
RESEARCH ARTICLE

elPrep 4: A multithreaded framework for

sequence analysis

Charlotte HerzeelID
1☯*, Pascal Costanza1☯, Dries Decap1,2, Jan Fostier1,2,

Wilfried Verachtert1

1 ExaScience Life Lab, IMEC, Leuven, Belgium, 2 Department of Information Technology, Ghent University -

IMEC, Ghent, Belgium

☯ These authors contributed equally to this work.

* Charlotte.Herzeel@imec.be

Abstract

We present elPrep 4, a reimplementation from scratch of the elPrep framework for proces-

sing sequence alignment map files in the Go programming language. elPrep 4 includes mul-

tiple new features allowing us to process all of the preparation steps defined by the GATK

Best Practice pipelines for variant calling. This includes new and improved functionality for

sorting, (optical) duplicate marking, base quality score recalibration, BED and VCF parsing,

and various filtering options. The implementations of these options in elPrep 4 faithfully

reproduce the outcomes of their counterparts in GATK 4, SAMtools, and Picard, even

though the underlying algorithms are redesigned to take advantage of elPrep’s parallel

execution framework to vastly improve the runtime and resource use compared to these

tools. Our benchmarks show that elPrep executes the preparation steps of the GATK Best

Practices up to 13x faster on WES data, and up to 7.4x faster for WGS data compared to

running the same pipeline with GATK 4, while utilizing fewer compute resources.

Introduction

elPrep 4 is a vastly extended reimplementation of elPrep [1], a multithreaded tool for prepar-

ing sequence alignment/map files (SAM/BAM) [2] for variant calling in DNA sequencing

pipelines. Which preparation steps are used in a pipeline depends on the application, but, in

general, they prepare the aligned read data in some way for statistical analysis, and they may

include steps for filtering out unmapped reads or reads based on genomic regions of interest,

sorting reads for coordinate order, marking the reads that are optical or PCR duplicates, calcu-

lating and applying base quality score recalibration, and so on. The GATK Best Practices [3]

for example define a 4-step pipeline –and a couple of variations– for preparing data for variant

calling with GATK [4], one of the most widely used variant callers.

elPrep differs from other tools for processing SAM/BAM files such as SAMtools [5], Picard,

and GATK 4 [4] in terms of its software architecture that allows executing sequencing pipe-

lines by making only a single pass through the data, independent of the number of steps

specified in the pipeline description. This software architecture is designed to avoid repeated

file I/O by keeping data as long as possible in memory during execution, to merge the

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Herzeel C, Costanza P, Decap D, Fostier J,

Verachtert W (2019) elPrep 4: A multithreaded

framework for sequence analysis. PLoS ONE

14(2): e0209523. https://doi.org/10.1371/journal.

pone.0209523

Editor: Li Chen, Auburn University - Harrison

School of Pharmacy, UNITED STATES

Received: November 23, 2018

Accepted: January 27, 2019

Published: February 13, 2019

Copyright: © 2019 Herzeel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work is funded by IMEC vzw under

the ICON program: ICON Project HBC.2016.0653.

Charlotte Herzeel, Pascal Costanza, Dries Decap,

Jan Fostier and Wilfried Verachtert are employees

of IMEC vzw, Belgium; Dries Decap and Jan Fostier

are employees of Ghent University, Ghent,

Belgium. The funder provided support in the form

of salaries for authors [CH, PC, DD, JF, WV], but

did not have any additional role in the study design,

http://orcid.org/0000-0002-9319-9885
https://doi.org/10.1371/journal.pone.0209523
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209523&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209523&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209523&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209523&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209523&domain=pdf&date_stamp=2019-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209523&domain=pdf&date_stamp=2019-02-13
https://doi.org/10.1371/journal.pone.0209523
https://doi.org/10.1371/journal.pone.0209523
http://creativecommons.org/licenses/by/4.0/


computations of different preparation steps, and to avoid unnecessary synchronization while

parallelizing execution, all of which significantly reduce the time needed to execute a sequen-

cing pipeline [1].

elPrep 4 is a complete redesign and reimplementation of elPrep [1] in Go, an open-source

programming language developed by Google. Go is a statically typed, compiled language fea-

turing memory safety, parallel garbage collection, type inferencing, and support for concur-

rency utilizing multiple cores, which gives us access to new software optimization strategies to

further improve the performance of elPrep. The original implementation of elPrep was written

in Common Lisp, a language with good support for low-level performance optimizations

thanks to optional type declarations, code inlining, stack-based memory allocation, and multi-

threading features.

One aspect specific to a sequencing application such as elPrep is that it needs to process

hundreds of gigabytes of data, putting a tremendous pressure on memory management [6].

Most Common Lisp implementations currently use a stop-and-copy, stop-the-world garbage

collector, which we needed to turn off because it interfered too much with the multithreaded

execution of elPrep as it frequently pauses the program. Without garbage collection, we needed

to employ a rigid programming style where we reuse memory and avoid unnecessary memory

allocation as much as possible, increasing the complexity for programming and maintaining

elPrep. Go comes with a concurrent, parallel garbage collector which solves this problem [6].

Other advantages of switching to Go include its portable, free compiler and modern language

features such as type inferencing, UTF8 by default, escape analysis by the compiler, and so on.

The new elPrep 4 framework also allows us to more easily add new functionalities, and to

implement all of the preparation steps described by the GATK Best Practices [3]. Two key con-

tributions include algorithms for optical duplicate marking and base quality score recalibra-

tion, both optimized for efficient parallel execution in the elPrep framework, while producing

the same results compared to their respective implementations in Picard and GATK 4. This

involves a non-trivial reformulation of these algorithms that, compared to the original algo-

rithms in Picard and GATK 4, avoid the use of intermediate files, avoid multiple iteration

loops over the data, and are parallel.

