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Abstract

People typically rely heavily on visual information when finding their way to unfamiliar loca-

tions. For individuals with reduced vision, there are a variety of navigational tools available

to assist with this task if needed. However, for wayfinding in unfamiliar indoor environments

the applicability of existing tools is limited. One potential approach to assist with this task is

to enhance visual information about the location and content of existing signage in the envi-

ronment. With this aim, we developed a prototype software application, which runs on a con-

sumer head-mounted augmented reality (AR) device, to assist visually impaired users with

sign-reading. The sign-reading assistant identifies real-world text (e.g., signs and room

numbers) on command, highlights the text location, converts it to high contrast AR lettering,

and optionally reads the content aloud via text-to-speech. We assessed the usability of this

application in a behavioral experiment. Participants with simulated visual impairment were

asked to locate a particular office within a hallway, either with or without AR assistance

(referred to as the AR group and control group, respectively). Subjective assessments indi-

cated that participants in the AR group found the application helpful for this task, and an

analysis of walking paths indicated that these participants took more direct routes compared

to the control group. However, participants in the AR group also walked more slowly and

took more time to complete the task than the control group. The results point to several spe-

cific future goals for usability and system performance in AR-based assistive tools.

Introduction

Navigation is a multifaceted task, for which people typically rely heavily on vision [1,2]. Two

basic requirements for effective navigation are wayfinding (using environmental information

to move toward a destination) and obstacle avoidance. Both wayfinding and obstacle avoid-

ance can pose challenges for individuals with vision loss [3]. At the same time, navigation and
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free mobility are key to carrying out the tasks of day-to-day life independently. Thus, technolo-

gies that can effectively assist people to navigate with limited vision may have a significant

impact on the quality of life of millions of people [4].

While existing aids such as canes and GPS technology [5–7] can assist with obstacle avoid-

ance and outdoor wayfinding, their applicability for indoor wayfinding is limited. To address

this issue and expand on current navigational aids, researchers have proposed and developed

tools that use off-the-shelf mobile devices, such as smartphones, to provide positional informa-

tion and wayfinding guidance indoors (e.g., [8–13]). For example, direct sensing techniques

may be used in which interactive tags are placed within an indoor environment [10,12–14].

Such techniques utilize radio frequency identification (RFID) or Bluetooth beacons to label

spaces. Other proposed approaches for indoor wayfinding aids use computer vision to identify

a user’s location based on their surroundings [9,15,16] or employ annotated maps combined

with user input [8]. However, these techniques either require collecting and storing custom

site-specific information on a server or are not currently fully implemented. A recent study

reported the development of a smartphone application to assist specifically with backtracking

an indoor path, which operates using inertial sensors and does not require any preexisting

maps [17].

For individuals who have limited vision but are still able to read magnified text, another

possibility for assisting indoor wayfinding is to provide the user with enhanced visual informa-

tion about the location and content of existing signage in the environment. For this purpose,

systems that utilize head-mounted displays (HMDs) may offer unique features: the user can

naturally rotate their head to scan for signs, and the enhanced information may be integrated

directly with their remaining vision. Existing HMD devices for people with low vision can per-

form overall contrast enhancement and magnification via real-time near-eye video displays

[18,19]. Other proposed systems use visual multiplexing to expand the visible visual field [20].

However, commercially available HMD systems for low vision remain expensive and none are

currently in wide adoption.

Moving forward, tools that allow for visual enhancement via off-the-shelf hardware hold

promise to increase the utility of HMDs for users with reduced vision. In particular, aug-

mented reality (AR) via optical see-through HMDs may allow for task-specific information to

be provided in a way that does not completely occlude the user’s natural vision [21–23]. Recent

studies have confirmed the visibility of text and patterns on see-through displays even when

vision is reduced [21,23]. At the same time, other recent work has explored creating custom-

ized AR cues to assist users with a specific task (product search), and found that these cues

allowed participants with low vision to substantially reduce their search times [24]. The possi-

bilities, pitfalls, and best practices for AR-based visual enhancement across different tasks is an

important area of inquiry for broadening the utility of AR as an assistive tool.

