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Abstract

Long intergenic non-coding RNAs (lincRNAs) are >200 nucleotides long non-coding RNAs,
which have been shown to be implicated in carcinogenic processes by interacting with can-
cer associated genes or other non-coding RNAs. However, their role in development of rare
gastrointestinal stromal tumors (GISTSs) is barely investigated. Therefore, the aim of this
study was to define lincRNAs deregulated in GIST and find new GIST-lincRNA associations.
Next-generation sequencing data of paired GIST and adjacent tissue samples from 15
patients were subjected to a web-based lincRNA analysis. Three deregulated lincRNAs
(MALAT1, H19 and FENDRR; adjusted p-value < 0.05) were selected for expression valida-
tion in a larger group of patients (n = 22) by RT-gPCR method. However, only H19and
FENDRR showed significant upregulation in the validation cohort (adjusted p < 0.05). Fur-
ther, we performed correlation analyses between expression levels of deregulated lincRNAs
and GIST-associated oncogenes or GIST deregulated microRNAs. We found high positive
correlations between expression of H19and known GIST related oncogene ETV1, and
between H19 and miR-455-3p. These findings expand the knowledge on lincRNAs deregu-
lated in GIST and may be an important resource for the future studies investigating lincR-
NAs functionally relevant to GIST carcinogenesis.

Introduction

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal (non-epithelial)
tumors of the gastrointestinal tract, with a majority of cases localized in stomach (55.6%) and
small intestine (31.8%) [1,2]. GISTs are considered to arise from interstitial cells of Cajal and
are characterized by expression of tyrosine kinase receptor protein KIT (CD117)-the main
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diagnostic marker for these tumors [3]. Activating mutations in KIT proto-oncogene and
homologous PDGFRA receptors result in constitutive activation of these proteins and are cru-
cial initiating events in GIST pathogenesis. Although the key aspects of GIST pathogenesis are
already elucidated, the mechanisms underlying overexpression of oncogenes and the role of
gene expression regulators, like non-coding RNAs, in development of GISTs are not well
investigated, yet.

Long intergenic non-coding RNAs (lincRNAs) are long (>200 nucleotides) non-coding
RNAs that do not overlap exons of protein coding genes and comprise more than half of
human long non-coding RNAs (IncRNAs) [4]. In recent years these non-coding RNAs emerged
as important regulators of multiple cellular and molecular processes such as alternative splicing,
chromatin modifications, transcriptional and post-transcriptional regulation, mRNA activity,
stability and degradation and were found to be implicated in pathogenesis of diseases and devel-
opment of cancer [4,5]. For example, the extensively studied lincRNA metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) is overexpressed in lung adenocarcinoma, breast,
pancreatic, colon, prostate, and hepatocellular carcinomas while promoting cell proliferation
and metastasis [5,6]. Another lincRNA, Imprinted Maternally Expressed Transcript H19, has
been shown to act both as tumor suppressor and oncogene in different types of cancer, playing
an important role in epithelial mesenchymal transition and tumor growth and is a precursor of
oncogenic microRNA miR-675 [7-10]. LncRNAs can also interact with small non-coding
RNAs, i.e. acting as competing endogenous RNAs and sponging microRNAs through their
binding sites [11]. In this way, IncRNAs can suppress microRNAs from binding to their targets
and modulate target gene expression or be regulated by microRNAs.

Up to now, only two IncRNAs—HOTAIR and CCDC26—were investigated in GIST in
more detail and were associated with high risk grade, metastasis and sensitivity to a drug imati-
nib [12-14]. Therefore, in this study we aimed to investigate lincRNAs deregulated in GIST
and find new GIST-lincRNA associations. We performed next-generation sequencing data
analysis and validated expression of three deregulated and cancer associated lincRNAs—
MALATI, H19 and FENDRR-in GIST and adjacent tissues. Further analysis revealed correla-
tions between overexpressed investigated lincRNAs in GIST tissue and genes involved in GIST
pathogenesis, as well as with GIST deregulated microRNAs.

