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Abstract

During pond culture of Eriocheir sinensis, a high limb-impairment rate restricts the industry

development and quality. Therefore, research on limb autotomy and regeneration has

important practical significance for the industrial development and basic biology of E. sinen-

sis. This study evaluated the changes in bud morphology, growth-related gene expression

and nutritional status during cheliped regeneration in E. sinensis. The study found that the

new cheliped was pre-formed in the bud and then regenerated with the completion of molt-

ing of E. sinensis. The new cheliped was similar in morphology to the normal cheliped after

the first molting but smaller in size. The qRT-PCR results of growth-related genes showed

that the expression levels of EcR-mRNA (ecdysteroid receptor) and Chi-mRNA (chitinase)

were significantly up-regulated, whereas the expression of MIH-mRNA (molt-inhibiting hor-

mone) was significantly down-regulated (P < 0.05). The nutritional status during the regener-

ation process showed that the hepatopancreas total lipid content decreased significantly

within 28 days and was significantly lower in the autotomy group than in the control group at

14 d and 21 d (P < 0.05). The hepatopancreas fatty acid composition results showed that

saturated fatty acids (SFA), highly unsaturated fatty acids (HUFA) and n-3/n-6 were signifi-

cantly higher in the autotomy group than in the control group at 21 d (P < 0.05), whereas the

∑ n-6 PUFA and ∑ n-3 PUFA at 1 d and 7 d, and the monounsaturated fatty acid (MUFA) at

28 d in the autotomy group were significantly lower than in the control group (P < 0.05).

Moreover, the levels of eicosatetraenoic acid (ARA), eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) showed that DHA was significantly lower at 7 d and signifi-

cantly higher at 21 d in the autotomy group than in the control group (P < 0.05), whereas

ARA and EPA were not significantly different between the two groups. Muscle L-tryptophan

content was significantly lower at 1 d and significantly higher at 7 d in the autotomy group
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than in the control group (P < 0.05). These results indicate that during the cheliped regener-

ation process, crabs could accelerate molting and regeneration by regulating growth-related

gene expression (e.g., EcR-mRNA and MIH-mRNA) and nutrient metabolism (e.g., lipid

metabolism).

Introduction

In the face of threats from other animals or environmental stress, many animals take active

measures to respond positively in the natural environment. Autotomy, as a congenital, highly

effective reflexive response, is very useful in the process of escaping from danger and avoiding

threats[1,2]. Although autotomy can let animals escape from danger temporarily, when the

autonomous animals are threatened again, it is generally difficult to escape again. In addition,

autotomy also brings many negative effects on organisms, such as long-term loss of energy [3],

immunity and antibacterial response [4]. Therefore, the best way to compensate for autotomy

costs is limb regeneration. In nature, animals with limb autotomy generally achieve limb

regeneration after a period of time. However, limb regeneration depends on the gender [5],

age [6], molting period [7,8], etc. Study on the autotomy and regeneration of crustaceans have

been widely studied, such as feeding rate [9], growth rate [10], and immune function [4,11].

The Chinese mitten crab, Eriocheir sinensis, is an important aquaculture species in China.

The normal culture cycle of crabs usually takes two years [12]; in the juvenile crab culture pro-

cess, various factors can lead to limb autotomy, such as predation, fighting behavior, defense

and foraging, unsuccessful or unsynchronized molting, high-density farming, or artificial har-

vesting [7,13–15]. A higher limb autotomy rate seriously affects the economic benefit of E.

sinensis. Among them, the most common type of limb injury or autotomy is the loss of a cheli-

ped among decapods [16,17]. Chelipeds play an important role in agonistic interactions, as

well as the defense, capture, manipulation, and subjugation of prey in crustaceans [6]. There-

fore, cheliped regeneration plays an important role in the culture of E. sinensis.
Transcriptomic analysis of Portunus trituberculatus in limb regeneration showed that limb

regeneration appears to be regulated by multiple signalling pathways, the expression of genes

involved in muscle growth, moult and immune-related genes up-regulated [18]. And studies

reported that the process of crab cheliped regeneration is primarily dependent on the co-regu-

lation of ecdysteroid and molting-inhibiting hormone (MIH); ecdysteroid promotes cheliped

regeneration, whereas MIH inhibits cheliped regeneration [19,20]. And chitinase (Chi) plays

an important role in the molting cycle of E. sinensis [21]. Moreover, studies have shown that

melanin induced by phenoloxidase (PO) in crustaceans not only participates in wound repair

and immune protection, but also promotes the sclerotization of new exoskeleton after molting

[22,23]. However, there are no reports on the expression of growth-related genes in different

tissue during cheliped regeneration of E. sinensis.
Cheliped regeneration of E. sinensis is not only regulated by related genes but also has an

important relationship with nutrition storage in vivo [12,20]. For crustaceans, growth and

molting depend on the level of nutrient accumulation in the body [24]. The level and composi-

tion of lipids in E. sinensis are closely related to their molting, growth and survival [25]. Lipids

are the most important energy reserve and biofilm structural material in the juvenile E. sinensis
hepatopancreas and mainly include saturated fatty acids (SFA), monounsaturated fatty acids

(MUFA) polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA) [26].

Among them, HUFA such as eicosatetraenoic acid (ARA), eicosapentaenoic acid (EPA) and
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docosahexaenoic acid (DHA) are not only the main components of phospholipids in the mem-

brane structure [26] but also play an important role in the development of the central nervous

system. Adequate lipid storage is a prerequisite for cheliped regeneration. However, no reports

have been published on the changes in nutrient dynamics during cheliped regeneration of E.

sinensis. In addition, tryptophan, as an essential amino acid for crustaceans, participates in

protein and lipid metabolism and immune regulation in animals [27–30], and promotes the

growth of animals [31]. Muscle moisture is also closely related to crustacean nutrition [32].

Moreover, as a precursor of melatonin [33,34], tryptophan has an important relationship with

the expression of genes involved in molting in tissues.

In this study, we observed the morphological and biochemical component changes of cheli-

ped buds during the regeneration process, and evaluated the expression of growth-related

genes in tissues, changes of hepatopancreas nutrition status, muscle moisture and L-trypto-

phan content, with the aim of providing a practical basis for the nutritional support of cheliped

regeneration and enriching the knowledge of cheliped regeneration of E. sinensis.

