohoku earthquake (2011 March) [37],

Kumamoto earthquake (2016 April) [38], Nagano earthquake (2014 November) [39], and Tot-

tori earthquake (2016 October) [40].

Data

Mobile phone location data

Yahoo Japan Corporation (https://about.yahoo.co.jp/info/en/) provides a variety of disaster

notifications to users through its disaster alert app. The disaster alert app continues to acquire

real-time location information of individuals in order to transmit only geographically relevant

disaster notifications for individuals. The users have accepted to provide their location data

when installing the application. The data is anonymized so that individuals cannot be speci-

fied, and personal information such as gender, age and occupation are unknown. Each loca-

tion data is stored as a GPS record in Yahoo Japan’s internal server. Each record consists of a

user’s unique ID (random character string), latitude, longitude, date and time. The acquisition

frequency of the GPS data changes according to the movement speed of the user. If it is deter-

mined that the user is staying in a certain place for a long time, data is acquired at a relatively

low frequency, and if it is determined that the user is moving, the data is acquired more fre-

quently. By reducing the number of times data is acquired using this algorithm, it is possible to

reduce the burden on the user’s smartphone battery. On average, about 40 points are observed

per day per user, therefore we can observe the main staying places of each individual. Cur-

rently the number of users who have installed the disaster alert app in Japan nationwide are

about 1 million (Kumamoto, at 2016 April), and it is currently increasing due to the rise in

disaster risk awareness. Approximately, this is 1% sample rate of the whole population which

is equivalent to the national census, which is performed once in 10 years for the purpose of

understanding traffic behavior. S1 Fig shows the actual GPS information for one day plotted

on a white map around Kumamoto City. Each fine red dot corresponds to one GPS data. By

comparing the plot with an actual map of the area, we can observe that the city center and

roads that connect the surrounding cities can be traced from the data, showing its high spatial

density. Table 1 shows the statistics of the disaster and also the data that were used for the

experiments. We used 712,904 users’ data for which an average of 19 points were observed per

day for the Kumamoto earthquake. For Nagano and Tottori earthquakes, the number of users

were 10244 and 24103, respectively with similar observation frequencies. We also use the GPS

data set (called Konzatsu-Tokei data), provided by Zenrin Data Com (https://www.zenrin-

datacom.net/en/index.html) (ZDC) to anlyze the evacuation mobility during the Tohoku

earthquake. “Konzatsu-Tokei (R)” Data refers to location data collected from mobile phones

using the AUTO-GPS function under the users’ consent, through the “docomo map navi” ser-

vice provided by NTT DOCOMO, INC. The data is processed collectively and statistically in

Table 1. Statistics of the four earthquakes and mobile phone data used for analysis.

Disaster Disaster Statistics Data Statistics

Date Max. SI No. LGUs (SI�4.0) Obs. Period No. Users

Tohoku Earthquake 2011/3/11 6.6 140 2011/02/01 * 03/31 157,225

Kumamoto Earthquake 2016/4/16 6.7 153 2016/03/15 * 05/15 712,901

Tottori Earthquake 2016/10/21 5.7 19 2016/10/01 * 11/30 24,103

Nagano Earthquake 2014/11/22 5.7 10 2014/11/01 * 12/30 10,244

https://doi.org/10.1371/journal.pone.0211375.t001
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order to ananymize and to conceal private information. GPS data (latitude, longitude) of

smartphones are collected approximately every 5 minutes at most and does not include other

personal information such as gender and age. To analyze the evacuation behaviors of people at

the time of the Tohoku earthquake, we used the data from February 1, 2011 to March 31, 2011,

and the total number of IDs in the Tohoku region (Aomori, Iwate, Akita, Miyagi, and Yama-

gata prefectures) was 157,225. To analyze the evacuation behavior due to the effects of earth-

quakes and to separate the effects of other disaster types, we excluded areas that were hit by the

tsunami (coastal areas) shown in blue color in Fig 1 and cities in Fukushima, which were

heavily affected by the nuclear power plant accident.