We show that elPrep 4 drastically reduces the runtime and resource cost for running

sequencing pipelines by benchmarking a 4-step pipeline from the GATK Best Practices in

elPrep and comparing it to both the GATK 3.8 and GATK 4 runtimes. We also discuss a scal-

ing experiment on Amazon Web Services (AWS) that compares the dollar cost of running

elPrep 4 versus GATK 4 to process both whole-exome and whole-genome data.

Implementation

elPrep is developed at the ExaScience Life Lab (http://www.exascience.com) for the Linux

operating system. elPrep 4 is written in Go, a programming language developed by Google.

Source code and documentation are available at http://github.com/ExaScience/elprep under

the terms of the GNU Affero General Public License version 3 as published by the Free Soft-

ware Foundation, with Additional Terms. Demos and test data can be downloaded from our

Github repository at http://github.com/ExaScience/elprep/tree/master/demo.

Materials and methods

elPrep 4 extends and improves on the original elPrep [1] functionality. For example, with

elPrep 4 it is possible to execute all preparation steps recommended by the GATK Best Prac-

tices [3] for variant calling, but it can also be used for implementing other types of pipelines

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 2 / 16

data collection and analysis, decision to publish, or

preparation of the manuscript. The specific role of

each author is articulated in the “author

contributions” section.

Competing interests: The authors have the

following interests: This work is funded by IMEC

vzw. Charlotte Herzeel, Pascal Costanza, Dries

Decap, Jan Fostier and Wilfried Verachtert are

employees of IMEC vzw, Belgium; Dries Decap and

Jan Fostier are employees of Ghent University,

Ghent, Belgium. There are no patents, products in

development or marketed products to declare. This

does not alter the authors’ adherence to all the

PLOS ONE policies on sharing data and materials.

http://www.exascience.com
http://github.com/ExaScience/elprep
http://github.com/ExaScience/elprep/tree/master/demo
https://doi.org/10.1371/journal.pone.0209523


[7]. We present an overview of the newly added functionality, as well as the non-trivial algo-

rithms we designed to implement this.

elPrep 4 overview

elPrep 4 introduces the following new features:

1. Base quality score recalibration (BQSR): We added an option (–bqsr) to perform BQSR.

This option essentially combines the semantics of the GATK 4 commands BaseRecalibrator

and ApplyBQSR, producing identical results.

2. Optical duplicate marking: We added an option (–mark-optical-duplicates) to perform

optical duplicate marking. The Picard/GATK 4 option for duplicate marking (MarkDupli-

cates) automatically performs optical duplicate marking after a generic duplicate marking

phase based on adapted mapping positions of reads. The optical duplicate marking phase is

used to generate metrics to distinguish between PCR and optical duplicates. The –mark-

optical-duplicates option tells elPrep 4 to do the same.

3. Metrics: elPrep now generates metrics files that contain statistics about the number of

unmapped reads, secondary reads, read duplicates, base quality scores, etc. It has the option

to output the same metrics as the .metrics and .recal metrics generated by Picard/GATK 4.

The format of the elPrep metrics files is identical to those from Picard/GATK 4 and are

compatible with MultiQC [8] for visualization.

4. BAM parsing: elPrep 4 previously relied on calling SAMtools for BAM parsing, but now

implements BAM parsing itself using the built-in gzip compression library of Go. The com-

pression is now more efficient in terms of runtime.

5. VCF parsing: elPrep 4 provides VCF parsing. This was implemented to handle the known

sites (cf. dbsnp files) for base quality score recalibration, but can be used to implement

other tools.

6. Filtering reads based on genomic regions specified by a BED file: This is an option similar

to the -L options in SAMtools/Picard/GATK. We added BED file parsing to elPrep to sup-

port this.

7. Integrated split-filter-merge (sfm) mode: elPrep offers two execution modes, namely a

mode that operates entirely in RAM, and a mode that splits data using genomic regions for

processing (sfm). This was previously implemented using Python scripts, but these are now

replaced by an sfm subcommand implemented in Go as well, making elPrep both easier to

install and use.

In addition to these new features, various performance improvements decreasing both run-

time and memory use are implemented in elPrep 4, as shown by our experiments in the

Benchmarks section.

Command-line interface. The elPrep 4 software is distributed as a single binary file for

Linux. A pipeline description in elPrep consists of a single command-line invocation. For

example, the preparation pipeline recommended by the GATK Best Practices may look like

the elPrep command shown in Listing 1.

This elPrep command executes a pipeline that takes as input a BAM file and performs (opti-

cal) duplicate marking, generates metrics, sorts the input by coordinate order, and applies base

quality score recalibration, producing a single output BAM file. It is possible to specify further

parameters for each option, but they are not listed here. The order in which the steps are speci-

fied is irrelevant: The elPrep implementation internally takes care of ordering the execution of

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0209523


the steps correctly, while also merging and parallelizing their execution. Note that the VCF

and FASTA files need to be converted to an internal format beforehand, cf. the .elsites and .

elfasta files in the command. These can be generated by separate elPrep commands once from

the original FASTA and VCF files. The .elsites and .elfasta formats can be parsed significantly

more efficiently than the VCF and FASTA formats. For more details, please consult our exten-

sive documentation online (http://github.com/ExaScience/elprep).

The elPrep 4 framework

elPrep, from the beginning, has been designed as a modular plug-in architecture where the

implementation of SAM/BAM tools is separated from the engine that parallelizes and merges

their execution [1]. While many of the core ideas from the original elPrep architecture remain

unchanged, the elPrep 4 framework introduces a number of changes that make it easier to

implement more complex SAM/BAM tools.

A phased, filtering architecture. A key idea in elPrep is to distinguish between SAM/

BAM tools that can be expressed as operations on individual reads or filters, and operations

such as sorting that operate on the whole set of reads [1]. Examples of filters include opera-

tions to remove unmapped reads, or remove reads based on genomic regions, but we have

also shown that more complex operations such as duplicate marking can be expressed as fil-

ters [1].