Materials and methods

Experimental crabs

All experimental protocols were reviewed and approved by the Animal Bioethics Committee,

Shanghai Ocean University, China. In July 2017, 280 hard-shelled crabs just after molting and

limb-intact E. sinensis (Crustacea; Decapoda; Grapsidae) juvenile crabs (22.45 ± 4.68 g), were

obtained from the earth pond at the Chongming research base of Shanghai Ocean University

(Shanghai, China), to be used experimentally. Juvenile crabs were acclimated in 60-L ultra-

clear glass tanks; each tank was supplied with continuous aerated fresh water at 26˚C –28˚C,

pH 7.84 ± 0.08, DO concentration 6.3 ± 0.4 mg/L, salinity 0.3%, total ammonia 0.36 ± 0.03

mg/L, chloride level 136 ± 15 mg/L, and basal nitrite <0.05 mg/L-1 and natural photoperiod

conditioning for one week. The crabs were fed once a day with a commercial crab diet.

Experimental design

A total of 240 healthy, limb-intact crabs were selected and randomly divided into two groups

(40 crabs for each group and in triplicate): (1) control group: limb-intact without any treat-

ment; (2) autotomy group: autotomy left cheliped, which was achieved by gently grasping the

limbs using the researcher’s fingers, and the crab would spontaneously autotomize the corre-

sponding limbs. Before cheliped autotomy, the crabs were anesthetized with ice. The crabs

were returned to the aerated water in monoculture systems immediately and the aquaculture

environmental conditions as described above.

Sample collection

The experiment was completed after 28 days, and the molting and deaths of the two groups

were recorded daily and calculated at the end of the experiment. Three individuals were ran-

domly taken from each group at 1 d, 7 d, 14 d, 21 d and 28 d, for sample collection and anes-

thetized on ice before sampling.

Crab cheliped buds and basal tissues were observed and photographed under a dissecting

microscope, and then, they were used to determine chitin and crude protein content. Hemo-

lymph was drawn with a sterile 1-ml syringe from the unsclerotized membrane of the right

third pereopod and was diluted 1:1 with sterile anticoagulation agent (trisodium citrate 30

mM, NaCl 338 mM, glucose 115 mM, EDTA 10 mM), and then, the mixture was centrifuged
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at 3500 r/min for 10 min to collect the hemocyte and cell-free hemolymph and stored at -20˚C

to determine the activity of PO.

A total of 500 μL hemolymph was drawn again (procedure as described above) and diluted

1:1 with sterile anticoagulation agent immediately and centrifuged at 12 000 r/min for 10 min

to collect the hemocyte, hepatopancreas, epidermal and pereopod muscle samples, which were

stored at -80˚C for RNA isolation. The rest of the hepatopancreas samples and abdominal

muscles were stored at -20˚C for evaluation of nutrition related parameters.

Chitin, crude protein and PO activity determination

Crude protein and chitin. The determination of chitin and crude protein was slightly

modified according to Tian et al (2013) [35]: crab cheliped buds and basal tissues (as described

in “2.3 Sample collection”) were accurately weighed using an ultramicrobalance (W0) and then

boiled in a 10% NaOH solution for 1 hour to remove protein. Then, 95% ethanol, 50% ethanol,

and distilled water were each used to wash the samples 3 times, in that order, and the weight

was determined after samples were dried at 60˚C (W1). The tissue was then soaked with 3.6%

HCl for 15 min to obtain the transparent chitin, which was dried at 60˚C and weighed (W2).

Crude protein relative content = (W0 –W1) / W0 × 100%

Chitin relative content = W2 / W0 × 100%

PO activity. The PO activity in hemocyte lysate (HL) and cell-free hemolymph (CFH)

were measured using a commercial kit (Nanjing Jiancheng Bioengineering Institute, Nanjing,

China) in accordance with the manufacturer’s protocols.

Expression of the EcR, MIH and Chi gene level: Quantitative RT-PCR

Total RNA was extracted from the hemocyte, hepatopancreas, epidermal and pereopod muscle

tissues using RNAiso plus reagent (RNA Extraction Kit, TaKaRa, Japan) according to the man-

ufacturer’s protocol. The concentration and quality of the total RNA were estimated by micro-

volume ultraviolet-visible spectrophotometer (Quawell Q5000; Thmorgan, China) and aga-

rose-gel electrophoresis, respectively, and reverse transcribed with the PrimeScript RT reagent

Kit (Perfect Real Time, TaKaRa, Japan) according to the manufacturer’s protocol. The cDNA

obtained was diluted to 1:2 with double-distilled water and used as qRT-PCR template. Rela-

tive quantification was performed using the ABI 7500 Real-Time PCR System (Life Technol-

ogy, USA) with ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech Co.,Ltd,

Nanjing, China) kits using the following program: 95˚C for 30 s; 40 cycles at 95˚C for 5 s,

60˚Cfor 34 s; followed by a melting curve at 95˚C for 15 s, 60˚C for 1 min, 95˚C for 15 s. The

PCR primer sequences for EcR, MIH and Chi are shown in Table 1 (Sangon Biotech Co., Ltd.

Shanghai, China). β-actin was used as the internal control and assays were performed in

Table 1. Primer information for quantitative real-time polymerase chain reaction.

Primers Sequences (5’-3’)

EcR-F GGGCATCGGGCTACCACTACAAC

EcR-R GGCACTGAGACTCGGGCACAACA

MIH-F TGAAGACTGCGCCAACATCT

MIH-R GCTCGTCAGGGTAGGTGGTG

Chi-F GAGCCCTACGTCTACAGCATCAC

Chi-R GGTCTCAACACTCCAAACCATCA

β-actin -F TCATCACCATCGGCAATGA

β-actin -R TTGTAAGTGGTCTCGTGGATG

https://doi.org/10.1371/journal.pone.0209617.t001
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triplicate for every sample. Relative changes in gene expression levels were determined by 2-

ΔΔCt method.