Materials and methods
Clinical samples, RNA material, gene expression and sequencing data

Paired formalin-fixed, paraffin-embedded (FFPE) tumor and adjacent tissue samples from 37
patients (total 74 samples) diagnosed with GIST of gastric origin were included in this study.
The study group consisted of 22 women and 15 men with the average age of 66.95 (SD +
12.39). GIST diagnosis was based on GIST morphology and positive KIT (CD117) immuno-
histochemical staining. Risk grade of tumors was assessed according to National Institutes of
Health (NIH) GIST Consensus Criteria [15]. GIST patients included in the study were classi-
fied as: 7 high risk grade, 11 moderate, 15 low and 4 very low risk grade. Based on the GIST
histological subtype, the majority of tumors in this study were of spindle cell type (n = 26),
with several cases of epithelioid (n = 7) and mixed spindle and epithelioid (n = 4) cell type.
KIT and PDGFRA mutational status was verified for 32 patients: 18 patients had KIT gene
mutations exon 11 (n = 17), and exon 9 (n = 1), 9 patients had PDGFRA gene mutations in
exon 18 (n = 6) and exon 12 (n = 3), while 5 patients were KIT/PDGFRA wild type. Distribu-
tion of all evaluated parameters did not differ in discovery and validation cohorts (p-value >
0.05). Fisher’s exact test was used for qualitative measurements and ¢-test was used for quanti-
tative measurements.
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RNA and DNA material was extracted from FFPE tissue samples using commercial miR-
Neasy FFPE and Qiamp FFPE DNA tissue Kits (Qiagen) following manufacturers
recommendations.

Small RNA sequencing data (HiSeq2500, Illumina) of paired samples from 15 GIST patients
was used for primary detection of deregulated lincRNAs (discovery cohort), while validation
cohort for lincRNA expression analysis consisted of 22 patients’ paired samples. RNA libraries
were prepared for sequencing using TruSeq Small RNA Sample Preparation Kit (Illumina).

More detailed characteristics of patients, GIST mutational status, RNA/DNA extraction,
library preparation and NGS sequencing methods, as well as detailed methodology of KIT,
PDGFRA, ETV1 and microRNA gene expression analysis were described in our previous pub-
lication [16]. Small RNA sequencing data can be accessed at NCBI’s Gene Expression Omni-
bus (series accession number GSE89051).

The study was approved by the Kaunas Regional Biomedical Research Ethics Committee
(No. BE-2-8). All patients have signed an informed consent form to participate in the study.

lincRNA sequencing data analysis

Sequencing data analysis was performed using web-based tool miRMaster [17], where prepro-
cessed sequencing reads (after adapter trimming, quality filtering and read collapsing) were
mapped against the NONCODE 2016 database [18] of IncRNAs, using default parameters. P-
values were generated by Kruskal-Wallis test and used for evaluation of gene expression
changes after Benjamini-Hochberg adjustment for multiple testing. Changes with an adjusted
probability value below 0.05 were considered as significant.

Validation of lincRNA expression by reverse transcription quantitative
real-time PCR (RT-qPCR)

Paired RNA samples of 22 GIST patients (total 44 samples) were included in the lincRNA
expression validation cohort. RNA was reverse transcribed using High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific). Expression of lincRNAs MALATI, H19
and FENDRR in GIST tumor and adjacent tissues was measured using commercial TagMan
Gene Expression Assays (Hs00273907_s1 for MALATI; Hs00399294_gl for H19;
Hs05044154_s1 for FENDRR) and TagMan Universal PCR Master Mix on the 7500 Fast Real-
Time PCR system, according to the manufacturer’s protocol. Gene expression data was nor-
malized to the expression levels of GAPDH housekeeping gene (Hs99999905_m1) and ana-
lyzed using comparative CT method.