Conceptually, elPrep distinguishes between three phases when executing pipelines:

1. Phase 1: parse the reads from file into memory while applying a first set of filters. This

phase also collects all reads that are not removed by the filters into a data structure repre-

senting a SAM/BAM file;

2. Phase 2: consecutively execute all operations that use the whole set of reads. These opera-

tions can access the reads via the data structure produced in phase 1;

3. Phase 3: output the reads from memory to file while applying a final set of filters.

The elPrep 4 framework now provides hooks to extend each of these phases to execute addi-

tional operations. The main interfaces for implementing new operations are a filter interface

based on higher-order functions, and the SAM data structure for representing a SAM/BAM

file in memory. The original elPrep framework only makes it easy to add new filter operations.

Listing 1. elPrep command for executing a GATK Best Practices prepara-
tion pipeline.

elprep sfm input .bam output .bam

––mark–duplicates ––mark–optical–duplicates output .
metrics

––sorting–order coordinate

––bqsr output .recal

––known–sites dbsnp_138 .hg38 .elsites

––bqsr–reference hg38 .elfasta

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 4 / 16

http://github.com/ExaScience/elprep
https://doi.org/10.1371/journal.pone.0209523


Sorting was the only whole-set operation, and its implementation was integrated with the

elPrep framework.

A modular plug-in architecture. The elPrep execution engine is designed as a collection

of higher-order functions and filters that are implemented using lambda expressions [1].

Lambda expressions are anonymous, first-class functions, which allow functions to be treated

as values that can be used as input values to other functions or can be used as return values.

This mechanism is available in languages such as Common Lisp, C++11, Java 8, and our

implementation language Go.

Concretely, elPrep models filters using two layers of filtering functions (Listing 2). The top

level function receives a representation of the SAM header as an argument, so one can modify

it there. This function returns another function that has a single alignment object as an argu-

ment. Code to inspect or modify an individual read goes there. The function also returns a

boolean to indicate if the alignment needs to be kept in the final result output or should be

removed. The original elPrep interface for defining filters in the Common Lisp implementa-

tion had three layers of functions. In between the header and alignment filter, there was a func-

tion for thread-local storage, but this works differently in Go.

Next to the filter interface, one can also define tools that operate on the whole set of reads.

The elPrep framework provides a Sam data structure that represents a SAM/BAM file in mem-

ory (Listing 3). The data structure provides access to the reads from the SAM file in the form

of an array (cf. Alignments), so that whole-set operations can be expressed as parallel loops

Listing 2. Skeleton structure of an elPrep filter definition.

func myFilter(header �Header) AlignmentFilter {

. . .

return func(aln �Alignment) bool {

. . .

return true or false

}

}

Listing 3. elPrep in memory representation of a SAM/BAM file.

type Sam struct {

Header �Header

Alignments [] �Alignment

. . .

}

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 5 / 16

https://doi.org/10.1371/journal.pone.0209523


over that alignment array. We developed the Pargo [9] library for parallel programming in Go

for this.

A parallel architecture. elPrep is a parallel architecture designed to take advantage of

multithreading. elPrep relies on the (statically linked) Pargo library for parallel programming

in Go that we developed independently [9]. The Pargo library provides various data structures

for expressing parallel algorithms. Specifically, we use the following Pargo packages:

• pargo/pipeline: This package provides functions and data structures to construct and execute

parallel pipelines. We use this to implement the execution of the SAM/BAM tools expressed

as filters (cf. phase 1 and 3).

• pargo/sort: We use the parallel merge sort for implementing the algorithm for sorting reads

by coordinate.

• pargo/sync: This package provides a parallel hash table. We use this in the implementation

of various complex SAM/BAM tools such as duplicate marking, base quality score recalibra-

tion, optical duplicate marking, etc.

• pargo/parallel: This package provides various functions for parallel range-reduce operations.

We use this for implementing various algorithms that operate on the whole set of reads

(phase 2).

Expressing optical duplicate marking and BQSR in elPrep 4

We added optical duplicate marking and base quality score recalibration in elPrep 4, both of

which required developing new parallel algorithms that fit in the elPrep 4 framework, yet pro-

duce the same results as their counterparts in Picard/GATK 4. In the S1 Appendix, we discuss

our parallel algorithm for optical duplicate marking. Similarly, in the S2 Appendix, we discuss

our parallel algorithm for base quality score recalibration and application in elPrep 4.

Benchmark experiments

To assess the efficiency of elPrep 4, we set up three different benchmarks where we execute a

4-step preparation pipeline specified by the GATK Best Practices [3]. We discuss raw perfor-

mance by comparing the runtime and resource use of elPrep 4 versus GATK 4 and GATK 3.8.

Subsequently, we discuss a scaling experiment on Amazon Web Services to compare the dollar

cost of using elPrep 4 versus GATK 4.

Data sets. We execute our benchmarks for both a public whole-exome and a public

whole-genome sequencing of NA12878. We downloaded the FASTQ files from their respective

public repositories [10, 11] and aligned them using BWA mem [5]. The whole-exome sample

was aligned using hg19 and the whole-genome sample using hg38. We use hg19 for the gen-

ome-in-a-bottle whole-exome sample so that we can use the hg19-compatible BED file with

captured regions that comes with the sample. The pipelines we created for both samples differ

in terms of parameters used to take into account the target reference, or in case of the whole-

exome sample, to use the BED file with captured regions.

Servers and software versions. For comparing raw performance of elPrep 4 and GATK 4,

we ran our benchmarks on a 36-core server, consisting of two 18-core Intel Xeon E5-2699v3

Haswell processors clocked at 2.3GHz, allowing the simultaneous execution of up to 72 hyper-

threads. The server is equipped with 256GB RAM and 2x400GB SSD disks for storing inter-

mediate data. The machine runs Ubuntu 14.04.5 LTS.

We compare the scaling of elPrep 4 and GATK 4 by running our benchmarks on a wide

range of Amazon instances, as listed in Table 1. The table lists the name of the instance,

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 6 / 16

https://doi.org/10.1371/journal.pone.0209523


followed by the number of virtual CPUs, the amount of virtual RAM, and the dollar cost per

hour to rent such an instance. All of the instances run Amazon Linux 2.