Determination of nutritional related parameters

Hepatopancreas total lipid and fatty acid composition determination. The extraction of

hepatopancreas total lipid was carried out with a chloroform and methanol mixture (2:1, v/v)

modified according to Folch et al. (1957) [36]. Fatty acid analysis was performed according to the

method of Wu et al. [37], using 14% boron trifluoride-methanol (v/v) for methyl esterification of

total lipids [38]. The instrument used was an Agilent 6890 gas chromatograph, and the capillary

column was fitted with an HP-5.5% Phenyl Methyl Siloam (30.0 m × 0.25 mm, Agilent 19091J-

413, USA). The injector temperature was 250˚C, and the detector temperature was 280˚C. The

column temperature was initially held at 60˚C, followed by an increase at a rate of 50˚C/min to

170˚C, then to 180˚C at 2˚C/min for 2 min, then to 230˚C at 3˚C/min for 1 min, and then to

240˚C at 1˚C/min for 1 min., total time was approximately 46.2 min for all fatty acids peak. The

carrier gas was helium with a flow velocity of 25 mL/min. Peaks were identified by comparing

retention times with known standards (Sigma Chemical Co, St. Louis. MO, USA), and individual

fatty acids were quantified by reference to the internal standard (C19:0). Fatty acid composition

was expressed as a percentage for each fatty acid of the total fatty acid [39].

Muscle moisture and L-tryptophan content determination. To prevent high tempera-

tures from destroying amino acids in the muscle tissue, we used a vacuum freeze-drying

method to measure the abdominal muscle moisture. Details are as follows: a 5-ml Eppendorf

tube was dried in a 55˚ C air dry oven, removed and then cooled in a dry environment. The

weight of the Eppendorf tube + wet muscle was accurately determined with an electronic bal-

ance (W3), then transferred to a -40˚C freezer for 2 hours, and then placed in a vacuum freeze

drier (-40˚C) for 48 hours until completely dried and accurately weighed (W4).

muscle moisture = W3 –W4

The freeze-dried muscles described above were used for the determination of L-tryptophan

content. Determination of L-tryptophan content is based on the National Standard of the Peo-

ple’s Republic of China, "determination of amino acids in feed" (GB/T 18246–2000), using

alkaline hydrolysis pretreatment, and the of L-tryptophan content in muscle was determined

by reversed-phase high-performance liquid chromatography (RP-HPLC). A C18 (μ- Bondapak

Cl8 column, diameter 25 cm × 4.6 mm) column was selected, the mobile phase was composed

of sodium acetate buffer + methanol = 95+5, the flow rate was 1.5 mL/min, ultraviolet (UV)

detection wavelength was 280 nm, the injection volume was 15 μL, and the column was at

room temperature.

Statistical analyses

Data are presented as the mean values ± standard deviation (SD). The percentage values

(dependent variable) were arcsine transformed before analysis. The effects of treatment were

statistically analyzed using an analysis of variance (one-way ANOVA, LSD and Duncan analy-

sis), and a P-value < 0.05 was considered significant. All statistical analyses were performed

using SPSS 20.0 software (Chicago, USA; Version 20.0).

Results

Cheliped bud morphology and composition analysis

Cheliped bud morphology. Fig 1 shows the morphological changes of the cheliped regen-

eration process of E. sinensis after autotomy. When the cheliped was autotomized, in order to

Morphological and biochemical changes during cheliped regeneration in Eriocheir sinensis
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prevent the continuous loss of hemolymph, black material (represented by arrows) rapidly

accumulated at the wound site (Fig 1A) and a layer of dark brown biofilm (represented by

arrows) was formed to cover the wound surface (Fig 1B). A few days later, transparent hemi-

sphere-like crystalline encrustations (represented by arrows) broke out of the dark brown bio-

film at the autotomy site (Fig 1C), followed by rod-like growth and prolongation, and the

surface was fully covered with black material (Fig 1D, 1E and 1F). However, the surface of the

bud was soft throughout the entire process and no hardened shell was formed. The new cheli-

ped was pre-formed in the bud and then regenerated with the completion of molting (Fig 1G).

The morphology and function of the regenerated new cheliped was similar to the original che-

liped, but smaller in size.

Chitin and crude protein content. Since no buds were grown on the first day after autot-

omy, there was no information on the determination of chitin and crude protein at 1 d (Fig 2A

and 2B). There were no significant changes of chitin content in the buds during regeneration

of the cheliped (Fig 2A). However, the content of crude protein in buds increased significantly

within 28 days (P< 0.05) (Fig 2B).

PO activity. In HL, PO activity was not significantly changed in the control group,

whereas it decreased significantly at 7 d, 21 d and 28 d compared with 1 d after autotomy

(P< 0.05) (Fig 3A). Moreover, the t-test results showed that PO activity in the autotomy

group was significantly lower than that in the control group at 7 d (P<0.05) (Fig 3A). How-

ever, in CFH, PO activity was decreased significantly at 28 d compared with other days in the

control group (P< 0.05), whereas it was decreased significantly at 21 d and 28 d compared

with other days in the autotomy group (P< 0.05) (Fig 3B). Moreover, the t-test results showed

Fig 1. Morphological changes of E. sinensis cheliped bud regeneration within 28 days observed with a dissecting microscope. (A): photographed immediately after

autotomy, top view; black material represented by arrows. (B): 1 day after autotomy, top view; dark brown biofilm represented by arrows. (C): 7 days after autotomy, top

view; transparent hemisphere-like crystalline encrustations represented by arrows. (D): 14 days after autotomy, top view; (E): 14 days after autotomy, side view; (F): 21

days after autotomy, side view; (G): 28 days after autotomy.

https://doi.org/10.1371/journal.pone.0209617.g001
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that the PO activity in the autotomy group was significantly lower than that in the control

group at 21 d (P< 0.05) (Fig 3B).