Statistical analysis

Differences between means of lincRNA expression validation data were analyzed using paired
Student’s t-test. Expression changes with a Bonferroni adjusted p-values lower than 0.05 were
-4t values. Cor-
relation coefficient values were assigned to groups from “negligible correlation” to “very high
positive (negative) correlation” according to Mukaka M. [19]. LincRNA-oncogene and
lincRNA-microRNA expression correlations were considered significant with a p-value lower
than 0.01.

Kruskal-Wallis multiple comparisons test was applied to investigate differences of lincRNA
expression in different GIST phenotypes. P-values lower than 0.05 were considered significant.

All statistical analyses were performed using the statistical computing environment R (ver-
sion 3.4.4) [20].

considered significant. Spearman’s correlation analysis was applied on log,(2
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Table 1. Significantly deregulated lincRNA transcripts in GIST vs. GIST adjacent tissue (paired samples of 15 patients) obtained from small RNA sequencing data.

Transcript lincRNA p-value | Benjamini-Hochberg Fold Change, GIST vs. adjacent Log,(FC), GIST vs. GIST adjacent
adjusted tissue tissue
p-value®
ENST00000447298.1 | H19 1.13x107° 0.002 69.2 6.1
ENST00000428066.5 | H19 1.13x10°° 0.002 68.9 6.1
ENST00000442037.5 | H19 1.42x107° 0.002 61.2 5.9
ENST00000446406.5 | H19 2.99x10°° 0.002 34.2 5.1
ENST00000414790.5 | H19 2.99x10°° 0.002 34.1 5.1
ENST00000412788.5 | H19 2.99x10°° 0.002 34.0 5.1
ENST00000431095.5 | H19 3.66x10°° 0.002 33.9 5.1
ENST00000422826.1 | H19 2.99x107° 0.002 33.9 5.1
ENST00000411754.5 | H19 3.66x10°° 0.002 33.8 5.1
ENST00000439725.5 | H19 3.66x10°° 0.002 33.7 5.1
ENST00000417089.5 | H19 3.66x10°° 0.002 33.7 5.1
ENST00000582452.1 | LINC00908 4.99x107° 0.016 33.3 5.1
ENST00000598996.2 | FENDRR 2.20x107° 0.011 15.8 4.0
ENST00000519898.5 | CARMN 1.18x107* 0.028 11.1 3.5
ENST00000610481.1 | MALAT1 2.34x107* 0.046 8.2 3.0
ENST00000544868.2 | MALAT1 3.28x107° 0.012 6.6 2.7
ENST00000508832.2 | MALAT1 1.47x107* 0.034 6.0 2.6
ENST00000534336.1 | MALAT1 8.87x10° 0.022 5.3 24
ENST00000619449.1 | MALAT1 8.55x107° 0.022 5.0 2.3
ENST00000637098.1 | LINC00862 8.29x107° 0.022 4.6 2.2
ENST00000582320.2 | AC024267.1- 6.26x107° 0.019 0.1 -2.9
201
ENST00000607097.1 | AC084346.2— 4.58x107° 0.002 0.1 -3.2
201
ENST00000413053.2 | MIR194-2HG 3.67x10° 0.013 0.01 -6.6

* The difference is significant when Benjamini-Hochberg adjusted p-value is < 0.05.
FC-fold change

https://doi.org/10.1371/journal.pone.0209342.t001

Results
LincRNA analysis using NGS data

Sequences were mapped to a total 7240 lincRNA transcripts from the NONCODE database.
After application of selection criteria (Benjamini-Hochberg adjusted p-value < 0.05, 2 <
log,FC < -2), 23 lincRNA transcripts (9 unique lincRNAs) were significantly deregulated in
GIST tissue compared to adjacent tissue, with six lincRNAs being upregulated and three—
downregulated (Table 1).