Seismic intensity data

“Seismic intensity” is used as an index to measure the strength of the external force of earth-

quakes, varying from 1 (very small) to 7 (extreme shock), with 0.1 increments. Mashiki City

experienced the largest seismic intensity of 6.7 during the Kumamoto earthquake. Seismic

intensity is obtained from the acceleration caused by the earthquake, and each local govern-

ment unit is given a seismic intensity value. The seismic intensity data is published in the

“Jishin/Kazan Geppou (Monthly magazine of earthquakes and volcanoes)” published by the

Japan Meteorological Agency (https://www.data.jma.go.jp/svd/eqev/data/gaikyo/ (in Japa-

nese)). Note that seismic intensity is different from “magnitude”, which is only observed at the

epicenter. We used the data from 2016 April and October, 2014 November, and 2011 March.

Fig 1 shows the seismic intensity data for each local government unit (LGU).

Fig 1. Areas that were analyzed in the four earthquakes (red). Seismic intensity values observed in each municipality

is shown by the darkness of red colors. Note that for the Tohoku Earthquake, the coastal areas in Aomori, Iwate and

Miyagi prefectures (blue) and areas in Fukushima prefecture that were affected by the nuclear power plant accident

was removed from the analysis.

https://doi.org/10.1371/journal.pone.0211375.g001
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Data analysis and results

Home location estimation and evacuation

It is well known that human trajectories show a high degree of temporal and spatial regularity,

each individual having a significant probability to return to a few highly frequented locations,

including his/her home location [11]. Due to this characteristic, it has been shown that home

locations of individuals can be detected with high accuracy by clustering the individual’s stay

point locations over night [12]. The home location of each individual was detected by applying

mean-shift clustering to the nighttime staypoints (observed between 8PM and 6AM), weighted

by the duration of stays in each location [41, 42]. Mean shift clustering was implemented using

the scikit-learn package on Python (http://scikit-learn.org/stable/modules/generated/sklearn.

cluster.MeanShift.html). An individual was detected to be evacuated if the individual is esti-

mated to be staying more than r (meters) away from his or her estimated home location. Evac-

uation rate on a given day in a given city is calculated by dividing the number of evacuated

individuals by the total number of users that were estimated to be living in that city. For each

disaster d, we calculate the evacuation rate pd(z) at a given seismic intensity z by the following

equation.

pdðzÞ ¼
P

i2SdðzÞ
M�

i
P

i2SdðzÞ
Mi

ð1Þ

where Sd(z) is the set of LGUs that experienced a seismic intensity of z in disaster d, Mi is the

total number of users living in LGU i, and M�
i is the number of evacuated people from LGU i,

which we observe from trajectories of mobile phone location data.

Accuracy of mobile phone location data

The mobile phone data has a sample rate of about 1%, which is about the same as the sample

rate of the personal trip survey conducted by the Ministry of Land, Infrastructure and Trans-

port, so it is suggested that this sample rate is enough for grasping the entire urban flow. More-

over, studies have shown that the distribution of the entire population can be accurately

reproduced from the call detail record data obtained from mobile phones [19]. To show that

our data is also sufficient to represent the whole population, we examine how accurate the

actual population distribution can be estimated from the nighttime GPS data. As verification

data, we use the national census data, which contains the residential population data for every

1,000 meter grid. We separate Kumamoto Prefecture into 1,000 meter grid, and we estimate

the population in each grid mesh by multiplying the number of IDs in the grid mesh from the

GPS dataset by the inverse of the sample rate. The correlation coefficient between the esti-

mated population and the actual population is 0.853, showing a high accuracy of population

estimation (S2 Fig).