Expression levels of growth-related genes: Chi, EcR and MIH
Expression of the Chi gene levels. The expression levels of Chi gene in different tissues

showed a tendency to up-regulate first, then down-regulate both in the control group and the

autotomy group (Fig 4). Compared with the control group, the expression levels of Chi gene

were significantly higher in the autotomy group at 7 d (P<0.01), 14 d (P< 0.001), 21 d

(P< 0.01) and 28 d (P<0.05) in hemolymph (Fig 4A). The expression levels of Chi gene were

significantly up-regulated in the autotomy group at 7 d (P< 0.01), 14 d (P< 0.001) and 21 d

(P< 0.001) compared with the control group, whereas it was significantly lower at 28 d

(P<0.05) in the hepatopancreas (Fig 4B). Compared with the control group, the expression

levels of Chi gene were significantly higher in the autotomy group at 1 d (P<0.05), 7 d

Fig 2. Changes of chitin and crude protein content in regenerated cheliped bud of E. sinensis within 28 days after

treatment. (A) cheliped bud chitin content; (B) cheliped bud crude protein content. The values are expressed as the

means ± SD (n = 9). Different letters above the columns represent the significant differences with the same treatment

at different times (P<0.05).

https://doi.org/10.1371/journal.pone.0209617.g002
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(P< 0.001) and 14 d (P< 0.001) in pereopod muscle (Fig 4C). Moreover, the expression levels

of Chi gene were significantly higher than that in the control group at 7 d (P<0.01) and 28 d

(P<0.05) in epidermis (Fig 4D).

Expression of EcR gene levels. Compared with the control group, the expression levels of

EcR gene were significantly higher in the autotomy group at 7 d (P<0.05) and 21 d (P< 0.05),

whereas it was significantly lower at 28 d (P<0.05) in hemolymph (Fig 5A). The expression

levels of EcR gene were significantly up-regulated in the autotomy group at 21 d (P< 0.001)

and 28 d (P< 0.05) compared with the control group in hepatopancreas (Fig 5B). Compared

with the control group, the expression levels of EcR gene were significantly lower at 1 d

(P< 0.05) in the autotomy group, whereas it was significantly higher at 7 d (P< 0.05) in

pereopod muscle (Fig 5C). Moreover, the expression levels of EcR gene were significantly

higher than that in control group at 21 d (P<0.001) and 28 d (P<0.01) in epidermis (Fig 5D).

Fig 3. Changes of PO activity in regenerated cheliped bud of E. sinensis within 28 days after treatment. The values

are expressed as the means ± SD (n = 4). (A): PO activity in HL; (B): PO activity in CFH. Different letters above the

columns represent significant differences with the same treatment at different times (P<0.05). � represents significant

differences between control group and autotomy group at the same time point (P< 0.05).

https://doi.org/10.1371/journal.pone.0209617.g003
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Expression of the MIH gene levels. The expression levels of MIH gene in different tissues

showed a tendency to down-regulate first and then up-regulate both in the control group and

the autotomy group (Fig 6). Compared with the control group, the expression levels of MIH
gene were significantly lower in the autotomy group at 7 d in hemolymph (P<0.05), hepato-

pancreas (P<0.05) and pereopod muscle (P<0.001) (Fig 6A, 6B and 6C). Moreover, the

expression levels of MIH gene were significantly lower than that in control group at 7 d

(P<0.001) and 14 d (P<0.001) in epidermis (Fig 6D).

Nutritional related parameters

Hepatopancreas total lipid. In both the autotomy group and the control group, the hepa-

topancreas total lipid content showed a tendency to decrease within 28 d (Fig 7). Hepatopan-

creas total lipid content reached its lowest value at 21 d in autotomy (P<0.05); the t-test

results showed that it was significantly lower at 14 d and 21 d in the autotomy group than in

control group (P< 0.01).

Fig 4. Expression level of Chi gene normalized to β-actin in hemolymph, hepatopancreas, muscle and epidermis of E. sinensis with different treatments. (A)

hemolymph; (B) hepatopancreas; (C) pereopod muscle; (D) epidermis. The values are expressed as the means ± SD (n = 4). Different letters above the columns represent

significant differences with the same treatment at different times (P<0.05). � represents significant differences between control group and autotomy group at the same

time point (� P< 0.05, �� P<0.01, ��� P<0.001).

https://doi.org/10.1371/journal.pone.0209617.g004
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Hepatopancreas fatty acid composition. The fatty acid composition analysis showed that

in the autotomy group, the most abundant saturated fatty acids (SFA) (% total fatty acids) in

the hepatopancreas were C16:0 and C18:0; the most abundant monounsaturated fatty acids

(MUFA) (% total fatty acids) were C18:1n-7 and C18:1n-9; and the most abundant polyunsat-

urated fatty acids (PUFA) were C18: 2n-6 (LA) and C22: 6n-3 (DHA), which were similar to

the control group (Table 2).

SFA was significantly increased at 28 d (28.93±2.90%) compared with 1 d (25.33±1.62%)

(P< 0.05) in the control group, and it was significantly higher at 21 d (28.35±1.95%) and 28 d

(27.34±1.66%) than 1 d (25.49±1.81%) in the autotomy group (P< 0.05). The t-test results

showed that SFA in the autotomy group was significantly higher than that in the control group

at 21 d (P< 0.05) (Table 2).

In the control group, MUFA showed a tendency to rise first and then decline, and it was sig-

nificantly increased at 14 d compared with 1 d before gradually returning to the initial level; it

was significantly lower at 28 d (15.98±1.19%) compared to other times (1 d:24.50±3.30%; 7 d:

Fig 5. Expression of EcR gene normalized to β-actin in hemolymph, hepatopancreas, muscle and epidermis of E. sinensis with different treatments. (A)

hemolymph; (B) hepatopancreas; (C) muscle; (D) epidermis. The values are expressed as means ± SD (n = 4). Different letters above the columns represent significant

differences with the same treatment at different times (P<0.05). � represents significant differences between the control group and the autotomy group at the same time

point (� P< 0.05, �� P<0.01, ��� P<0.001).

https://doi.org/10.1371/journal.pone.0209617.g005
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21.48±5.46; 14 d: 24.18±2.75; 21 d: 24.83±2.60%) in the autotomy group (P< 0.05). T-test

results showed that MUFA in the autotomy group (28 d: 15.98±1.19%) was significantly lower

than that in control group (28 d: 18.95±1.80%) at 28 d (P< 0.05) (Table 2).