Overexpression of lincRNAs MALAT1, H19 and FENDRR verified in an
independent group of GIST patients

Since the NGS analysis was based on small RNA sequencing, we further validated differential
expression of lincRNAs in an independent group of 22 GIST patients (paired GIST and adja-
cent tissue samples), using RT-qPCR analysis. Three lincRNAs-MALATI, H19 and FENDRR
shown to be significantly deregulated in GIST vs. adjacent tissue in our NGS data and previ-
ously associated with oncogenic processes, were selected for this validation step. Gene expres-
sion analysis results were in line with NGS data. All three investigated lincRNAs were
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Fig 1. LincRNAs FENDRR, H19 and MALAT1 expression in GIST vs. adjacent tissue (paired samples of 22
patients). * p-value < 0.05 (Bonferroni adjusted p-value); whiskers-min. and max. values. LincRNA expression was
normalized to expression levels of GAPDH.

https://doi.org/10.1371/journal.pone.0209342.9001

upregulated in GIST tissue compared to adjacent tissue (Fig 1 and S1 Table). Significant upre-
gulation was observed in expression levels of H19 and FENDRR, with fold changes 25.8 (Bon-
ferroni adjusted p-value = 3.70x10™"") and 4.7 (Bonferroni adjusted p-value = 4.66x10™%),
respectively; while MALATI was overexpressed nominally (1.7-fold, Bonferroni adjusted p-
value = 0.141).

Correlation analysis of MALATI1, H19, FENDRR and GIST associated
oncogenes

To examine potential effects of changes in lincRNAs expression on GIST pathogenesis, associ-
ation analysis between lincRNAs and GIST associated oncogenes KIT, PDGFRA and ETV1
was performed. Expression data of KIT, PDGFRA and ETV1 has been previously described
[16] and all three genes were shown to be significantly overexpressed in GIST tissue of our
study group. High positive correlation was observed between expression levels of ETV1 and
HI9 (r=0.74,p = 1.2x1077) (Fig 2A, S2 and S3 Tables), while expression levels between H19
and KIT or PDGFRA, MALATI and PDGFRA, FENDRR and KIT or ETV1 correlated moder-
ately (r-values between +0.5 and 0.7, p-value < 0.01) (Fig 2B-2F, S2 and S3 Tables).

Correlation analysis of MALATI, H19, FENDRR and microRNAs
differentially expressed in GIST

Since it has been shown that IncRNAs can interact with other non-coding RNAs and partici-
pate in regulation of tumorigenic processes, lincRNA-microRNA correlation analysis was per-
formed using expression data of 19 microRNAs, shown to be differentially expressed in GIST
tissue compared to adjacent tissue in our previous study [16]. Spearman’s correlation test
revealed high positive correlation between HI19 and miR-455-3p (r = 0.74, p = 3.1x10™°) (Fig
3B, S2 and S3 Tables), while expression of miR-133a-3p, miR-133b, miR-486-5p, miR-203a-
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3p, miR-182-5p, miR-675-3p, and miR-483-5p correlated moderately with expression levels of
H19 (r-values between +0.5 and +0.7, p-value < 0.01) (Fig 3A, S2 and S3 Tables). Significant
moderate positive correlations were also observed between FENDRR and miR-455-3p, miR-
675-3p, miR-483-5p (0.5 < r < 0.7, p-value < 0.01). MALATI showed only low or no correla-
tion with microRNAs differentially expressed in GIST (Fig 3A, S2 and S3 Tables).

MALATI, H19, FENDRR and GIST phenotype association analysis

To investigate possible clinical significance of validated lincRNAs in GIST (validation group

n = 22 patients), subphenotype analysis based on histological types (spindle cell type (n = 14),
epithelioid cell type (n = 4), mixed spindle and epithelioid cell type (n = 4)), disease risk grade
(high (n = 3), moderate (n = 7), low (n = 9) and very low grade (n = 3)) and GIST mutational
status (KIT mutant (n = 9), PDGFRA mutant (n = 6), KIT/PDGFRA wild type (n = 2)) was per-
formed (S4 Table). However, multiple group comparison analyses did not reveal any signifi-
cant differences in expression levels of MALAT1, H19 or FENDRR between different
histological subtypes, GIST risk grades or KIT/PDGFRA mutational status (54 and S5 Tables).

