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Abstract

Codebook-based feature encodings are a standard framework for image recognition issues.

A codebook is usually constructed by clusterings, such as the k-means and the Gaussian

Mixture Model (GMM). A codebook size is an important factor to decide the trade-off

between recognition performance and computational complexity and a traditional framework

has the disadvantage to image recognition issues when a large codebook; the number of

unique clusters becomes smaller than a designated codebook size because some clusters

converge to close positions. This paper focusses on the disadvantage from a perspective of

the distribution of prior probabilities and presents a clustering framework including two

objectives that are alternated to the k-means and the GMM. Our approach is first evaluated

with synthetic clustering datasets to analyze a difference to traditional clustering. In the

experiment section, although our approach alternated to the k-means generates similar

results to the k-means results, our approach is able to finely tune clusters for our objective.

Our approach alternated to the GMM significantly improves our objective and constructs

intuitively appropriate clusters, especially for huge and complicatedly distributed samples.

In the experiment on image recognition issues, two state-of-the-art encodings, the Fisher

Vector (FV) using the GMM and the Vector of Locally Aggregated Descriptors (VLAD) using

the k-means, are evaluated with two publicly available image datasets, the Birds and the

Butterflies. For the results of the VLAD with our approach, the recognition performances

tend to be worse compared to the original VLAD results. On the other hand, the FV using

our approach is able to improve the performance, especially in a larger codebook size.

Introduction

Clustering is a fundamental technique for several purposes such as statistical analysis and

data mining. The main purpose of clustering is to make groups called clusters. Each clustering

technique has a specific objective to make groups, such as finding groups that minimize a

quantization error and estimation of the appropriate distribution [1, 2]. This paper focusses on

clustering in image recognition algorithms and presents an efficient objective.

In recent image recognition problems, a local feature framework is a key technique. This

detects regions of interest on an image and describes a discriminative feature vector from each
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region [3–5]. The basic idea of codebook-based encodings is to capture the statistics of the dis-

tribution of local features extracted from an image. By treating local features as visual vocabu-

laries appeared in an image, images can be processed in the same way as the natural language

processing (NLP). In the NLP, specifically, the bag-of-words (BOW) model [6] expresses a

document feature vector by assigning words existing in sentences to corresponding common

words and counting their frequencies. For images, common visual words, called codebook, are

constructed by clustering local features extracted from various images. The model in image

recognition follows the same procedure as the BOW to represent image feature vectors. This

approach is well-known as the bag-of-visual-words (BoVW) model [7], and its variants [8–13]

have achieved excellent performance on several tasks, such as object recognition [8, 9, 11] and

image retrieval [12, 13].

Gosselin et al. [10] have suggested that increasing the number of common visual vocabular-

ies is an important factor for improving recognition performance. For instance, the best recog-

nition rate has been observed with the largest vocabulary size in their experiment. It has also

been reported that saturation of the recognition performances accompanying the increase the

vocabulary size has not been observed. On the other hand, a huge vocabulary size becomes a

cause of high computational complexity [10] and to possibly generate not suitable vocabularies

due to the over-fitting to clustering samples [9]. Our previous study [14] has considered that

the distribution of prior probability can be used to measure the quality of image feature vectors

in codebook-based feature encoding strategies. In addition, optimization of the distribution

does not require additional computational complexity in practical applications because it is an

offline step in the image recognition pipeline.

This paper focuses on the codebook construction step and presents a clustering procedure,

named prior probability oriented clustering, that generates a suitable codebook considered

from the perspective of the distribution of prior probabilities [14] for feature encoding strate-

gies. The contribution of this paper is threefold: first, our proposal has an explicit objective to

optimize the codebook parameters. Second, it relaxes conditions to construct an optimized

codebook, compared with the grid search used in [14]. Third, the framework uses general opti-

mization techniques to minimize our objective.

The rest of this paper is organized as follows: the next section briefly reviews the relation-

ship between clustering algorithms and feature encoding approaches; After that, we describe

our proposal clustering framework; Then we analyze numerical characteristics of our proposal

with synthetic clustering datasets; After that, we evaluate an effect for image recognition per-

formance with image recognition datasets; Finally, we conclude this paper.

Literature review of feature encodings

The basic pipeline for recognizing objects consists of the following steps.

1. Extract local features. A given image is first converted to a set of d-dimensional local fea-

tures, I ¼ fxi 2 R
dg

N
i¼1

. The local features [3–5] have the robustness to some deformations,

such as scale, rotation, occlusion.

2. Encode to an image feature. The above set is then encoded to a single feature vector based

on a codebook, which is a set of basis vectors.

3. Recognize object labels. A discriminant model is used to predict object labels. Typically, the

support vector machine (SVM) with a linear kernel is used because of its computational

efficiency. The computational complexity at the model construction phase is a linear order

with respect to the number of training samples [8, 15].