HUFA was significantly decreased at 21 d (15.16±1.41%) compared with 1 d (19.78±1.20%)

(P< 0.05) in the control group, whereas there was no significant change within 28 days in the

autotomy group. The T-test results showed that HUFA in the autotomy group was signifi-

cantly higher than that in the control group (18.81±1.69%) (P< 0.05) (Table 2). Important

long-chain highly unsaturated fatty acids (LCHUFA) also changed during this process, includ-

ing 22: 6n-3 (DHA), 20: 5n-3 (EPA) and 20: 4n-6 (ARA). Similar to the HUFA trend, DHA

decreased significantly at 21 d (P< 0.01) in the control group and did not significantly change

in the autotomy group. The T-test results of DHA showed that DHA in the autotomy group (7

d: 10.71±0.75%) was significantly lower than that in control group (7 d: 12.68±1.39%) at 7 d,

whereas it was significantly higher in the autotomy group (: 12.08±1.06%) than in the control

group (: 8.75±1.50%) at 21 d (P< 0.05) (Table 2). Moreover, the T-test results of ARA and

Fig 6. Expression level of MIH gene normalized to β-actin in the hemolymph, hepatopancreas, muscle and epidermis of E. sinensis with different treatments. (A)

hemolymph; (B) hepatopancreas; (C) muscle; (D) epidermis. The values are expressed as the means ± SD (n = 4). Different letters above the columns represent

significant differences with the same treatment at different times (P<0.05). � represents significant differences between the control group and the autotomy group at the

same time point (� P< 0.05, �� P<0.01, ��� P<0.001).

https://doi.org/10.1371/journal.pone.0209617.g006
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EPA showed that there were no significant differences between the autotomy and the control

group (Table 2). Finally, the n-3/n-6 in the autotomy group (1.47±0.26%) was significantly

increased compared with the control group (1.10±0.11%) at 21 d (P< 0.05) (Table 2).

Muscle moisture and L-tryptophan content. In both the autotomy group and the control

group, muscle moisture showed a trend to decrease first and then increase within 28 d (Fig

8A). The muscle moisture decreased significantly at 7 d compared with 1 d and then increased

significantly at 14 d and 28 d compared with 7 d in the autotomy group (P< 0.05). Moreover,

compared with the control group, abdominal muscle moisture was significantly lower at 7 d

(P< 0.05) in autotomy group, whereas it was significantly higher at 14 d (P< 0.05) (Fig 8A).

Muscle L-tryptophan content was significantly increased at 28 d in control group compared

with 1 d (P< 0.05), whereas it was significantly increased at 7 d, and 28 d compared with 1 d

after cheliped autotomy (P< 0.05) (Fig 8B). T-test results showed that the L-tryptophan con-

tent was significantly lower in the autotomy group compared with the control group at 1 d

(P< 0.05), whereas it was significantly higher at 7 d (P< 0.05) (Fig 8B).

Discussion

Cheliped bud morphology and composition analysis

Regeneration means the structural and functional reconstruction of an organism for lost tissue

or an organ. In the present study, we for the first time observed the morphological changes

during the cheliped regeneration of E. sinensis. Based on previous studies of crustaceans

[40,41], we summarized the cheliped regeneration process of E. sinensis in the following three

stages: wound-repair, bud growth and new limb formation. (1) Wound-repair: wound-repair

occurs when the cheliped was autotomized, a black substance was spread and deposited in the

wound area and gradually formed a layer of dark brown biofilm covering the wound surface to

prevent loss of hemolymph and invasion of pathogenic bacteria. We think this black substance

may be melanin. Previous studies in crustaceans found that granulocytes were involved in the

activation of the prophenoloxidase system (proPO) [42] and then convesion into a PO, thereby

gradually inducing the production of melanin, forming an isolation layer by encapsulation

Fig 7. Changes of hepatopancreas total lipid of E. sinensis within 28 days after treatment. The values are expressed

as the means ± SD (n = 5). Different letters above the columns represent significant differences with the same

treatment at different times (P<0.05). � represents significant differences between the control group and the autotomy

group at the same time point (� P< 0.05).

https://doi.org/10.1371/journal.pone.0209617.g007
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Table 2. Fatty acid composition (% total fatty acids) of hepatopancreas of normal and left cheliped autotomy E. sinensis within 28 days after treatment.

Fatty acid Control Group Autotomy Group

1 d 7 d 1 4d 21 d 28 d 1 d 7 d 14 d 21 d 28 d

C14:0 0.34 ±0.06 a 0.36±0.04 a 0.28±0.09 ab 0.37±0.04 a 0.25±0.11 b 0.50±0.03 a 0.39±0.09 b 0.37±0.10 b 0.35±0.06 b 0.52±0.08 a

C15:0 0.13±0.03 ab 0.12±0.04 a 0.13±0.03 ab 0.13±0.03 ab 0.16±0.03 b 0.77±0.11 a 0.15±0.02 b 0.24±0.05 a 0.22±0.05 a 0.13±0.02 b

C16:0 7.32±1.41 a 8.18±1.64 a 5.45±0.52 b 5.60±0.97 b 5.10±0.29 b 6.60±0.63 a 6.67±1.22 a 6.07±0.91 ab 5.73±0.57 ab 4.88±1.21 b

C17:0 0.13±0.06 0.10±0.00 0.13±0.09 0.11±0.03 0.10±0.03 0.11±0.02 ab 0.12±0.02 ab 0.15±0.06 a 0.10±0.00 b 0.10±0.01 b

C18:0 15.40±0.96 a 16.26±1.06 ab 17.21±2.51
ab

17.86±1.15 b 23.97±2.82 c 15.84±1.21 a 16.84±1.45
a

16.31±2.80
a

20.60±1.96 b 20.07±0.50 b

C20:0 1.69±0.59 1.44±0.19 1.72±0.35 1.56±0.44 1.55±0.28 1.24±0.37 a 1.10±0.36 a 1.70±0.23 b 1.31±0.11 ab 1.47±0.38 ab

C22:0 0.31±0.09 b 0.22±0.04 a 0.18±0.04 a 0.22±0.05 a 0.18±0.04 a 0.42±0.07 a 0.19±0.05 b 0.45±0.05 a 0.24±0.08 b 0.18±0.05 b