Discussion

Although a number of studies have elucidated the importance of IncRNAs in regulation of var-
ious biological processes and development of diseases, their profile and role in pathogenesis of
GISTs are scarcely investigated. In the present study, we determined the profile of lincRNAs -a
subset of IncRNAs-deregulated in GISTs. Further, we examined expression of three upregu-
lated lincRNAs in a bigger group of independent patients and investigated associations with
changes in expression of GIST-associated oncogenes and GIST-deregulated microRNAs.
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Analysis of NGS data revealed 9 unique and strongly deregulated lincRNAs in gastric GIST
tissue compared to adjacent gastric tissue. Among the top deregulated lincRNAs, three previ-
ously cancer associated lincRNAs—MALAT1, H19 and FENDRR, were significantly upregu-
lated in a discovery cohort. MALATI and H19 have been mostly described as oncogenic
lincRNAs. Their overexpression, contributing to cell proliferation, metastasis, epithelial mes-
enchymal transition and poor prognosis, has been observed in esophageal squamous cell carci-
noma, osteosarcoma, colorectal, gastric and other cancer types [6,8,21-25]. However, in our
replication study only H19 showed significant 25.8-fold overexpression in GIST tissue, while
MALATI was slightly overexpressed, but did not reach the required significance level. Both
NGS and validation cohorts indicated FENDRR to be overexpressed in gastric GIST. Previous
studies indicated FENDRR to be downregulated in a number of cancers, including osteosar-
coma, gastric, breast, prostate cancers, and to be negatively associated with higher tumor stage,
deeper invasion, shorter overall survival, suppression of apoptosis, promotion of cell prolifera-
tion and migration [26-29], but has been strongly overexpressed in an infantile hemangioma
[30]. Furthermore, another study has shown that FENDRR was co-expressed with KIT-an
oncogene crucial in GIST development-in a gallbladder cancer [31]. These findings are consis-
tent with our results, where FENDRR expression significantly correlated with expression of
KIT, and could explain the strong overexpression of FENDRR in GIST. However, the mecha-
nisms of possible interactions between FENDRR and KIT have not been described yet and
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more thorough examination is needed in order to determine the role of these oncogenic
molecules.

LincRNAs may affect expression of the coding genes through a variety of mechanisms such
as regulation of chromatin, scaffolding RNA and proteins or acting as protein and RNA decoys
[4]. Therefore, we tested possible correlations between differentially expressed lincRNAs and
GIST-associated oncogenes. Analysis revealed a high positive correlation between expression
levels of H19 and ETVI1. ETV1 is an ETS family transcription factor, which is highly expressed
in all GISTs and is crucial for GIST growth and survival [32]. It has been shown that ETV1 is
stabilized by another GIST-associated oncogene tyrosine kinase receptor KIT through the
MAP kinase signaling pathway and they together form a positive feedback circuit to regulate
GIST tumorigenesis [32,33]. Interestingly, another study revealed that H19 might increase
phosphorylation levels of components of MAP kinase pathway, such as pMEK and pERK, in
colorectal cancer [34]. Moreover, a moderate, but significant correlation was observed between
expression levels of H19 and KIT or PDGFRA oncogenes in our study. This supports the theory
of the positive feedback circuit between KIT and ETV1 [33], and the possible role of PDGFRA
in stabilizing ETV1 [35]. These findings altogether suggest that HI9 might be an important
factor in pathogenesis of GIST and is worth further investigation.