A proposal of prior probability-oriented clustering in feature encoding strategies
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Here, the codebook is constructed in advance in an offline step. This section reviews the

codebook construction step and the feature encoding step.

Codebook construction

The basic clustering algorithms are the k-means [1] and the Gaussian mixture model (GMM)

[2], which are usefull in several research fields [7, 16–18], such as image processing, signal pro-

cessing, and physiology. The aim of the k-means algorithm is to find the clusters that minimize

the quantization error between given samples and the corresponding mean vector. The mean

vector is a representative position of a cluster, the quantization error is defined as a sum of

square distances between a mean vector and the samples belonging to the cluster. The GMM

constructs Gaussians that well represents the normal distribution of given samples. In general,

clustering algorithms cannot directly find global optimal by any analysis. To find an subopti-

mal solution, the above algorithms follow an iterative procedure, called the expectation and

maximization (EM) algorithm, for exploring local minima. This algorithm consists of the fol-

lowing two steps: the expectation step and the maximization step.

In the case of the k-means, let X ¼ fxt 2 R
d
g
T
t¼1

and Y ¼ fmk 2 R
d
g
K
k¼1

respectively be the

clustering samples and the model parameters, the objective function is defined as follows:

Jk� means ¼
XT

t¼1

XK

k¼1

pðxt; mkÞkxt � mk k
2; ð1Þ

where Jk−means is the objective value, which measures the quantization error between the sam-

ples and the clusters, p(xt; μk) is a probability function that becomes 1 if μk is the nearest cluster

to xt and 0 otherwise, and k�k is the Euclidean norm operator. To minimize the quantization

error, the k-means algorithm iteratively optimizes the model parameters with Eq (2) for the

expectation step and Eq (3) for the maximization step.

qt;k ¼ pðxt; mkÞ; ð2Þ

m̂k  
1

T

XT

t¼1

qt;k xt � mkð Þ: ð3Þ

In the expectation step, the probabilities qt,k of a sample xt are computed using the current

mean vectors. Then, the maximization step updates the positions. The EM algorithm iterates

the above two steps until termination criteria, such as a designated maximum number of itera-

tions and the convergence of the moves, are satisfied.

Fitting the GMM model also uses the EM algorithm. The GMM model contains

fwk 2 R;mk 2 R
d
;Sk 2 R

d�d
g
K
k¼1

, where μk and Sk denote the mean and the covariance matrix

of the k-th Gaussian and wk is a mixing weight for mixing K Gaussians. The mixing weight wk
is also called “prior probability”, which means the ease of assignment to the k-th Gaussian.

qt;k ¼
XK

k¼1

wkpðxt; mk;SkÞ; ð4Þ

pðxt; mk;SkÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdjSkj

p exp �
1

2
ðxt � mkÞS

� 1

k ðxt � mkÞ
>

� �

; ð5Þ
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m̂k  

PT
t¼1
qt;kxt

PT
t¼1
qt;k

; Ŝk  

PT
t¼1
qt;kðxt � m̂kÞðxt � m̂kÞ

>

PT
t¼1
qt;k

; ŵk  

PT
t¼1
qt;k

PT
t¼1

PK
k¼1
qt;k

; ð6Þ

Feature encoding

As introduced in the previous section, the BoVW is the simplest approach to represent image

features and well performs in image recognition applications. The BoVW usually uses the k-

means codebook. Let I ¼ fxi 2 R
dg

N
i¼1

be a set of d-dimensional local descriptors extracted

from an image, the BoVW feature is defined as:

F BoVW ¼ ½f1; � � � ; fk; � � � ; fK �
>
; fk ¼

XN

i¼1

pðxi; mkÞ; ð7Þ

where fk 2 R1
is the frequency of the local descriptors assigned to the k-th visual vocabulary.

For precisely capture image information, the BoVW requires a huge codebook, because the

dimensionality of the BoVW is equal to a codebook size K, and it increases the computational

cost, such as the finding nearest neighbors as in Eq (2). Recently developed approaches [8, 13]

relax this issue by capturing higher order statistics on d-dimensional local feature space with a

smaller codebook. In recent reports, the Fisher Vector (FV) [8, 9] and the Vector of Locally

Aggregated Descriptors (VLAD) [12, 13] encodings are well known as state-of-the-art

approaches.