Spatial analysis of seismic intensity and evacuation

Fig 2 shows the spatial distribution of seismic intensity (A) and evacuation rate (B) after the

Kumamoto earthquake. Both data are aggregated into local government unit (LGU) areas. The

evacuation rate in a given LGU is calculated by dividing the estimated number of individuals

who are staying more than 200 meters away from their estimated home location after the

earthquake by the total number of individuals who are estimated to be living in the given

LGU. We can observe that even though seismic intensity gradually attenuates as the distance

from the epicenter increases, evacuation rate abruptly decreases from approximately 40% to

less than 10% around areas with a seismic intensity of 5.0. We can infer that human evacuation

Cross-comparative analysis of evacuation behavior after earthquakes using mobile phone data
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activity has a critical ‘tipping point’ with respect to seismic intensity. The underlying reasons

for this behavior are not trivial. However, it can be assumed that evacuation activities increase

sharply owing to the collapse of buildings and critical social infrastructure such as electricity

and gas lines, which occur at similar seismic intensities. We model this nonlinear characteristic

of evacuation activities by further observing the evacuation activities for four large earthquakes

in Japan.

Fragility curve for evacuation behavior

To explore the general properties of the evacuation activities after large earthquakes, we ana-

lyzed each individual’s movement after the initial shocks of the four earthquakes. Out of these

earthquakes, the Tohoku earthquake caused multiple types of hazards including a tsunami and

a nuclear power plant accident. In this study, we focus on areas that were affected only by the

earthquake to understand the evacuation behavior caused by large earthquakes. Therefore, the

LGUs in the Fukushima prefecture and the LGUs along the coastal line in the Tohoku region

are beyond the scope of this study [43]. For other earthquakes, we calculated the evacuation

rate of all LGUs that experienced a seismic intensity of larger than 4.0. Fig 3A shows the evacu-

ation rates during the four earthquakes according to their seismic intensities. The four differ-

ent colors and plots correspond to the different earthquakes. To model the sudden increase of

evacuation rates with respect to seismic intensities, we use the fragility curve model.

The fragility curve is a model used in the field of structural mechanics, mainly for modelling

the collapse rate of a building with respect to seismic intensities of earthquakes and the inun-

dation height of tsunami [44]. The external force of the disaster is taken on the horizontal axis

and the vertical axis is the collapse rate. It was found that the inundation depth of the tsunami

and the collapse rate of the building follow a cumulative log normal distribution function [44].

Fig 2. Spatial distribution of the seismic intensity and evacuation rates during the Kumamoto earthquake. A: seismic intensity data shown for each local

government unit (LGU). B: evacuation rate for each LGU. The seismic intensity and evacuation rates are positively correlated, however, the evacuation rates

suddenly increase at around 5.

https://doi.org/10.1371/journal.pone.0211375.g002
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Similarly, it was also found that the seismic intensity of the earthquake and the collapse rate of

the building can also be approximated with a cumulative log normal distribution function

[45]. The common feature of both discoveries is that the collapse rate of buildings is close to 0

up to a certain external force but rapidly increases from a certain inflection point. The cumula-

tive log normal distribution is a function that can model this sudden increase. The cumulative

log normal distribution function is a function shown in equation, and there are three parame-

ters (μ, σ, a). μ and σ dictate the slope of the function and the position of the inflection point,

while a determines the maximum value of evacuation rates. We model the evacuation rate of

humans p(z) given seismic intensity z as the following fragility function, and estimate parame-

ters m̂; ŝ; â using the maximum likelihood estimation approach [45] given the observations

from mobile phone data.

pðzÞ ¼ aFð
ln z � m

s
Þ ¼ a

Z z

0

1

z
ffiffiffiffiffiffi
2p
p

s
exp ð

� ðln z � mÞ2

2s2
Þdz ð2Þ

The estimated parameters of the fragility curve using the four disaster cases are μ = 1.73, σ =