It has been reported that IncRNAs can interact with microRNAs by masking their targets’
binding sites, acting as competing endogenous RNAs and “sponge” microRNAs away from
their mRNA targets, interacting with other microRNA related factors or being precursors for
microRNAs [4,36]. Therefore, we used microRNA profiling data from our previous study [16]
and evaluated their correlation with the expression of the three lincRNAs. A strong positive
correlation was observed between expression levels of HI9 and miR-455-3p. Studies of this
microRNA have demonstrated inconsistent results, where miR-455-3p has been shown to be
overexpressed and/or have oncogenic properties in KIT/PDGFRA mutant GISTs and esoph-
ageal squamous cell carcinoma [37,38], but acted as a tumor suppressor in melanoma, pancre-
atic and non-small cell lung cancers [39-41]. Both H19 and miR-455-3p were shown to be
involved in the regulation of cancer related p53 signaling [42,43], which has been shown to be
important in GIST oncogenesis, as well [44]. However, no direct association between H19 and
miR-455-3p could be found in literature. We also observed a moderate positive association
between expression levels of oncogenic miR-675 and HI19, as well as a moderate negative cor-
relation between H19 and miR-133 family members and other tumor suppressive microRNAs
like miR-486-5p, miR-182-5p or miR-203a-3p [45-48]. MiR-675 is already known to be
derived from HI9 [9,49] and has been shown to be implicated in the development of colorectal
and breast cancers [50,51], while both miR-203a and H19 have been shown to interact with
E2F Transcription factor 1 (E2F1) [52-54]. This transcription factor is essential for cell prolif-
eration [55] and can be upregulated by H19 in pancreatic ductal adenocarcinoma [54] or con-
trarily activates the promoter of H19 in breast cancer cells [53]. Furthermore, E2F1 binds to
the promoter and activates miR-203a, while miR-203a can decrease expression of E2F1
through inhibition of CDK®, forming a feed-back loop [52]. Direct interactions between mod-
erately correlated H19 and miR-182, miR-486 or miR-133b have also been previously pre-
dicted from Argonaute-crosslinking and immunoprecipitation (AGO-CLIP) data [56] and
requires additional experimental validation. As for the other identified correlations between
H19 or FENDRR and deregulated microRNAs no data has been found in the literature. There-
fore, future studies are needed in order to confirm possible links between these oncogenic mol-
ecules and identify their interaction mode and possible role in oncogenesis.

We are aware that our study has certain limitations that need to be acknowledged. Firstly,
due to the limited availability of fresh-frozen samples, FFPE samples were used for lincRNA
and gene expression analyses in this study. Although, higher levels of RNA degradation can
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occur in FFPE tissues, previous studies have demonstrated that FFPE tissue can be a feasible
material for gene expression analysis [57]. Secondly, we performed lincRNA profile analysis
on small-RNA sequencing data. The purified RNA from FFPE is highly affected by hydrolysis
and is fragmented into small (on average 100 nucleotide long) sequences [58-60]. These RNA
fragments contain 5-PO, and 3’-OH end groups, which are used for selective ligation of
sequencing adapters in Illumina Truseq small RNA sequencing protocol. Due to these features
of FFPE-purified RNA (length and the end groups), small RNA-seq is sufficient to detect long
non-coding RNAs in FFPE samples. However, to ensure the reliability of sequencing results,
the findings were additionally validated by RT-qPCR method. We also admit that further func-
tional experiments are needed to confirm the role of investigated lincRNAs in GISTs.

In summary, we performed lincRNA expression profile analysis in GISTs and confirmed
significant overexpression of H19 and FENDRR in GIST tissue compared to adjacent non-
cancerous tissue. Association analyses revealed strong correlations between expression levels
of lincRNA H19 and GIST-related oncogene ETVI and cancer associated miR-455-3p. Despite
the limitations described above, lincRNAs MALATI, H19 and FENDRR were not previously
investigated in GISTs and we believe that our findings expand the knowledge in GISTs biology
and elucidate possibly important components of GIST tumorigenesis for future studies.
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