∑ SFA 25.33±1.62a 26.67±2.50 a 25.12±2.03 a 25.84±1.56 a � 28.93±2.90b 25.49±1.81 a 25.47±1.27
a

25.29±2.63
a

28.35±1.95 b

�

27.34±1.66 b

C16:1 0.22±0.07 a 0.24±0.09 a 0.20±0.05 ab 0.17±0.03 ab 0.14±0.04 b 0.19±0.06 a 0.18±0.04 ab 0.18±0.02 ab 0.29±0.09 c 0.13±0.03 b

C17:1n-7 0.58±0.09 a 1.47±0.18b 1.48±0.48b 0.22±0.06 c 0.13±0.02 c 0.17±0.03 0.21±0.12 0.20±0.04 0.19±0.01 0.13±0.03

C18:1n-9 17.02±4.59 a 18.20±4.82 a 23.45±5.60
b

18.20±3.97 a 13.72±1.50 a 17.46±3.79 a 17.47±4.96
a

17.61±2.99
a

18.08±1.74 a 11.48±1.51 b

C18:1n-7 5.29±0.68 ab 6.04±0.97 a 2.96±0.22 c 5.65±1.30 ab 4.58±1.37 b 6.29±1.16 a 3.05±0.67 b 5.51±0.52 a 5.55±0.89 a 3.49±0.53 b

C20:1n-9 0.18±0.04 a 0.22±0.05 a 0.47±0.08 b 0.28±0.07 c 0.16±0.03 a 0.28±0.08 a 0.42±0.09 b 0.54±0.02 c 0.58±0.03 c 0.62±0.12 c

C22:1n-9 0.29±0.06 a 0.27±0.02 a 0.16±0.04b 0.16±0.05b 0.21±0.03b 0.11±0.02 a 0.16±0.02 b 0.14±0.03 b 0.14±0.00 b 0.13±0.04 ab

∑ MUFA 23.57±4.35
ab

26.44±5.10 bc 28.73±6.03c 24.68±3.08 bc 18.95±1.80 a

��

24.50±3.03 a 21.48±5.46
a

24.18±2.75
a

24.83±2.60 a 15.98±1.19 b

��

C18:2n-6 (LA) 9.99±0.95 a 7.25±0.73 b 9.45±1.98 a 7.25±0.82 b 5.84±1.53 b 6.93±0.86 ab 8.24±1.61 a 7.90±1.45 ab 6.03±1.65 b 5.90±1.55 b

C18:3n-3

(LNA)

0.68±0.07 a 0.14±0.03 b 0.27±0.10c 0.16±0.02 b 0.15±0.02 b 0.61±0.09 a 0.15±0.03 b 0.12±0.03 b 0.15±0.01 b 0.12±0.03 b

C20:2n-6 0.14±0.01 0.13±0.01 0.13±0.01 0.12±0.02 0.15±0.02 0.14±0.04 0.14±0.03 0.16±0.03 0.12±0.01 0.15±0.03

C20:3n-6 1.39±0.22 1.67±0.52 1.68±0.39 1.24±0.24 1.26±0.14 1.51±0.27 1.57±0.42 1.49±0.27 1.36±0.31 1.50±0.27

C20:4n-6

(ARA)

2.82±0.62 ab 2.70±0.51 ab 3.21±0.69 a 2.19±0.50 b 2.65±0.58 ab 3.10±0.60 3.46±0.91 3.49±0.68 2.69±0.45 3.07±0.98

C20:3n-3 0.40±0.09 a 0.38±0.08 ab 0.35±0.08 ab 0.27±0.06 b 0.31±0.09 ab 0.35±0.06 0.34±0.07 0.39±0.10 0.30±0.06 0.34±0.05

C20:5n-3

(EPA)

1.56±0.30 a 2.23±0.60 ab 2.00±0.33 ab 2.42±0.96 b 1.92±0.43 ab 1.88±0.41 2.04±0.60 2.01±0.51 2.11±0.26 2.15±0.54

C22:5n-3 0.12±0.04 0.15±0.02 0.13±0.05 0.14±0.05 0.11±0.04 0.11±0.02 0.13±0.03 0.12±0.03 0.12±0.02 0.11±0.03

C22:6n-3

(DHA)

12.80±0.65 a 12.68±1.39 a

�

12.63±3.13 a 8.75±1.50 b�� 11.68±1.46 a 11.45±1.46 10.71±0.75� 10.67±1.12 12.08±1.06
��

11.02±1.96

∑ n-6 PUFA 14.34±1.61a

�

11.75±1.35b 14.46±1.62 a 10.80±1.47b 9.90±1.97b 11.69

±1.53ab�

13.40±2.71a 13.03±0.90a 10.21±1.71b 10.62±2.68 ab

∑ n-3 PUFA 15.56±0.69 a 15.58±0.94 a

��

15.39±3.24 a 11.74±0.94 b

��

14.17±1.39 a 14.41±1.11 13.38

±1.07��
13.31±1.27 14.75±1.00�� 13.74±1.43

∑ HUFA 19.78

±1.20ab
19.96±0.87ab 20.28±2.80b 15.16±1.41c�� 18.09±1.95a 19.03±0.82 18.40±1.79 18.28±0.79 18.81±1.69�� 18.31±0.45

∑ n-3 HUFA 15.56±0.69 a 15.58±0.94 a

��

15.39±3.24 a 11.74±0.94 b

��

14.17±1.39 a 14.41±1.11 13.38±1.07 13.31

±1.27��
14.75±1.00�� 13.74±1.43

∑ n-6 HUFA 4.22±0.77c 4.38±0.94 ab 4.89±1.06 a 3.43±0.72b 3.91±0.58 ab 4.62±0.69 5.02±1.32 4.97±0.70 4.06±0.70 4.57±1.22

n-3 / n-6 1.09±0.13a 1.34±0.20 b 1.06±0.14 a 1.10±0.11 a � 1.45±0.16 b 1.26±0.25 ab 1.04±0.27 a 1.17±0.08 ab 1.47±0.26 b � 1.39±0.46 ab

DHA / EPA 8.52±2.08a 6.03±1.82 b � 6.39±1.76 ab 4.23±2.12 b 6.39±2.08 ab 6.44±2.05 5.57±1.50� 5.60±1.61 5.83±1.13 5.56±2.16