The FV supplements two higher-order statistics with the GMM codebook, in addition to

the frequency as follows:

F FV ¼ ½F
ðwÞ
1
; � � � ;F ðwÞk ; � � � ;F ðwÞK ;F ðmÞ

1
; � � � ;F ðmÞk ; � � � ;F

ðmÞ

K ;F
ðsÞ

1
; � � � ;F ðsÞk ; � � � ;F

ðsÞ

K �; ð8Þ

where F ðwÞ 2 R1
, F ðmÞ 2 Rd

, and F ðsÞ 2 Rd
respectively denote frequency, mean, and covari-

ance. These are captured as:

F ðwÞk ¼
1

N ffiffiffiffiffiwk
p

XN

i¼1

ðqi;k � wkÞ; ð9Þ

F ðmÞk ¼
1

N ffiffiffiffiffiwk
p

XN

i¼1

qi;k
xi � mk
sk

; ð10Þ

F ðsÞk ¼
1

N
ffiffiffiffiffiffiffiffi
2wk

p
XN

i¼1

qi;k
xi � mk
sk

� �

� 1

� �

; ð11Þ

where the Gaussians are assumed to have diagonal covariances because of the derivation [8]

and computational reasons [9, 10]. Therefore, a FV signature have K(2d + 1)-dimensions. The

VLAD captures only mean statistics by aggregating the residuals between the local features

and the mean vectors of the codebook as follows:

FVLAD ¼ ½F
ðmÞ

1
; � � � ;F ðmÞk ; � � � ;F

ðmÞ

K �; ð12Þ

F ðmÞk ¼
XN

i¼1

qi;kðxi � mkÞ; ð13Þ

where the dimensionality of a VLAD signature is Kd.
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The prior probability-oriented clustering

As described in the above section, the distribution or prior probabilities wk is an important fac-

tor to measure the quality of the feature encodings. The aim of the prior probability-oriented

clustering is to mainly minimize the variance of prior probabilities.

The k-means and the GMM follow the iterative procedures because there is no analytic

solution for unknown samples [19], as described in the literature reviews. Even in our

approach, the procedure uses general optimization algorithms for finding local minima. The

objective function is defined as the following equation and consists of two terms:

J ¼
XK

k¼1

jwk � �wj
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
main objective term

þl
1

T

XT

t¼1

dðxt;YÞ
2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
regularization term

: ð14Þ

The main objective term is an approximated measure of the variance calculation
1

K

PK
k¼1
ðwk � w�Þ

2
, where w� is the average of the prior probabilities. d(xt;Θ) is a regularizer that

measures the quantization error between the t-th sample and its nearest cluster mean. It serves

to smooth solution space. For example, when clustering a number of samples with only the

main objective, the solution space might be discrete, which means that small changes of candi-

date mean positions probably give the same objective value. λ is a weighting factor that con-

trols which the main objective term and the regularization term is relatively more important.

In our concept, λ is set to a small value to emphasize the main objective. An effect of λ is dis-

cussed in the next section.

As an optimization framework, a black-box optimization framework is used to minimize

our objective shown in Eq (14), which does not require any constraints, such as derivation, for

objective functions. In the next section, some black-box optimization frameworks are evalu-

ated with synthetic clustering datasets. The general optimization procedure to find suboptimal

solution is as follows:

1. generate initial mean vectors by k-means++ algorithm [20];

2. repeat:

3. evaluate the our proposal objective function as in Eq (14), where the detail on how to evalu-

ate the regularization term is described in below subsections;

4. update mean vectors by a black-box optimization framework;

5. until the number of iterations reaches.

Hard clustering alternated to the k-means

In this case, the clustering problem is defined as minimizing the variance of prior probabilities

while minimizing the quantization error. The quantization error is defined as follows:

dðxt;YÞ ¼
XK

k¼1

qt;k kxt � mk k; ð15Þ

The procedure of Eq (15) is as follows.

1. predict assignment probabilities qt,k for all clustering samples X ¼ fxtg
T
t¼1

, using Eq (2);

2. compute prior probabilities, in the same manner as the GMM, as: wk ¼ 1

T

PT
t¼1
qt;k;
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3. evaluate the objective value, using Eq (14) with Eq (15).

Soft clustering alternated to the GMM

In order to estimate Gaussians with only mean vectors, each posterior probability of a sample

for the k-th cluster is approximated with the nearest search as in Eq (2) as:

qt;k ¼ pðxt; mkÞ; ð16Þ

It is a natural approximation because of the following reasons.

• Many GMM implementations [21, 22] use the k-means initialization before the EM

iterations.

• The distribution of posterior probabilities is peaky in general, a posterior probability closes

to 1 and others become 0.

• The term of the Mahalanobis distance is dominant to predict the posterior probability func-

tion in Eq (4).

The regularization term is calculated in the same way as the distance metric, the Mahalano-

bis distance, of the GMM as follows:

dðxt;YÞ ¼
XK

k¼1

qt;kðxt � mkÞ
>
S� 1

k ðxt � mkÞ; ð17Þ

The procedure of the soft objective is as follows.