We used elPrep 4.0.0 compiled with go1.10.3, gatk-4-0.8.1 using Java 1.8.0_144, gatk-3.8.0

using Java 1.8.0_144, picard-tools-2.9.2, and bwa-0.7.17.

Benchmark protocols. We have documented our whole-exome and whole-genome

benchmarks in detail as protocols [12, 13]. The protocols describe where to download the pub-

lic data and tools, as well as the command-line invocations to recreate the elPrep benchmarks

from scratch.

Results

Our benchmarks compare the runtime, resource use, scaling behaviour, and cost of elPrep 4

versus GATK 4 and GATK 3.8 on a wide range of servers using public whole-genome and

whole-exome data sets, as described in the previous section.

Benchmarks comparing elPrep 4 and GATK 4

The pipeline we benchmark contains the following steps (as specified by the GATK Best Prac-

tices [3]). We list the GATK 4 tool name for each step between brackets:

1. Sorting the BAM for coordinate order (SortSam);

2. Marking the read duplicates (MarkDuplicates);

3. Base quality score recalibration (BaseRecalibrator);

4. Applying base quality score recalibration (ApplyBQSR).

Whole-exome results. The benchmark results for the whole-exome data are shown in Fig

1. There are three graphs, comparing the runtime, RAM use and disk use, consisting of the

number of GBs written to disk while executing the pipeline steps, for GATK 4 and elPrep 4

respectively. The runtime graph shows the runtimes for each individual step in case of GATK

4 (top) versus the runtime of the merged steps in elPrep 4 for filter mode and sfm mode (bot-

tom). The filter mode in elPrep 4 executes entirely in RAM, while the sfm mode favours disk

use for intermediate results by splitting up the data by chromosomal regions for processing.

The final outcomes, meaning the produced BAM, metrics and recalibration files, are the same

for GATK 4 and elPrep 4 (both filter and sfm mode).

The runtime for GATK 4 is the runtimes of the individual pipeline steps added up, as the

execution of these steps effectively coincide with seperate GATK 4 command-line invocations.

In contrast, the results for elPrep 4 do not differentiate between the steps, as the execution of

all steps is merged. The minimum RAM use of GATK 4 is determined by the peak RAM use of

the individual steps, which is recorded here for the MarkDuplicates step. The minimum disk

use for GATK 4 is determined by looking at the disk use of the individual steps and combining

Table 1. AWS instances used in our benchmarks. Prices for EU (Frankfurt) Oct. 2018.

Instance vCPU Memory (GiB) Cost

m5.large 2 8 0.115$/hour

m5.xlarge 4 16 0.23$/hour

m5.2xlarge 8 31 0.46$/hour

m5.4xlarge 16 64 0.92$/hour

m5.12xlarge 48 192 2.76$/hour

m5.24xlarge 96 384 5.52$/hour

https://doi.org/10.1371/journal.pone.0209523.t001

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 7 / 16

https://doi.org/10.1371/journal.pone.0209523.t001
https://doi.org/10.1371/journal.pone.0209523


the two subsequent steps that produce the largest sum. This is a good estimate of the minimum

disk space since the intermediate BAM files produced by the individual steps can be deleted

once they have been processed by the next step, but not before. Here we get a peak disk use for

combining the SortSam and MarkDuplicates steps.

We see that elPrep 4 (filter mode) is 13x faster, uses 2.6x more RAM, and uses only 0.15x of

the disk space compared to GATK 4. Using elPrep 4 (sfm mode) we see that elPrep 4 is 5.4x

faster than GATK 4, using only 0.7x the RAM and 0.6x the peak disk space that GATK 4 uses.

Concretely, we go from a runtime of 58m31s using 31GB of RAM and 26.34GB of disk in

GATK 4 to a runtime of 4m35s using 80GB RAM and 4GB of disk for the elPrep 4 filter mode,

or a runtime of 10m57s using 22GB RAM and 15.5GB of disk for the elPrep 4 sfm mode.

Overall, elPrep 4 executes the pipeline faster, while making more efficient use of the com-

pute resources (RAM/disk/threads) than GATK 4, in both filter and sfm modes.

Whole-genome results. The results for our whole-genome benchmark are shown in Fig

2, comparing runtimes, RAM use and disk use for GATK 4 and elPrep 4 (sfm mode). We see

that elPrep 4 executes the pipeline 7.4x faster than GATK 4, while using 0.84x of the RAM and

just 0.7x of the disk space. The runtime goes down from almost 27h in GATK 4 to roughly

3h37m in elPrep 4, while RAM use goes down from roughly 229GB in GATK 4 to 192GB in

elPrep 4, and the peak disk use goes down from 520GB in GATK 4 to 346GB in elPrep 4.

Again, elPrep 4 achieves these speedups while producing the same results compared to the

GATK 4 run.

Comparison of outputs elPrep 4 and GATK 4. elPrep 4 produces the same output as

GATK 4. When we reimplement a tool from GATK 4, Picard, or SAMtools, our goal is to

come up with a new algorithm that takes advantage of elPrep’s parallel architecture, yet does

not change the semantics of the original algorithm. This means that we try to respect the heur-

istics, execution order, etc. of the original algorithms as much as possible, so that the outcomes

are the same.