ARA / EPA 1.80±0.11a 1.24±0.22bc 1.61±0.26 ab 1.02±0.46c 1.45±0.53 abc 1.68±0.32 ab 1.78±0.59 ab 1.87±0.76 b 1.31±0.38 a 1.42±0.18 ab

Note: Different letters represent significant differences with the same treatment at different times (P< 0.05). Significant differences between control group and

autotomy group at the same time point

� P < 0.05
�� P < 0.01.

https://doi.org/10.1371/journal.pone.0209617.t002
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and melanization [22], repairing wounds and playing an immune protective role. (2) Bud

growth: firstly, transparent hemisphere-like crystalline encrustations broke out of the dark

brown biofilm at the autotomy site, and gradually growed into a rod like structure a few days

later. The buds were transparent when they first grew out and the surface gradually became

black with melanization, but they did not sclerotize. We speculated that the blackening of the

bud was due to the melanin sedimentation and melanization.

Studies have reported that active PO participates in the encapsulation and melanization of

foreign organisms, as well as in the repair of wounds or sclerotization of new exoskeleton after

molting [23,43]. In this experiment, we measured PO activity in HL and CFH during cheliped

regeneration process and found that PO activity in the autotomy group was significantly lower

Fig 8. Changes of muscle moisture and L-tryptophan content of E. sinensis within 28 days after treatment. (A)

abdominal muscle moisture; (B) L-tryptophan content. The values are expressed as the means ± SD (n = 5). Different

letters above the columns represent significant differences with the same treatment at different times (P<0.05). �

represents significant differences between the control group and the autotomy group at the same time point (�

P< 0.05).

https://doi.org/10.1371/journal.pone.0209617.g008
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than that in the control group. We believe that the decrease of PO activity was related to the

large amount of induced melanin production and clearance of wound pathogens. Chitin and

crude protein are important components of crab-shell; after the molting of E. sinensis, proteins

related to crab shell formation will be synthesized in large quantities because of the construc-

tion of new epidermis [35]. In this study, we found that the crude protein content in cheliped

buds increased significantly within 28 days, whereas the chitin content did not change signifi-

cantly. Moreover, the volume of the cheliped buds continuously increased within 28 days,

which contains many protein fibers and resulted in a significant increase in crude protein con-

tent. However, the surface of the bud was soft throughout the entire process of cheliped regen-

eration, and no hardened shell was formed. Therefore, the chitin content did not change

significantly during this process. Tian et al. (2013) reported that the chitin content in the shell

of E. sinensis did not change significantly during the molting process [35], which is similar to

our result. (3) New limb formation: new limb formation occurred when the cheliped bud con-

tinued to grow and the new cheliped was pre-formed in the bud, and thus, the new cheliped

was regenerated with the completion of molting. The regenerated cheliped has similar appear-

ance and morphology to the original cheliped, but with a smaller size. With individual growth

and after two times of molting, it can generally return to normal size. The cheliped regenera-

tion process of crabs is relatively slow and usually needs to undergo a complete molting cycle

in order to grow a complete new limb [12]. The autotomy behavior of E. sinensis occurs

throughout the developmental stage, but regeneration can only occur before sexual matura-

tion. After sexual maturation, the molting will terminate, and they will not be regenerated.

Growth-related genes

In crustaceans, the ecdysteroid and molt-inhibiting hormone (MIH) jointly regulate the crab’s

cheliped regeneration; ecdysteroid is mainly produced by the Y-organs and can promote the

cheliped regeneration, and the MIH mainly comes from the eyestalk, which can inhibit the

release of ecdysteroid [19]. The process of cheliped regeneration of crabs is relatively slow and

usually needs to undergo a complete molting cycle to complete the cheliped regeneration [12].

Therefore, the shortening of the molting cycle means faster completion of limb regeneration.

In crustaceans, the molting cycle is regulated by positive regulatory factors (e.g., ecdysteroid,

methyl farnesoate) and counter-regulatory factors (e.g., MIH, mandibular organ-inhibiting

hormone (MOIH)) [44]. In the present study, we found that most crabs had molting behavior

at 21 d, and all crabs in the autotomy group completed molting activity at 28 d. However, the

molting rate of control group was only approximately 70%, which indicates that cheliped

autotomy can promote molting and shorten the molting cycle of E. sinensis. Previous studies

have shown that limb autotomy can shorten the first molting period of E. sinensis, Panulirus
longipes and Jasus lalandii, which is consistent with our results. The opposite result was found

in studies of Panulirus argus and Scylla serrata [40,41], which shows that there are differences

between different species. In addition, chitinase (Chi) plays an important role in the molting

cycle of crabs, which can hydrolyze the chitin from old bones for the synthesis of new bones

[21]. Studies have shown that chitinase is involved in many physiological processes in crusta-

ceans, such as morphogenesis, nutrient digestion and pathogen defense [45–47]. Our previous

study found that melatonin can promote cheliped regeneration of E. sinensis by regulating the

expression of EcR, MIH and Chi genes [20]. Therefore, in the present study we examined the

expression levels of EcR, MIH and Chi genes during the cheliped regeneration process of E.

sinensis. The results showed that the expression of EcR-mRNA in the tissues was significantly

higher in the autotomy group than that in the control group, whereas the expression of MIH-

mRNA was significantly lower in the autotomy group. The up-regulation of EcR-mRNA and
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down-regulation of MIH-mRNA promoted the molting and cheliped regeneration of E. sinen-
sis. Moreover, we observed a similar trend in the expression of Chi-mRNA and EcR-mRNA in

tissues, which is consistent with the study of Fenneropenaeus chinensis [48]. During the process

of cheliped regeneration, the expression levels of Chi-mRNA were significantly increased in

tissues, which showed that Chi played an important role in cheliped regeneration and the

hardening of new shells after molting. A previous study reported that the expression of Chi-

mRNA is significantly up-regulated before molting, which was significantly higher than during

other molting periods[49], consistent with our findings.