1. predict assignment probabilities qt,k for all clustering samples X ¼ fxtg
T
t¼1

, using Eq (2);

2. estimate wk and Sk in the same manner as Eq (6);

3. evaluate the objective value, using Eq (14) with Eq (17).

Numerical analysis

In this section, we first explore which optimization framework is better for our objective func-

tion. Then, we analyze the characteristics of the traditional clustering approaches, described in

the previous section, and our proposal clustering approach. To evaluate these algorithms, we

used two synthetic clustering datasets: the A-sets [23] and the S-sets [24], which are publicly

available [25]. The A-sets and the S-sets respectively consist of A1, A2, and A3 for varying the

number of clusters and S1, S2, and S3 for varying spatial complexity [23, 24]. Their statistics

are shown in Table 1.

The following shows the experimental setup.

• Parameters in the k-means and the GMM. The initial algorithm was the k-means++ algorithm

[20], which improves the stability of solutions. The covariance matrices of Gaussians were

assumed to diagonal. For the analysis, the implementations of the scikit-learn package [26]

with the Python programming language were used. The termination criterion was that the

number of iterations of the EM procedure reaches 2,000 times.

• Parameters in our proposal. As optimization frameworks, the Nelder-Mead (NM) [27], the

Subplex [28], the Constrained BY Linear Approximation (COBYLA) [29], the NEWUOA

A proposal of prior probability-oriented clustering in feature encoding strategies
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[30], and the AUGmented LAGrangian algorithm (AUGLAG) [31, 32], which have been

implemented in the NLOPT library [33], were evaluated. These algorithms are usually used

for problems whose solution space structure is unknown and do not require any additional

information, such as derivative of solution space, other than objective function. The initial

position was set to the concatenated mean vectors generated by the k-means algorithm with

10 iterations. Therefore, the optimization frameworks explore the Kd-dimensional space.

The termination criterion was that the number of the evaluations of the objective function

reaches 2,000 times. The weighting factor was set to λ = 10−9.

• Clustering samples. The subsets, A1, A2, and A3, of the A-sets, were used for hard clustering,

and the subsets, S1, S2, and S3, of the S-sets were used for soft clustering. The samples of

each subset were linearly normalized that the values in each dimension fit within the range

of [0, 1].

Comparison of the optimization algorithms

Tables 2 and 3 show the objective values optimized by the optimization algorithms with the

weighting factor λ = 10−9, where each value shows the best value over five trials and the values

for the baselines were obtained only by the main objective term in Eq (14).

For all the optimization algorithms, the optimized values were smaller than the baseline

results. Specifically, the Subplex gave the smallest objective values on all datasets except for S1.

For the Subplex results on the A-sets, the objective values increased as the number of samples

or clusters increases, in order to A1, A2, and A3. The mean value of prior probabilities is

always 1/K because of the probabilistic constraint, and the large cluster size is expected to a

Table 1. Statistics of the A-sets and the S-sets.

# of samples # of clusters

A-sets (A1) 3,000 20

A-sets (A2) 5,250 35

A-sets (A3) 7,500 50

S-sets (S1) 5,000 15

S-sets (S2) 5,000 15

S-sets (S3) 5,000 15

https://doi.org/10.1371/journal.pone.0210146.t001

Table 2. Comparison of the optimized objective values regarding the optimization algorithms on the A-sets. The boldface indicates the best objective values in each

subset.

Solver k-means NM SBPLX COBYLA NEWUOA AUGLAG

A1 0.0167 0.0020 0.0007 0.0040 0.0060 0.0040

A2 0.0114 0.0038 0.0015 0.0038 0.0038 0.0042

A3 0.0396 0.0045 0.0019 0.0029 0.0053 0.0037

https://doi.org/10.1371/journal.pone.0210146.t002

Table 3. Comparison of the optimized objective values regarding the optimization algorithms on the S-sets. The boldface indicates the best objective values in each

subset.

Solver GMM NM SBPLX COBYLA NEWUOA AUGLAG

S1 0.5424 0.0220 0.0107 0.0105 0.0276 0.0131

S2 0.5636 0.0185 0.0089 0.0104 0.0217 0.0107

S3 0.4632 0.0088 0.0016 0.0104 0.0031 0.0092

https://doi.org/10.1371/journal.pone.0210146.t003
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cause to decrease the value of our main objective term. Therefore, our proposal with the hard

objective might not effective for large samples or cluster size. For the S-sets, the results of soft

objective suggest an advantage to the spatial complexity of sample distribution, the objective

value decrease as sample distribution is more complicated, in all the optimization algorithms.

In the results on S3, the Subplex showed especially better value compared with the results of

the other optimization algorithms.