One challenge is that many of the algorithms are non-deterministic. For example, the

GATK 4/Picard mark duplicate algorithm compares reads for duplicate marking by compar-

ing the adapted mapping positions and adapted quality scores. When two reads have the same

adapted mapping position, the idea is to mark the read with the worse adapted quality score as

Fig 1. WES benchmarks. Runtime, RAM use, and disk use in GATK 4 vs. elPrep 4 (filter mode) vs. elPrep 4 (sfm mode). We see 5.4-13x speedup for 0.7-2.6x RAM

use and 0.6-0.2x disk use when comparing elPrep 4 filter/sfm to GATK 4. The results, i.e. final BAM, metrics and recalibration files, are the same for all runs.

https://doi.org/10.1371/journal.pone.0209523.g001

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 8 / 16

https://doi.org/10.1371/journal.pone.0209523.g001
https://doi.org/10.1371/journal.pone.0209523


a duplicate. It may however occur that two reads have the exact same mapping position and
the exact same quality score. In this case, which read is marked as the duplicate, conceptually

does not matter, and in Picard and GATK 4, which one is marked will just depend on the

order of the reads in the input file. Since elPrep parallelizes the processing of reads, they are

not always examined in the same order of the input file. Because of this, there may be small dif-

ferences when comparing BAMs, albeit not meaningful differences. In previous work we dis-

cussed how to run elPrep in a deterministic mode for duplicate marking to compare BAMs

between GATK 4/Picard and elPrep exactly using Unix diff [1]. One can now in addition com-

pare the metrics files that are generated with optical duplicate marking using Unix diff or

MultiQC.

Similarly, we can show that the base quality score recalibration (BQSR) algorithm in elPrep

4 produces the exact same result as GATK 4. We can verify this by comparing the .recal files

that contain the BQSR statistics and are generated by both tools using Unix diff or MultiQC.

The BQSR algorithm takes into account duplicated reads for calculating these statistics, and

since duplicate marking is non-deterministic, an exact comparison between GATK 4 and

elPrep 4 only makes sense when they are passed the exact same input BAM for BQSR calcula-

tion. So when we call GATK 4 and elPrep 4 with a BAM file that is already coordinate sorted

and marked for duplicates, we see that the .recal files that are produced by both tools when per-

forming BQSR are exactly the same when doing a Unix diff command. We can also compare

the BAMs produced by GATK 4 and elPrep 4 using Unix diff, but it is important to first sort

the optional fields in each read, and sort the files using Unix sort. The latter are needed to han-

dle the non-deterministic order of the optional fields on the one hand (see SAM/BAM specifi-

cation [2]), and the non-determinism of sorting for coordinate order –when multiple reads

have the same mapping positions. A recipe for comparing the execution of GATK 4 and elPrep

4 is given below:

1. Sort input BAM by query name to handle non-determinism of the coordinate sort in the

next step;

2. Sort + mark the input BAM for duplicates (using elPrep or GATK/Picard);

3. Run elPrep with –bqsr and –deterministic mode on the BAM from step 2;

Fig 2. WGS benchmarks. Runtime, RAM use, and disk use in GATK 4 vs. elPrep 4 (sfm mode). elPrep 4 executes the pipeline 7.4x faster than GATK 4, using 0.84x

of the RAM, and only 0.7x of the disk space. The final BAM, metrics, and recalibration files are the same for both runs.

https://doi.org/10.1371/journal.pone.0209523.g002

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 9 / 16

https://doi.org/10.1371/journal.pone.0209523.g002
https://doi.org/10.1371/journal.pone.0209523


4. Run GATK with BaseRecalibrator and ApplyBQSR on the BAM from step 2;

5. Perform a Unix diff on .recal files created by elPrep and GATK runs;

6. Remove PG tag and sort optional fields of elPrep and GATK output BAMs (using biobam-

bam [14]);

7. Unix sort elPrep and GATK SAMs;

8. Perform Unix diff on elPrep and GATK SAMs.

The restrictions that are needed for introducing determinism in the pipeline executions for

exact comparisons are in general not recommended when using elPrep 4. They create perfor-

mance bottlenecks without providing any interesting additional information, and are only use-

ful for verifying elPrep 4’s equivalence to GATK 4.

Benchmarks comparing elPrep 4 and GATK 3.8

The pipeline we benchmark for comparing the performance of elPrep 4 and GATK 3.8 is the

same pipeline as the one used for the comparison with GATK 4, but the difference is that

Picard tools are used for some of the steps. The functionality of Picard tools and GATK is

merged in GATK 4, but for earlier versions of GATK, Picard tools is the standard tool for

implementing some of the pipeline steps [3].

Below we list the pipeline steps and the tool that is recommended for processing them in

the GATK Best Practices [3] for GATK versions predating GATK 4:

1. Sorting the BAM for coordinate order (SortSam from Picard);

2. Marking the read duplicates (MarkDuplicates from Picard);

3. Base quality score recalibration (BaseRecalibrator from GATK);

4. Applying base quality score recalibration (PrintReads from GATK).

Whole-genome results. The benchmark results comparing GATK 3.8 and elPrep 4 are

shown in Fig 3. They compare runtime, RAM, and disk use. elPrep 4 executes the pipeline

more than 18x faster than GATK 3.8, while using only 0.85x of the peak RAM and 0.8x of the

Fig 3. WGS benchmarks. Runtime, RAM use, and disk use in GATK 3.8 vs. elPrep 4 (sfm mode). elPrep 4 executes the pipeline 18.2x faster than GATK 3.8, using

0.85x of the RAM, and only 0.8x of the disk space.

https://doi.org/10.1371/journal.pone.0209523.g003

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 10 / 16

https://doi.org/10.1371/journal.pone.0209523.g003
https://doi.org/10.1371/journal.pone.0209523


peak disk space that GATK 3.8 uses. Concretely, the runtime goes down from almost 65h to

roughly 3h40m, while peak RAM use goes down from 225GB to 192GB, and peak disk use

from 442GB to 350GB. Note that the total runtime for GATK 3.8 is the sum of the runtimes of

the individual steps. The peak RAM use for GATK 3.8 is the largest RAM use of the individual

steps. The peak disk use of the GATK 3.8 run is calculated as the sum of the disk use for the

SortSAM and MarkDuplicates steps. For elPrep 4, all of the pipeline steps are merged and con-

sequently so are the results presented in the figures.

Note that we only compare the raw performance of elPrep 4 and GATK 3.8. The algorithms

and outcome of the BQSR tools in GATK 4 changed compared to GATK 3.8. Since elPrep 4

implements the GATK 4 algorithm, an exact comparison of outcomes between elPrep 4 and

GATK 3.8 is not possible, as is the case when comparing the outcomes of GATK 4 and GATK

3.8.