Nutritional status

Hepatopancreas total lipid and fatty acid composition. He et al. (2013, 2016) believed

that the main purpose of storage nutrition in crustaceans is for molting and growth, and to

speed up the regeneration of new limbs, the juvenile crabs may begin to molt only with part of

nutrients stored, thus resulting in a shortened molting cycle [12,50]. For E. sinensis, lipids are

the most important energy reserve and biofilm structural material in the body [26]. Hepato-

pancreas, as the main lipid storage organ and metabolic center, is one of the main energy

sources for the molting cycle and has an important connection with the formation of new exo-

skeleton during molting cycle and metabolism during the soft-shell stage after molting and

when crustaceans stop feeding [37,51]. In the present study, we observed that the hepatopan-

creas total lipid content was significantly decreased in both the autotomy group and control

group, and it was significantly lower in the autotomy group than control group at 14 d and. To

regenerate new cheliped as soon as possible, crabs in the autotomy group began molting earlier

in comparison with the control group. Most of the crabs in the autotomy group had achieved

molting at; cheliped regeneration and reconstitution of new epidermis after molting required a

large amount of energy, which resulted in a decrease of the total lipid content, consistent with

the results of Ma et al. (2014) [24]. SFA and MUFA are important fatty acid components, the

main function of which is to provide energy [26]. In this study, compared with the control

group, MUFA was significantly decreased in the autotomy group at 28 d, indicating that

MUFA is the main energy-supplying material in the process of cheliped regeneration. Ma et al.
(2014) believed that the energy provided by SFA and MUFA was not proportional in the pro-

cess of molting of E. sinensis; MUFA was significantly more consumed [24], which is similar to

our results. PUFA and HUFA are present as the main components of phospholipids in bio-

films rather than as energy-supplying material [35]. In the present study, ∑ n-6 PUFA and ∑ n-

3 PUFA were significantly lower in the autotomy group than in control group at 1 d and 7 d;

we speculated that it was transferred to construct new biofilms for regenerating buds. Highly

unsaturated fatty acids (HUFA) such as ARA, EPA and DHA are the main components of

phospholipids in the membrane structure [26], which plays an important role in the metabo-

lism of E. sinensis. After DHA, EPA and ARA are used, they must be supplemented in time to

maintain normal metabolic processes of the organism. In our study, although there was no sig-

nificant difference of ARA and EPA between the autotomy group and the control group, the

DHA level was significantly lower at 7 d and significantly higher at in the autotomy group

than in the control group. The DHA decreased significantly at 7 d in the autotomy group

because the growth of the regenerated cheliped consumed a large amount of DHA at 7 d,

whereas the DHA level was significantly increased at due to the molting of crabs in the autot-

omy group; in order to maintain the normal life activities of crabs, DHA was greatly supple-

mented. HUFA also showed similar results. Our study found that the molting of crabs in the

autotomy group was earlier than in control group; in order to promote cheliped regeneration

and molting, it is possible to enhance the hepatopancreas total lipid content and to strengthen

Morphological and biochemical changes during cheliped regeneration in Eriocheir sinensis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209617 December 26, 2018 16 / 21

https://doi.org/10.1371/journal.pone.0209617


the nutrition of fatty acids such as MUFA and DHA, which will help to promote the cheliped

regeneration and improve survival rate after molting.

Muscle L-tryptophan content and muscle moisture. In addition, L-tryptophan, as an

essential amino acid for crustaceans [27], participates in protein and lipid metabolism of ani-

mals [28]. Studies have reported that L-tryptophan can improve animal growth performance,

feed conversion efficiency and intestinal digestive capacity [52]. Moreover, tryptophan is the

precursor of melatonin, which can be converted into melatonin in vivo [33,34], and plays an

important role in the antioxidant function and immune regulation of the organism [29,30]. In

the present study, the abdominal muscle L-tryptophan content was significantly lower at 1 d

and significantly higher at 7 d in the autotomy group compared with the control group, which

indicates that L-tryptophan participates in immunoregulation at 1 d to cope with the cheliped

autotomy stress. Our previous study found that the immunity of E. sinensis was significantly

reduced after cheliped autotomy in the short term [4]. Studies have reported that tryptophan

and melatonin can enhance the anti-stress ability of Apostichopus japonicus Selenkaand and

Solea senegalensis (Senegalese sole) [53,54]. However, the present study found that L-trypto-

phan content increased significantly in the autotomy group at 7 d; we speculate that the main

task of L- tryptophan at this time is not anti-stress and immunity regulation but instead to pro-

mote cheliped regeneration, so the body began to absorb and convert to L-tryptophan. Our

previous study found that melatonin injection in E. sinensis can up-regulate the expression of

EcR-mRNA and Chi-mRNA and down-regulate the expression of MIH-mRNA in tissues to

promote cheliped regeneration [20]. L-tryptophan, as a precursor of melatonin, accelerates the

conversion of substances and indirectly promotes the expression of growth-related genes and

accelerates cheliped regeneration of E. sinensis. In addition, our study found that in the autot-

omy group, compared with 1 d, muscle moisture decreased significantly at 7 d and then

increased significantly at 14 d, which is contrary to the changing trend of muscle L-tryptophan

content and the main energetic substance MUFA in the hepatopancreas. A previous study

reported that in the absence of nutrition, crustaceans could use water to fill in the energy-con-

suming substances in tissues [32]. He et al. (2013) found similar results in the study of E. sinen-
sis and speculated that it might be a common feature of the physiological regulation of

crustaceans [50].

Conclusion

In the present study, we found that the new cheliped was pre-formed in the bud and then

regenerated with the completion of the molting of E. sinensis. During the cheliped regenera-

tion process, crabs could accelerate bud growth by increasing the crude protein content, pro-

mote regeneration rate and shorten molting cycle by up-regulating the positive growth-related

gene and down-regulating the molting inhibition gene, and accelerate nutrient metabolism

such as lipid metabolism and tryptophan metabolism. Our study found that the molting of

crabs in the autotomy group was earlier than in control group. In order to promote the cheli-

ped regeneration and molting, we recommend that we should enhance the hepatopancreas

total lipid content, strengthen the nutrition of fatty acids such as MUFA and DHA and supply

appropriate amounts of L-tryptophan to the diet, which will help to promote cheliped regener-

ation and improve survival rate after molting.
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