Qualitative comparison of the constructed clusters

Fig 1 shows the estimated mean vectors on the A-sets. Many positions of ours, indicated by the

red crosses in Fig 1(A)–1(C), were close to the positions of the k-means, indicated by the yel-

low crosses. The k-means gave similar results to ours in the A-sets, while the k-means objective

shown in Eq (1) does not have a term to minimize the variance of prior probabilities. There-

fore, our proposal finely tunes mean positions for the main objective in Eq (14).

Fig 2 shows the estimated Gaussians on the S-sets. The GMM generated fewer Gaussians

than the designated number of clusters, as in Fig 2(A)–2(C); three Gaussians for S1 and S2,

and seven Gaussians for S3 were converged to the same positions of other Gaussians. It is con-

sidered that the number of Gaussians becomes smaller as clustering samples are more compli-

cated. In the codebook construction step, lots of local features, usually 100K–1M, are used as

clustering samples. Therefore, this characteristic has a disadvantage, that the number of unique

visual-words becomes less than a designated codebook size when generating a codebook. Spe-

cifically, some components of an image signature have the same trend due to the overlapping

of Gaussians or become always zeros when using the approximation of assignment probability,

as in Eq (16). On the other hand, the results of ours in Fig 2(D)–2(F) show the fully distributed

15 Gaussians for the clustering samples. For spatially complicated samples as in Fig 2(F), the

Gaussians were properly fitted to the sample distribution, intuitively. However, some Gaus-

sians might not properly express for the sparsely scattered samples such as Fig 2(D) and 2(E).

This characteristic is matched with the results of the comparison of the optimization algo-

rithms, shown in Table 3; the objective value becomes better as the samples have more spatial

complexity in our proposal. In addition, it suggests that our proposal possibly better for the

codebook construction.

Effect of the weighting factor

Fig 3 shows the trends of objective values with respect to the weighting factor λ on the A-sets

and the S-sets.

Fig 1. Comparison of the generated mean vectors on the A-sets. (A–C) The positions of the mean vectors generated by the k-means (yellow crosses)

and our proposal (red crosses) for A1, A2, and A3 respectively.

https://doi.org/10.1371/journal.pone.0210146.g001
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Fig 2. Illustrative examples of the estimated Gaussians on the S-sets. (A–C) The estimated Gaussians by the GMM for S1, S2, and S3 respectively.

(D–F) The estimated Gaussians by our proposal for S1, S2, and S3 respectively. The black circles show the clustering sample positions, and the red cross

and the ellipse respectively show the mean position and the confidence corresponding each Gaussian.

https://doi.org/10.1371/journal.pone.0210146.g002

Fig 3. The trends of the optimized objective values with respect to the weighting factor. (A-C) The trends of the hard objective on A1, A2, and A3 of

the A-sets. (D-F) The trends of the soft objective on S1, S2, and S3 of the S-sets. The horizontal axis shows the weighting factor λ and the vertical axis

shows the main objective term and the regularization term. The red line shows the main objective values and the blue line shows the regularization

value without weighting by λ shown in Eq (14).

https://doi.org/10.1371/journal.pone.0210146.g003
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The ranges of the main objective term and the regularization term are in [0, 0.0035] and

[0.001, 0.003] for the A-sets, and in [0, 0.02] and [1.4, 2] for the S-sets. The minimum of the

main term ideally becomes 0 when all prior probabilities wk are the same value 1/K. The regu-

larization term never becomes 0 because a cluster consists of scattered samples. For the results

on the A-sets in Fig 3(A)–3(C), the values of the regularization term decrease as the number of

clusters increase because the dispersion of samples in each cluster is small in order to A1, A2,

and A3 in Fig 1. For the S-sets in Fig 3(D)–3(F), the values of the regularization term increase

in order to S1, S2, and S3 because of the increase of the spatial complexity.

As shown in Fig 3(A) and 3(B), a larger weighting factor probably is a cause to increase the

main objective term, where the objective value needs to be smaller. We consider that a rela-

tively smaller weighting factor (λ< 10−7) correctly works, especially in Fig 3(A). On the whole

trends in Fig 3(A)–3(F), there was no clear trend of the main objective regarding the weighting

factor. The tendency to the regularization term is relatively intuitive, in particular for the soft

objective, the quantization error decreases as the weighting coefficient increases.

Experiments with image databases

This section evaluates our proposal on image recognition tasks with the following image data-

sets: Birds [34] and Butterflies [35] provided by Ponce Group.

The Birds dataset consists of 600 images categorized into six bird species, where each cate-

gory has 100 images. The Butterflies dataset has 619 images of seven different butterflies. Each

category has about 40 to 130 images. The above two datasets are composed of visually similar

images.

In the experiments with the above datasets, we used the same parameter setup except for

numbers of training images to construct a codebook and a discriminant model.