Scaling experiment on Amazon Web Services

We set up a scaling experiment on Amazon Web Services (AWS) cloud servers (EC2) that uses

the same 4-step pipeline (sorting, duplicate marking, base quality score recalibration and

application) that is used for comparing the raw performance of GATK 4 and elPrep 4 in the

previous sections. In this experiment, we measure the runtime on a wide range of EC2

instances with different numbers of CPUs and amounts of RAM, which allows us to assess the

scaling behavior of GATK 4 and elPrep 4 (cf. Table 1). We also calculate the cost of running

the benchmark on each instance based on Amazon EC2 on-demand pricing. We show that

elPrep scales better and therefore has a stable cost across different configurations, whereas the

cost to speed up GATK 4 by allocating more compute resources increases rapidly.

Whole-exome results. The results for running our whole-exome benchmark on AWS are

shown in Fig 4. The figure shows both the dollar cost and runtime for comparing the GATK 4

and elPrep 4 runs on Amazon instances ranging from m5.large to m5.24xlarge. The dollar cost

is calculated per run by multiplying its runtime by the dollar cost per hour for each Amazon

instance type, as listed in Table 1. In practice, on AWS, the cost is rounded up for each hour

Fig 4. AWS WES benchmarks. The dollar cost and runtime on Amazon Web Services for running a 4-step pipeline on a whole exome using GATK 4 versus

elPrep 4 (filter and sfm modes). The runtime of elPrep 4 scales linearly with the increase of compute resources, while GATK 4 shows only limited improvements.

The dollar cost per run increases steeply with GATK 4 for little performance improvements, while the dollar cost with elPrep 4 remains mostly stable across all

Amazon instances.

https://doi.org/10.1371/journal.pone.0209523.g004

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 11 / 16

https://doi.org/10.1371/journal.pone.0209523.g004
https://doi.org/10.1371/journal.pone.0209523


started, but we did no rounding in our calculations. While the GATK 4 runtime scales some-

what with using a larger instance, the scaling for elPrep 4 is much better, as the runtime is

nearly halved with each instance increase. The dollar cost goes up steeply for GATK 4 with

each instance increase. In contrast, because elPrep 4 scales so well with the increase of compute

resources, the dollar cost per run only increases slightly for each instance increase.

The cheapest run of the whole exome is observed for GATK 4 on instance m5.large, where

it runs for 69m34s for 0.13$. The cheapest run with elPrep 4 is on instance m5.2xlarge with a

runtime of 31m38s for 0.24$ using the elPrep sfm mode. This means the cheapest elPrep 4 run

is roughly 2x faster for roughly 2x the cost of the cheapest GATK 4 run. The fastest run of the

benchmark is with elPrep filter mode on instance m5.24xlarge, taking 3m25s and costing 0.31

$. The fastest run with GATK 4 uses instance m5.12xlarge and takes 50m6s, costing 2.30$.

Hence the fastest elPrep 4 run is almost 15x faster than the fastest GATK 4 run, and costs 7.5x

less.

Whole-genome results. The AWS benchmark results for our whole-genome sample are

shown in Fig 5. Both the dollar cost and runtime for GATK 4 and elPrep 4 runs are shown for

different Amazon instances. The elPrep 4 benchmark was only run on instance m5.24xlarge,

because it is the only instance that satisfies the elPrep memory requirements for this particular

whole-genome data set. In contrast, the GATK 4 runs are able to execute on Amazon instances

ranging from m5.large to m5.24xlarge.

Similar to the whole-exome results, the overall cheapest run is for GATK 4 on m5.large,

costing 2.68$, but taking 23h17m. The elPrep 4 run on m5.24xlarge costs 16.25$, but only

takes 2h57s. So the elPrep 4 run is almost 8x faster and costs only 6x more. The fastest GATK 4

run is recorded on instance m5.12x large and takes 17h39m at a cost of 48.71$. This means the

elPrep 4 run is almost 6x faster and 3x cheaper than the fastest GATK 4 run.

Related work

There is a large body of related work to speed up DNA sequencing pipelines. First of all, the

GATK 4 team at Broad Institute is also developing an alternative implementation of GATK 4

Fig 5. AWS WGS benchmarks. The dollar cost and runtime on Amazon Web Services for running a 4-step pipeline on a whole genome using GATK 4 versus

elPrep 4. While GATK 4 is able to run on a wider range of Amazon instances, the overall runtime is much larger compared to elPrep 4. The fastest run with GATK

4 takes over 17.5 hours on m5.12xlarge and costs 48.71$, whereas the elPrep 4 run takes a bit less than 3 hours and costs only 16.25$ on m5.24xlarge, being almost

6x faster for 3x less money.

https://doi.org/10.1371/journal.pone.0209523.g005

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0209523.g005
https://doi.org/10.1371/journal.pone.0209523


in Spark [15]. While GATK 3.8 and earlier versions had options for configuring multithread-

ing, these are mostly removed from the standard GATK 4 implementation, though it still relies

on multithreading for libraries that implement compute-intensive kernels (e.g. PairHMM), as

well as the multithreading used by the JVM (e.g. for garbage collection). Instead, the idea is to

use the GATK 4 Spark implementation in place of GATK 4 for coarse-grained parallelization.

Whereas elPrep focuses on single-node optimizations through multithreaded programming,

Spark is optimized for parallelization on a compute cluster [15]. The GATK 4 Spark imple-

mentation is currently only available as a beta release, and initial tests show results that differ

from the reference GATK 4 implementation, making it difficult to compare to elPrep. Also,

the general strategy behind the GATK 4 Spark implementation is to parallelize the individual

Spark GATK 4 tools, whereas elPrep combines and merges the execution of several tools,

which we have shown to be more scalable and efficient [1].