0.075, a = 0.63, and the correlation coefficient between the model and the data was R = 0.916,

as shown in Fig 3B. From these estimations, we can infer that the seismic intensity at which

individuals start to evacuate is approximately 5.2 and evacuation rate increases sharply

between intensities of 5.5 and 6.0. At a seismic intensity of approximately 6.5, evacuation rate

plateaus at 63%. This plateau explains the strength of the infrastructure in Japan because it

implies that regardless of seismic intensity, a relatively large fraction (approximately 34%) of

the individuals do not have to evacuate from their homes. We test the robustness of our results

by performing a leave-one-out test similar to cross validation. More specifically, we estimate

the parameters of the fragility curve using data obtained from three earthquakes, and then test

the fit for the left out earthquake by measuring the correlation coefficient R and mean average

percentage error (MAPE) of evacuation rates. Table 2 shows the robustness testing results. The

Fig 3. Fragility curves for evacuation rates. A: evacuation rates for each of the four earthquakes plotted against seismic intensities for all affected LGUs, along

with the estimated fragility curve. Colors indicate earthquake incident. B: scatter plot of estimated and true evacuation rates.

https://doi.org/10.1371/journal.pone.0211375.g003
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first row means that the parameters of the fragility curve were estimated using data from disas-

ters except Tohoku earthquake (i.e. Kumamoto, Tottori, Nagano earthquakes) as m̂ ¼ 1:79

and ŝ ¼ 0:122, and were used to predict the evacuation rates after the Tohoku earthquake,

which showed high accuracy (R = 0.879, MAPE = 5.35%). For all disasters, prediction showed

high correlation and small MAPE, all below 10%. Moreover, the estimated parameters were

similar for all testing cases, showing the high stability and robustness of the estimated fragility

curve. This test shows that by using the fragility curve fitted by data from past disasters, we are

able to predict the evacuation rates in future disasters with high precision.

Understanding the spatial and temporal characteristics of evacuation behavior is important

for creating effective evacuation plans. We investigated the evacuation distance, which is

shown in Fig 4. The long tail distribution of the evacuation distance follows a power law P(d) =

αd−γ, similar to cases in non-disaster cases [11]. We can observe the evacuation distance to be

Table 2. Robustness test of fragility curve fitting results. The evacuation rates for the “left out earthquake” was pre-

dicted by the model fitted by the other three earthquakes.

Earthquake left out for prediction Prediction Performance Estimated parameters

R MAPE (%) m̂ ŝ

Tohoku 0.879 5.35 1.79 0.122

Kumamoto 0.944 7.04 1.86 0.185

Tottori 0.822 4.92 1.81 0.144

Nagano 0.984 7.91 1.80 0.137

https://doi.org/10.1371/journal.pone.0211375.t002

Fig 4. Distribution of evacuation distance. A: distribution of evacuation distances including all observed users. B: distribution of evacuation distances for only

those who evacuated. We can observe that the probability densities for different seismic intensities collapse into one distribution, implying that evacuation

distances are not dependent on seismic intensity.

https://doi.org/10.1371/journal.pone.0211375.g004
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between 1 kilometer to 1000 kilometers for all levels of seismic intensities. Moreover, when we

cutoff the individuals who did not evacuate and plot the evacuation distance distributions for

only the evacuated individuals (i.e. d> 200), we can observe that the distance distribution col-

lapse into one distribution despite different seismic intensities with 1.13� γ� 1.38. This

implies that if individuals decide to evacuate from their homes, their destination is not affected

by the intensity of the earthquake. Moreover, this shows that individuals have limited options

for destinations, such as evacuation shelters and the houses of their relatives, which reinforces

the findings from the study of Haiti Earthquake [26]. Through our cross-comparative analysis,

we were able to expand this finding to a general setting.