We used SURF [5] as the local feature framework. To extract SURF features, we followed

the dense sampling strategy [36], which SURF features were described from the intersection

points of the lattice of six pixels intervals, with multiple scale regions, 16, 20, 24, and 28 pixels

for each point, where each image was resized so that the long side was 300 pixels. Each SURF

feature was projected to 8-dimensional space by the Principle Component Analysis before

constructing a codebook and encoding an image feature [37].

To construct a codebook, clustering samples were the SURF features extracted from 10

images from each category for the Birds and 5 images from each category for the Butterflies,

where we decided about 10% of the smallest number of images of their categories. The code-

book sizes of the five different patterns K = {16, 32, 64, 128, 256} were used. The termination

criterion for the k-means and the GMM was set to 30 iterations because they do not converge

sometimes. For our proposal, the termination criterion was set to 2,000 evaluations of the

objective function. Gaussians of the GMM and our proposal with soft objective were assumed

to diagonal covariance. The weighting factor of our objective was set to λ = 10−9. The k-means

and ours with hard objective were used for the VLAD encoding, and the GMM and ours with

soft objective were used for the FV encoding. Here, the dimensionality of image signatures

depends on an experimental setting, for example, the number K of clusters and the number

d of the dimension of local features. As introduced in the literature review section, the

dimensionality becomes Kd for the VLAD and K(2d + 1) for the FV. Furthermore, the VLAD

and the FV have 2, 048 and 4, 352 features when K = 32 and d = 8.

The SVM with the linear kernel, implemented in [26], was used as a discriminant model.

The number of training images for each category was {30, 40, 50} for the Birds and {20, 30, 40}

for the Butterflies. The training images were randomly selected, and the rest images were used

for the test. The recognition accuracy was the ratio of the number of correctly recognized
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images for the number of test images. We measured by the average over five different training

and test images.

Figs 4 and 5 respectively show the average recognition accuracies of the VLAD and the FV

on the Birds dataset. Tables 4 and 5 show the detailed values (mean accuracy and standard

Fig 4. Recognition accuracies of the VLADs with the k-means and ours (hard objective) codebooks on the Birds. (A) 30 images per category for

training. (B) 40 images per category for training. (C) 50 images per category for training.

https://doi.org/10.1371/journal.pone.0210146.g004

Fig 5. Recognition accuracies of the FVs with the GMM and ours (soft objective) codebooks on the Birds. (A) 30 images per category for training.

(B) 40 images per category for training. (C) 50 images per category for training.

https://doi.org/10.1371/journal.pone.0210146.g005

Table 4. Recognition performance (mean accuracy ± standard deviation) of the VLADs with the k-means and ours (hard objective) codebooks on the Birds, corre-

sponding to the Fig 4.

Codebook size K
Method 16 32 64 128 256

30 images from each category, corresponding to Fig 4(A)

k-means 56.43 ± 2.52 60.52 ± 0.98 64.62 ± 1.76 65.76 ± 1.97 65.62 ± 2.11

ours 55.67 ± 1.69 60.86 ± 1.43 65.90 ± 1.47 65.62 ± 1.19 65.33 ± 2.26

40 images from each category, corresponding to Fig 4(B)

k-means 59.28 ± 2.08 62.06 1.44 66.17 ± 1.05 68.33 ± 1.30 68.33 ± 2.30

ours 60.78 ± 0.73 62.94 ± 1.55 67.72 ± 1.33 68.56 ± 2.49 69.00 ± 1.77

50 images from each category, corresponding to Fig 4(C)

k-means 61.40 ± 2.43 64.47 ± 1.64 68.07 ± 1.14 70.47 ± 1.65 72.53 ± 1.63

ours 60.87 ± 2.01 64.47 ± 1.50 68.40 ± 2.05 70.33 ± 1.41 70.53 ± 1.29

https://doi.org/10.1371/journal.pone.0210146.t004
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deviation over the five trials) corresponding to Figs 4 and 5. For the results of Fig 4, the base-

line, the VLAD with the k-means codebook, and the VLAD with our hard objective showed

similar performances regardless of the parameters such as the number of training images and

the codebook sizes. As discussed in the numerical analysis section, the hard objective mainly

performs to finely tune mean positions, the k-means and our hard objective clustering poten-

tially construct similar codebooks. Table 6 shows the objective values of the codebooks used in

Fig 4. When the codebook size is not greater than 64, the hard objective showed significantly

better objectives compared with the k-means objectives. However, when the codebook size is

greater than or equal to 64, they showed almost the same objectives. The k-means is possible

to construct suitable clusters from the perspective of the variance of prior probabilities, regard-

less of the size of the clustering sample set or the codebook size, as shown in Fig 4. The hard

objective might have difficulty to effectively optimize codebook for large clustering sample set

or large codebook sizes, as discussed in the qualitative comparison in the numerical section.