Similarly, there are many tools such as bamUtil [16], biobambam [14], and Sambamba [17]

that focus on optimizing individual pipeline steps, but do not combine the execution of multi-

ple steps, overall yielding a worse performance than elPrep or producing different results [1].

A more recent approach is Sentieon, which promises a 10-fold speedup compared to GATK

variant calling while producing identical results [18]. They offer a reimplementation of the

GATK 3.5 variant caller that is optimized for multithreading, but this implementation is closed

source.

We previously discussed related work that focuses on optimizing the whole sequencing

pipeline by stepping away from community-defined standards such as the SAM/BAM format

to define their own data formats and new algorithms for processing them [1]. Examples we

previously discussed [1] include ISAAC [19] and BALSA [20] for GPUs, and more recent

approaches such as Dragen [21] and Genalice [22] that promise considerable speedups com-

pared to standard tools. Both Dragen and Genalice are commercial tools that implement their

own patented algorithms for implementing a full variant calling pipeline. The outcomes there-

fore differ from the community-defined reference pipelines such those based on the GATK

Best Practices. Dragen additionally requires specialized hardware in the form of FPGAs to run.

In contrast, elPrep is an open-source implementation that focuses on supporting the commu-

nity-based standards such as SAM/BAM/VCF/BED, offers the flexibility to configure the pipe-

lines, and targets multicore servers as generally available in, for example, cloud services.

Conclusions

elPrep 4 is a reimplementation of the elPrep framework [1] for processing sequence alignment

map files (SAM/BAM) in the Go programming language. It introduces new and improved

functionality for sorting, optical duplicate marking, base quality score recalibration, MultiQC-

compatible metrics, and various filtering options. This allows elPrep to process most of the

preparation pipelines defined by the GATK Best Practices [3], but also other types of pipelines

[7]. For this, we developed new parallel algorithms that reimplement the GATK 4 tools for

optical duplicate marking and base quality score recalibration in the elPrep 4 framework,

greatly speeding up the execution of these steps compared to GATK 4, while producing the

same results.

In our benchmarks, we compare the raw performance of elPrep 4 to GATK 4 and GATK

3.8, on both a whole-exome and whole-genome data sample of NA12878 (Genome in a bottle/

Illumina Platinum genome). Compared to GATK 4, elPrep 4 executes a 4-step pipeline con-

sisting of sorting, duplicate marking, base quality score recalibration and application, 7.4x

faster, while using less RAM and disk space. Similarly, elPrep 4 executes the same pipeline

more than 18x faster than GATK 3.8, using fewer RAM and disk resources. We ran a scaling

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 13 / 16

https://doi.org/10.1371/journal.pone.0209523


experiment on Amazon Web Services (AWS) to compare the runtime and dollar costs of run-

ning the 4-step pipeline on a wide range of Amazon compute instances using elPrep 4 and

GATK 4. elPrep 4 makes better use of the available compute resources such as CPUs and RAM

than GATK 4. The cost of using elPrep 4 on AWS more or less remains stable when using a

more expensive AWS instance because of the good scaling. Concretely, the fastest elPrep 4 run

of the 4-step pipeline on WES data is 15x faster (3m25s vs 50m6s) and 7.5x cheaper (0.31$ vs.

2.30$) than the fastest GATK 4 run. The overall cheapest run is for GATK 4, costing 0.13$, but

also taking around 70m. Similarly, the fastest elPrep 4 run on AWS for WGS data is 6x faster

(less than 3 hours versus 17.5 hours) than the fastest GATK 4 run, costing 3x less (16.25$ vs.

48.71$). Again, overall the cheapest run is recorded for GATK 4 at 2.68$, but it then takes

almost 24 hours.

elPrep 4 differs from related work in its approach to optimizing sequencing pipelines.

Rather than optimizing individual tools, the elPrep 4 framework executes a pipeline by defin-

ing an optimal ordering of the steps, and merges and parallelizes their execution, which overall

yields a better speedup. elPrep 4 achieves its speedups while offering the flexibility to freely

plug pipeline steps in or out, and producing the same results as reference implementations of

these steps in GATK 4, Picard, and SAMtools. elPrep 4 works with community-defined stan-

dards such as SAM/BAM/VCF/BED rather than defining its own formats for achieving its

speedups, making elPrep 4 (backwards) compatible with other standard tools and workflows

[7, 23, 24].

Supporting information

S1 Appendix. Expressing optical duplicate marking in elPrep 4. We describe how to express

the optical duplicate marking algorithm from Picard/GATK 4 as a parallel, single-pass algo-

rithm in the new elPrep 4 framework.

(PDF)

S2 Appendix. Expressing base quality score recalibration (BQSR) in elPrep 4. We explain

how to express the base quality score recalibration and application algorithms (BQSR) from

GATK 4 as a parallel, map-reduce algorithm in the new elPrep 4 framework.

(PDF)

Author Contributions

Conceptualization: Charlotte Herzeel.

Data curation: Charlotte Herzeel, Pascal Costanza.

Formal analysis: Charlotte Herzeel.

Investigation: Charlotte Herzeel, Pascal Costanza.

Methodology: Charlotte Herzeel, Pascal Costanza.

Software: Charlotte Herzeel, Pascal Costanza.

Validation: Charlotte Herzeel, Pascal Costanza.

Visualization: Charlotte Herzeel.

Writing – original draft: Charlotte Herzeel, Pascal Costanza.

Writing – review & editing: Dries Decap, Jan Fostier, Wilfried Verachtert.

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209523.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209523.s002
https://doi.org/10.1371/journal.pone.0209523


References
1. Herzeel C, Costanza P, Decap D, Fostier J, Reumers J. elPrep: High-Performance Preparation of

Sequence Alignment/Map Files for Variant Calling. PLoS ONE. 2015; 10(7). https://doi.org/10.1371/

journal.pone.0132868 PMID: 26182406

2. Li H, Hansaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

3. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From

FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline.

Curr Protoc Bioinform. 2013; 43(1):11.10.1–11.10.33.

4. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-

covery and genotyping using next-generation DNA sequencing data. Nature Genetics. 2011; 43:491–

498. https://doi.org/10.1038/ng.806 PMID: 21478889

5. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.

2009; 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

6. Costanza P. DNA sequencing performance in Go, C++, and Java. FOSDEM 2018, Brussels, Belgium,

February 3-4, 2018.

7. Palmeira L, Philippart R, Karssen LC, Herzeel C, Costanza P, Virgilii C. Hardware and Software Optimi-

zations In Routine NIPT Diagnostics Running On HPC. The Epigenome in Development and Disease,

18th Annual Meeting of the Belgian Society of Human Genetics (BeSHG), February 16, 2018, Ghent,

Belgium.

8. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and

samples in a single report. Bioinformatics. 2016; 32(19):3047–3048. https://doi.org/10.1093/

bioinformatics/btw354 PMID: 27312411

9. Costanza P. pargo—A library for parallel programming in Go; 2017. Available from: https://github.com/

exascience/pargo [cited September 26, 2018].

10. Icahn School of Medicine at Mount Sinai. High-coverage whole exome sequencing of CEPH/UTAH

female individual (HapMap: NA12878); 2012. Available from: https://www.ncbi.nlm.nih.gov/sra/

SRX731649 [cited September 26, 2018].

11. Illumina Cambridge Ltd. Study: PRJEB3381; 2012. Available from: https://www.ebi.ac.uk/ena/data/

view/PRJEB3381 [cited September 26, 2018].

12. Herzeel C. Instructions for recreating elPrep 4.0.0 WES benchmarks; 2019. dx.doi.org/10.17504/

protocols.io.w65fhg6

13. Herzeel C. Instructions for recreating elPrep 4.0.0 WGS benchmarks; 2019. dx.doi.org/10.17504/

protocols.io.w35fgq6

14. Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM files. Source

Code for Biology and Medicine. 2014; 9(13).

15. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster Computing with Working

Sets. In: 2nd USENIX Workshop on Hot Topics in Cloud Computing; 2010. Available from: https://www.

usenix.org/legacy/events/hotcloud10/tech/ [cited September 26, 2018].

16. Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant

extraction and refinement from population-scale DNA sequence data. Genome Res. 2015; 25:918–

925. https://doi.org/10.1101/gr.176552.114 PMID: 25883319

17. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment.

Bioinformatics. 2015; 31(12):2032–2034. https://doi.org/10.1093/bioinformatics/btv098 PMID:

25697820

18. Freed DN, Aldana R, Weber JA, Edwards JS. The Sentieon Genomics Tools—A fast and accurate solu-

tion to variant calling from next-generation sequence data. bioRxiv. 2017.

19. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al. Isaac: ultra-fast whole-

genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013; 29(16):2014–

2043. https://doi.org/10.1093/bioinformatics/btt314

20. Luo R, Wong YL, Law WC, Lee LK, Cheung J, Liu CM, et al. BALSA: integrated secondary analysis for

whole-genome and whole-exome sequencing, accelerated by GPU. PeerJ. 2014. https://doi.org/10.

7717/peerj.421

21. DRAGEN Onsite Solutions. Available from: https://edicogenome.com/dragen-bioit-platform/ [cited Sep-

tember 26, 2018].

22. Plüss M, Kopps AM, Keller I, Meienberg J, Caspar SM, Dubacher N, et al. Need for speed in accurate

whole-genome data analysis: GENALICE MAP challenges BWA/GATK more than PEMapper/PECaller

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 15 / 16

https://doi.org/10.1371/journal.pone.0132868
https://doi.org/10.1371/journal.pone.0132868
http://www.ncbi.nlm.nih.gov/pubmed/26182406
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1093/bioinformatics/btw354
http://www.ncbi.nlm.nih.gov/pubmed/27312411
https://github.com/exascience/pargo
https://github.com/exascience/pargo
https://www.ncbi.nlm.nih.gov/sra/SRX731649
https://www.ncbi.nlm.nih.gov/sra/SRX731649
https://www.ebi.ac.uk/ena/data/view/PRJEB3381
https://www.ebi.ac.uk/ena/data/view/PRJEB3381
http://dx.doi.org/10.17504/protocols.io.w65fhg6
http://dx.doi.org/10.17504/protocols.io.w65fhg6
http://dx.doi.org/10.17504/protocols.io.w35fgq6
http://dx.doi.org/10.17504/protocols.io.w35fgq6
https://www.usenix.org/legacy/events/hotcloud10/tech/
https://www.usenix.org/legacy/events/hotcloud10/tech/
https://doi.org/10.1101/gr.176552.114
http://www.ncbi.nlm.nih.gov/pubmed/25883319
https://doi.org/10.1093/bioinformatics/btv098
http://www.ncbi.nlm.nih.gov/pubmed/25697820
https://doi.org/10.1093/bioinformatics/btt314
https://doi.org/10.7717/peerj.421
https://doi.org/10.7717/peerj.421
https://edicogenome.com/dragen-bioit-platform/
https://doi.org/10.1371/journal.pone.0209523


and Isaac. PNAS. 2017; 114(40):E8320–8322. https://doi.org/10.1073/pnas.1713830114 PMID:

28916731

23. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: scalable sequence analysis with

MapReduce. Bioinformatics. 2015; 31(15):2482–2488. https://doi.org/10.1093/bioinformatics/btv179

PMID: 25819078

24. Deng L, Huang G, Zhuang Y, Wei J, Yan Y. HiGene: A high-performance platform for genomic data

analysis. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2016.

p. 576–583.

elPrep 4: A multithreaded framework for sequence analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0209523 February 13, 2019 16 / 16

https://doi.org/10.1073/pnas.1713830114
http://www.ncbi.nlm.nih.gov/pubmed/28916731
https://doi.org/10.1093/bioinformatics/btv179
http://www.ncbi.nlm.nih.gov/pubmed/25819078
https://doi.org/10.1371/journal.pone.0209523