Conclusion

Using large scale mobility data collected from over 1 million mobile phones of users affected

by earthquakes, we carried out a cross-comparative analysis on the evacuation mobility pat-

terns of individuals. Through a cross comparison across four large scale earthquakes in Japan,

we found that although city characteristics vary, the evacuation rates can be approximated well

with a single fragility curve with respect to seismic intensities, with a high correlation of

R = 0.916. The robustness of the fragility curve was checked by performing a cross-validation

test on the four disasters. Moreover, it was found that the distribution of evacuation distances

did not depend on the seismic intensity that the individual experienced, which extends the

past findings to a general setting. Our data-driven analysis of evacuation behavior after earth-

quakes based on seismic intensity could improve the manner in which disaster managers pre-

pare and respond to disasters. Since seismic intensity data can be obtained instantly after the

shock, practitioners can use that information to predict the approximate number of evacuees

instantaneously after the earthquake to develop evacuation shelter location plans and signifi-

cantly improve the quality of disaster response. Our future works include analyzing the fragil-

ity curves of evacuation rates in different areas of the world apart from Japan to investigate the

factors that characterize robustness of cities against earthquakes.

Supporting information

S1 Fig. Mobile phone location data. Left: GPS data obtained during 1 day plotted onto a

white map in Kumamoto area. Right: OpenStreetMap data of Kumamoto area, showing the

road networks [46]. The mobile phone data is dense in both spatial and temporal aspects to

analyze the detailed mobility of individuals.

(PNG)

S2 Fig. Comparison between national census data and population density estimated from

GPS data. Estimated population and the population obtained from the census. The blue dots

correspond to one grid mesh (1000m size) respectively.

(PNG)

S3 Fig. Sensitivity analysis on r. Fragility curves with different r parameter values. Although

the estimated parameters vary under different parameters, the general findings are not

affected, where the fragility curves fit the result well.

(TIF)

S4 Fig. Evacuation timing after earthquake. Evacuation timing of individuals after the

Kumamoto earthquake. Results show that the higher the seismic intensity, individuals evacuate

more quickly.

(TIF)
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for urban mobility without travel surveys. Proceedings of the National Academy of Sciences. 2016;

113(37):E5370–E5378. https://doi.org/10.1073/pnas.1524261113

10. Wardrop N, Jochem W, Bird T, Chamberlain H, Clarke D, Kerr D, et al. Spatially disaggregated popula-

tion estimates in the absence of national population and housing census data. Proceedings of the

National Academy of Sciences. 2018; 115(14):3529–3537. https://doi.org/10.1073/pnas.1715305115

11. Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding individual human mobility patterns. nature.

2008; 453(7196):779. https://doi.org/10.1038/nature06958 PMID: 18528393

Cross-comparative analysis of evacuation behavior after earthquakes using mobile phone data

PLOS ONE | https://doi.org/10.1371/journal.pone.0211375 February 20, 2019 10 / 12

https://doi.org/10.1193/082013EQS234M
https://doi.org/10.1108/09653569510100965
https://doi.org/10.1108/09653569510100965
https://doi.org/10.1007/s11027-011-9297-7
http://www.bousai.metro.tokyo.jp/foreign/english/taisaku/2002029/2002030.html
http://www.bousai.metro.tokyo.jp/foreign/english/taisaku/2002029/2002030.html
https://mainichi.jp/articles/20160418/k00/00m/040/102000c
https://doi.org/10.1109/MPRV.2011.43
https://doi.org/10.1109/MPRV.2011.43
https://doi.org/10.1371/journal.pone.0039253
http://www.ncbi.nlm.nih.gov/pubmed/22761748
https://doi.org/10.1073/pnas.1524261113
https://doi.org/10.1073/pnas.1715305115
https://doi.org/10.1038/nature06958
http://www.ncbi.nlm.nih.gov/pubmed/18528393
https://doi.org/10.1371/journal.pone.0211375


12. Calabrese F, Di Lorenzo G, Liu L, Ratti C. Estimating Origin-Destination flows using opportunistically

collected mobile phone location data from one million users in Boston Metropolitan Area. IEEE Perva-

sive Computing. 2011; 10(4):36–44.

13. Phithakkitnukoon S, Horanont T, Di Lorenzo G, Shibasaki R, Ratti C. Activity-aware map: Identifying

human daily activity pattern using mobile phone data. In: International Workshop on Human Behavior

Understanding. Springer; 2010. p. 14–25.
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