On the other hand, the FV with our soft objective often showed better performances compared

with the FV with the GMM codebook, especially when the codebook size is 128. When the

codebook size was small, K = 16 and K = 32, there is no significant difference of the recogni-

tion performances of the baseline and the FV with the soft objective. For the larger codebook

size, the FV with the soft objective performed better accuracies. Moreover, our soft objective

with a relatively larger codebook size was more effective for the case that training image set is

smaller compared with the test image set. The highest mean recognition accuracy was achieved

when the codebook size was 64, 128, and 128 respectively for 30, 40, and 50 training images

per category. Therefore, an increase in the codebook size does not necessarily lead to improv-

ing recognition performance, the codebook size K = 64 or K = 128 might be enough for the

Birds dataset. Table 7 shows the objective values of the codebooks used in Fig 5. In contrast to

the trend of the objective values of the hard objective, the soft objective could maintain the bet-

ter values, shown in Table 7, even when the codebook size is increased. As with the discussions

Table 5. Recognition performance (mean accuracy ± standard deviation) of the FVs with the GMM and ours (soft objective) codebooks on the Birds, corresponding

to the Fig 5.

Codebook size K
Method 16 32 64 128 256

30 images from each category, corresponding to Fig 5(A)

GMM 61.24 ± 1.99 64.24 ± 1.50 65.90 ± 1.39 63.90 ± 2.05 65.71 ± 1.03

ours 62.24 ± 1.92 63.14 ± 1.62 68.71 ± 2.63 67.00 ± 0.91 67.19 ± 1.85

40 images from each category, corresponding to Fig 5(B)

GMM 64.72 ± 1.77 66.83 ± 2.41 68.33 ± 1.64 68.89 ± 2.02 70.06 ± 1.51

ours 64.33 ± 0.80 67.06 ± 1.26 68.89 ± 1.98 71.56 ± 2.43 69.44 ± 1.50

50 images from each category, corresponding to Fig 5(C)

GMM 67.20 ± 2.50 70.47 ± 1.71 72.07 ± 1.68 71.00 ± 2.37 71.60 ± 2.44

ours 66.80 ± 2.60 70.40 ± 2.48 72.87 ± 2.14 74.13 ± 1.13 72.27 ± 1.94

https://doi.org/10.1371/journal.pone.0210146.t005

Table 6. The objective values of the k-means and ours with the hard objective with respect to the codebook size on the Birds.

Codebook size

Method 16 32 64 128 256

k-means 0.2210 0.1940 0.1923 0.1995 0.2082

ours (hard) 0.0071 0.0205 0.0895 0.1759 0.2126

https://doi.org/10.1371/journal.pone.0210146.t006
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in numerical analysis, the soft objective is able to construct a suitable codebook, from the per-

spective of the variance of prior probability, even in image recognition tasks. When compre-

hensively comparing the results of the VLADs in Table 4 and the FVs in Table 5, the FV with

our soft objective (K = 64) showed the best accuracy of 68.71 when the training images were 30

for each category. The FV with ours (K = 128) also showed the best accuracies as follows: 71.56

for 40 training images and 74.13 for 50 training images.

Figs 6 and 7 respectively show the average recognition accuracies of the VLAD and the FV

on the Butterflies dataset. Tables 8 and 9 show the detailed values (mean accuracy and standard

deviation over the five trials) corresponding to Figs 6 and 7. From the results in Fig 6, the hard

objective may deteriorate recognition performance when codebook size is smaller than or

equal to 64. In addition, the objective values of the hard objective, shown in Table 10, were not

enough optimized as with the case of the Birds dataset. For the results with the FV, the GMM

Table 7. The objective values of the GMM and ours with the soft objective with respect to the codebook size on the Birds.

Codebook size

Method 16 32 64 128 256

GMM 0.4139 0.3248 0.2773 0.3240 0.3171

ours (soft) 0.0014 0.0297 0.0580 0.1268 0.1508

https://doi.org/10.1371/journal.pone.0210146.t007

Fig 6. Recognition accuracies of the VLADs with the k-means and ours (hard objective) codebooks on the Butterflies. (A) 20 images per category

for training. (B) 30 images per category for training. (C) 40 images per category for training.

https://doi.org/10.1371/journal.pone.0210146.g006

Fig 7. Recognition accuracies of the FVs with the GMM and ours (soft objective) codebooks on the Butterflies. (A) 20 images per category for

training. (B) 30 images per category for training. (C) 40 images per category for training.

https://doi.org/10.1371/journal.pone.0210146.g007
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and the soft objective showed similar performances when the codebook size is small. As with

the numerical analysis, a smaller codebook size has less influence on the convergence of the