Here, we describe the design and implementation of an application for a consumer AR plat-

form (Microsoft HoloLens) that provides indoor wayfinding assistance directly in the user’s

natural field of view. The system leverages recent advances in computer vision and HMDs to

allow visually impaired users to interact with existing wayfinding infrastructure (text-based

signs), without modification to the physical environment. Specifically, the system uses optical

character recognition (OCR) to identify signs, which are then localized in 3D and visually

enhanced in AR. In a behavioral experiment, participants with simulated visual impairment

were asked to use the system while locating a particular office within a hallway. The results sug-

gest improvements in subjective task assessment and route efficiency – but overall negative

effects on task speed – as compared to a control group. The conclusions drawn from the cur-

rent study can be used to inform future work on AR visual assistance.
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Materials and methods

System design and implementation

Fig 1 provides an overview of the application, showing the user’s point of view through the

optical see-through HMD (see Hardware). Panels illustrate the appearance both with normal

vision (upper row) and a simulated visual impairment (lower row). The white dot indicates the

location of a virtual “cursor” that follows the user’s head movement and can be used to select a

visual region to be searched for signs (left column). When signs are detected in the environ-

ment (via optical character recognition; OCR), flashing AR indicators appear (middle col-

umn). The indicators are anchored to the 3D location of the sign and remain fixed when the

user moves around. Thus, the indicators allow the user to visually identify signs by making

them highly salient. The user can select individual AR signs and the application will display the

text content in magnified, high-contrast font (right column) as well as read it aloud via text-to-

speech.

Hardware

Microsoft HoloLens is an untethered optical see-through HMD system designed to support

AR for consumer and enterprise applications [25]. The sensors include a 2.4 megapixel cam-

era, inertial measurement unit, and infrared depth camera, which allow the HoloLens to track

the user’s movements and map the 3D geometry of the environment. For user interaction, the

system has gesture recognition, voice control, Wi-Fi and Bluetooth connectivity, as well as

speakers. A virtual cursor enables users to select particular spatial locations – the cursor tracks

the location directly in front of the user’s head. In the current study, we used a small Bluetooth

clicker that accompanies the development edition.

Fig 1. Application screenshots. Left column: Original view of a user looking at two signs with normal vision (top row) and simulated visual

impairment via Gaussian blur (bottom row). A white circle indicates the user’s virtual cursor. Note that the signs are no longer readable with visual

impairment. Middle column: Green AR signs are shown placed over the physical signs, indicating that the application identified two signs with high

certainty. In real-time, these signs would be flashing at 3 Hz. Right column: Text is displayed with enhanced visibility after a user selects an AR sign.

https://doi.org/10.1371/journal.pone.0210630.g001
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Software

Software development was performed using Microsoft’s HoloToolkit and Unity (Unity Tech-

nologies). When looking for a sign, the user initiates OCR either by pressing the clicker or by

saying “What’s here?”. On this command, the PhotoCapture API in Unity captures an image

with the HoloLens’ front-facing camera (45˚ horizontal field of view, 1280 × 720 pixels, 32bit

RGB format). The application constructs a JavaScript Object Notation (JSON) request con-

taining this image and sends it to the Google Cloud Vision API, a cloud-based computer vision

engine, over Wi-Fi. The response from the API contains a series of entries, each with a descrip-

tion and pixel bounding box for a region of text detected in the image. This process takes 3–4

sec on average.

If the response is empty, the user is notified with synthetic speech: “No text was detected.”

If the response is not empty, there is no guarantee that separate response entries from the API

correspond to physically separate signs. For example, a sign for Room 323 might in some

instances return two entries (“Room” and “323”), which should ideally not result in two sepa-

rate AR signs. Thus, if the distance between multiple response entries within a given image

capture falls below a specified threshold (in pixels), the text is combined and allocated to the

same AR sign. In the current implementation, this threshold is set to 30 pixels.

To determine the 3D location of each sign in physical space, a virtual camera is placed at

the location and orientation that the picture was captured from, using the on-board motion

tracking. A ray is cast from this camera through the center of the pixel bounding box, and the

intersection with the 3D map of the surroundings is recorded. Note that this 3D map is con-

structed in real-time via the depth sensor, not loaded from an external source. Importantly,

each time a new image is captured, any new AR signs must be compared to the existing signs

to avoid generation of duplicates. Signs are likely to be duplicates when a new sign has both

similar text and similar 3D coordinates to an existing sign. To prevent duplicates, locality hash-

ing is performed on all sign texts, and the application discards any new signs with similar text

and similar 3D coordinates to an existing sign. In the current implementation, a distance

threshold of 13.5 cm is used, such that signs with similar text that are less than 13.5 cm from

an existing sign are considered duplicates. This threshold was determined during pilot testing.

This method accounts for minor errors in the OCR, as well as offsets that can occur due to

errors in motion tracking as the user moves around an environment.