Gaussians, and the GMM makes it easier to converge Gaussians to the same positions when

the clustering samples is spatially complicatedly distributed and a codebook size is large. How-

ever, it improved recognition performances clearly when the codebook size is larger than 32,

in all of the training images per category and lead to improve recognition performances when

the codebook size was 256. Table 11 shows the objective values of the soft objective with

respect to the number of codebook size and these values suggest that our framework is able to

estimate proper Gaussians regardless of the codebook size. In the case of comparing the results

Table 8. Recognition performance (mean accuracy ± standard deviation) of the VLADs with the k-means and ours (hard objective) codebooks on the Butterflies,

corresponding to the Fig 6.

Codebook size K
Method 16 32 64 128 256

20 images from each category corresponding to Fig 6(A)

k-means 79.12 ± 1.10 82.71 ± 1.13 85.39 ± 0.84 85.59 ± 1.60 87.93 ± 1.51

ours 77.16 ± 1.21 81.84 ± 1.91 83.38 ± 1.36 86.64 ± 1.45 87.31 ± 1.28

30 images from each category corresponding to Fig 6(B)

k-means 81.56 ± 1.02 85.67 ± 0.95 87.82 ± 0.73 88.07 ± 2.09 90.27 ± 1.59

ours 78.92 ± 1.76 83.23 ± 2.20 85.48 ± 0.83 89.24 ± 1.20 89.68 ± 0.87

40 images from each category, corresponding to Fig 6(C)

k-means 83.19 ± 1.48 86.67 ± 2.11 88.85 ± 0.60 90.09 ± 1.30 90.32 ± 1.47

ours 81.83 ± 0.93 86.31 ± 0.71 86.73 ± 0.99 89.91 ± 1.35 91.27 ± 1.43

https://doi.org/10.1371/journal.pone.0210146.t008

Table 9. Recognition performance (mean accuracy ± standard deviation) of the FVs with the GMM and ours (soft objective) codebooks on the Butterflies, corre-

sponding to the Fig 7.

Codebook size K
Method 16 32 64 128 256

20 images from each category corresponding to Fig 7(A)

GMM 80.46 ± 2.59 83.30 ± 1.88 84.05 ± 1.23 85.01 ± 2.11 86.14 ± 1.30

ours 80.17 ± 1.46 83.51 ± 1.13 86.68 ± 1.38 86.89 ± 1.12 87.43 ± 1.16

30 images from each category corresponding to Fig 7(B)

GMM 83.57 ± 1.50 85.43 ± 1.06 87.58 ± 0.47 88.07 ± 1.18 88.31 ± 1.60

ours 83.37 ± 1.21 86.94 ± 2.45 89.58 ± 1.49 89.58 ± 0.99 90.12 ± 0.63

40 images from each category, corresponding to Fig 7(C)

GMM 85.84 ± 1.24 87.08 ± 1.60 88.79 ± 1.72 89.62 ± 0.63 88.50 ± 2.14

ours 84.48 ± 1.53 86.49 ± 1.24 89.85 ± 1.10 91.21 ± 0.78 91.33 ± 1.08

https://doi.org/10.1371/journal.pone.0210146.t009

Table 10. The objective values of the k-means and ours with the hard objective with respect to the codebook size on the Butterflies.

Codebook size

Method 16 32 64 128 256

kmeans 0.1962 0.1580 0.1966 0.1828 0.2106

ours (hard) 0.0011 0.0201 0.1030 0.1915 0.1883

https://doi.org/10.1371/journal.pone.0210146.t010
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of the VLADs in Table 8 and the FVs in Table 9, the VLAD with the k-means (K = 256) showed

best accuracy: 87.93 for 20 training images and 90.27 for 30 training images. On the other

hand, for the 40 training images, the FV with ours (K = 256) showed the best accuracy of

91.33.

Conclusions

This paper focussed on clustering from the perspective of the variance prior probabilities and

presented the clustering frameworks, namely hard and soft objectives, that are respectively

alternative to basic approaches such as the k-means and the GMM. In the numerical analysis,

four optimization frameworks were evaluated with synthetic clustering datasets. The results

of all of the frameworks were better than the basic clusterings. Especially, it showed that the

Subplex optimizer is able to give better objective values from the perspective of the variance

of prior probabilities and to construct intuitively appropriate clusters for complicatedly dis-

tributed clustering samples. In the experiment with image datasets, the hard objective was

probably not effective for the VLAD encoding because the objective values became worse

compared with the k-means results as the number of clusters increase. On the other hand,

the FV encoding with the soft objective showed improvements in recognition performance

regardless of some parameters such as the codebook size and the ratio of training and test

images.
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