The next step is to create highly visible AR sign indicators. This is done by placing a virtual

sphere at the location of the text. As the user continues to move, the world coordinates of the

sphere stay the same, creating an AR sign in the same location as the real sign. The diameter of

the sphere matches the maximum dimension of the text in the world, and each sphere flashes

at 3 Hz to improve visibility. Indicators are also colored based on the confidence that the asso-

ciated text has been accurately recognized, using the height of the bounding box in pixels. For

the current implementation, signs with text height>20 pixels, 11–20 pixels, and� 10 pixels

were colored green, orange, and red, respectively. When the user sets the cursor on a sign, the

indicator stops flashing and turns bright magenta. Pilot tests confirmed that the spheres, col-

ors, and cursor were all visible with visual acuity of ~1.30 logMAR (~20/400), although color

vision deficits could impede users from distinguishing between confidence colors.

The user has the option to either read all AR signs at once or select a single sign. To read all

of the AR signs, the user says “Read all here,” which reveals the enhanced text of every sign in

the current field of view. Alternatively, the user can select an individual sign with the cursor,

and say “Show me” or press the clicker. When a sign is being read, the sphere is hidden and

replaced by bright green Arial font subtending 2˚ vertically (Fig 1 right column). By default,

text-to-speech is also used to read the text aloud. To dismiss the current sign, the user can
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either say “Hide words” or press the clicker again; the AR sign then reappears. Source code for

the application is publicly available online at http://github.com/eacooper/

HoloLensSignARApp.

Study participants

Twenty-four undergraduate students with normal or corrected-to-normal vision took part in

the user study (15 female, mean age 19.5 yrs). All participants wore swim goggles modified

with Bangerter occlusion foils (two layers of LT 0.1 foils) that reduced their vision to 1.28 log-

MAR on average [26]. Participants were randomly assigned into two groups, and completed a

short navigation task (finding a specific office in a hallway with several doors). The control
group completed the task without any assistance, and the AR group used the sign-reading

application. Both groups wore the HoloLens while completing the task, because the built-in

motion tracking was used to record walking trajectories. Informal testing suggested that the

HoloLens visor slightly, but not substantially, reduced visual acuity as measured in typical

indoor lighting. All participants gave informed consent, and the protocol was approved by the

institutional review board at Dartmouth College.

Study procedure

Participants started at one end of an unfamiliar hallway (2.1 m × 27 m) that contained 12

doors, including 10 offices with name and room number signs, and two restrooms also with

signs. They were asked to find a particular professor’s office in the hallway, located approxi-

mately 16.7 m from the starting position. They were given the professor’s name, and were

unaware of the office location prior to performing the task. The AR group practiced using the

system briefly in a separate room before performing the task. After completing the task, partic-

ipants were asked to consider times when they have had to locate a room in an unknown

building, and rate their agreement with three statements from 1(low) to 5(high) based on their

experience in the study: “This task would be easy,” “I would feel comfortable doing this task in

a typical indoor environment,” and “I would feel confident in my ability to perform the task.”

The HoloLens motion tracking recorded the participant’s position during the task at

approximately 50 Hz. To determine average walking speed, for each participant we first calcu-

lated the distance travelled between each pair of consecutive position measurements. Data

points were excluded in which participants were stationary (speed < 0.005 m/s). We also

excluded data points with high speeds that were likely due to recording artifacts (speed > 5 m/

s). The average speed was then computed for each participant from the remaining

measurements.

While our primary focus was to compare the control and AR groups, we also wanted to

examine whether individuals preferred doing this task with or without the application. Thus,

after giving their responses, the control group repeated the task using the sign-reading assis-

tant, and the AR group repeated the task without it. The second trial was conducted in a differ-

ent hallway. Afterwards, participants reported which trial was easier, and on which trial they

were more comfortable and confident. Raw motion tracking and response data for each partic-

ipant, as well as plotting and analysis code, are included in S1 Appendix.

Results

All participants completed the task successfully. The agreement ratings for the three statements

were assessed using a Wilcoxon rank sum test, in order to determine whether the distribution

of ratings differed between the control and AR groups. According to this analysis, the AR

group reported that they found the task easier (W = 151, p< 0.001), and felt more comfortable
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(W = 138, p< 0.001), and confident (W = 141, p< 0.001) than the control group (Fig 2). After

both groups completed the task a second time for comparison, 96% of participants preferred

the AR trial for ease, 83% for comfort, and 92% for confidence. While these results all reflect

subjective responses, they suggest that the AR signs may provide a usable and potentially help-

ful tool for navigating to an unfamiliar location via text-based signage.

We also examined how the two groups moved through the hallway and how often they ini-

tiated the OCR. Fig 3A shows all individual walking trajectories of the control (blue) and AR

(red) groups (paths were registered across trials by aligning the axis of maximal variance).

Overall, the control group had to get closer to signs in order to read them and therefore often

“zig-zagged” along the hallway, whereas the AR group moved on more efficient trajectories

down the center of the hall. In an exploratory analysis, we quantified these differences in

Fig 2. Subjective responses. Bars show median and interquartile range for ratings of ease (A), comfort (B) and

confidence (C) in the two groups.

https://doi.org/10.1371/journal.pone.0210630.g002

Fig 3. Path analysis. (A) Lines show estimated paths taken by users in the control (blue) and AR (red) groups. The width of the hallway is

illustrated for each group with two horizontal lines. Note that paths outside of the hallway suggest errors either in motion tracking or path

alignment. (B, C) Bars show mean and standard error for walking speed and time to complete task. Note that walking speed excludes

stationary periods.

https://doi.org/10.1371/journal.pone.0210630.g003
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trajectory with a distance ratio for each participant: the distance travelled across with width of

the hallway relative to the distance travelled along the length of the hallway. Smaller ratios sug-

gest a more direct trajectory along the length of the hallway (however, not necessarily always

in the forward direction), and larger ratios suggest more time spent zig-zagging. This analysis

supported the observation that the AR group (mean = 0.36, standard deviation = 0.09) trav-

elled back and forth across the width of the hallway relatively less than the control group

(mean = 0.50, standard deviation = 0.10). The difference in group means was statistically sig-

nificant, as assessed with a t-test (t(21.84) = -3.67, p< 0.001).

Despite the more direct paths taken by the AR group, this group on average walked at a

slower speed and needed substantially more time to complete the task, relative to the controls

(Fig 3B and 3C). The differences in group means for walking speed and task completion time

were statistically significant, as assessed with t-tests: speed ((t(17.75) = -7.39, p< 0.001)) and

time (t(13.34) = 3.37, p< 0.005). Note that degrees of freedom here reflect the use of Welch’s

t-test, which was employed because the variances were not equal between groups for both

walking speed and time to complete the task. The finding of longer walking time when using

the AR application is consistent with prior work, which showed that people with typical and

low vision walked slower while performing a task using AR glasses [21].

In this analysis, task duration takes into account the amount of time that the participants

were walking, and the amount of time that they were stationary. Thus, the increased task dura-

tion can likely be attributed to two factors: the overall slower walking speeds relative to the

control group and the processing time needed to perform OCR (leading to more stationary

time). On average, participants in the AR group initiated the OCR 9.8 times during the task,

with a minimum of 3 and a maximum of 22. Based on the average processing time (see Meth-

ods), this suggests that participants spent an average of 30–40 s waiting for the OCR result to

return. While this is still less than the difference in completion time relative to the control

group (which was 129 s), it suggests that faster OCR has the potential to substantially increase

user efficiency. However, shorter response times may also alter the way that users interact with

the application (e.g., increase the number of signs that they read).

Discussion

The results of the behavioral study suggest that an AR-based sign-reading assistant may pro-

vide a useful tool for increasing ease, comfort and confidence when visual wayfinding is

impaired. However, there are several limitations in the current system that can be addressed

with future work.

First, the application relies on a cloud-based service for OCR; as such, it requires a wireless

internet connection and takes several seconds to obtain results. Second, while the 3D localiza-

tion of the signs was relatively accurate, there were clear cases in which the AR sign did not

overlap with the physical sign. While these errors were not substantial enough to reduce the

users’ ratings of the task relative to the control group, localization could be improved with

higher resolution (spatial and temporal) 3D mapping and/or motion tracking. In addition, the

current system does not have an efficient solution for areas with a lot of signage, which could

lead to an obtrusive number of blinking indicators, or enhanced text that is too long to comfort-

ably read on the screen. Third, the current application only searches for signs when the user

manually initiates it, and as such requires visual guidance [27]. Future work can explore inte-

grating text recognition approaches that run locally and still have high accuracy – and examine

whether it is desirable to automatically and continuously search for signage in the environment

as opposed to using manual interaction. Finally, participants in our study wore low vision simu-

lators and, thus, never experienced visual impairment outside of the experiment. Users who are
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visually impaired in day-to-day life may respond differently to the application. However, low

vision simulators are often employed to examine task performance in controlled settings

[23,28,29]. In the current study, the use of simulators allowed us to perform between-subject

comparisons with control and AR groups that had essentially identical levels of visual ability

and experience with the task. Examining how differing levels of low vision, experience, and

other user demographics impact usability will be important moving forward, as well as leverag-

ing the ability to customize visual appearance in AR to suit different users.

In conclusion, consumer AR systems hold the potential to augment visual information for

everyone. In the process of developing these technologies, it is essential to consider the needs

of and opportunities presented for users with a range of different levels of vision. While con-

sumer AR systems are not yet common place in day-to-day life, our work suggests that AR

provides a promising and flexible future platform to address gaps in common assistive tools.

Supporting information

S1 Appendix. Raw data and example code.
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