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S2 APPENDIX.  A UNIFIED EXPLANATION OF WEIGHTING PROCEDURES FOR THE 

DIFFERENT DATA SCENARIOS 

 

(for the paper Sensitivity analyses for effect modifiers not observed in the target population when 

generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, 

data scenarios, and implementation details) 

 

Method 2 presented in this paper call for weighting the trial sample so that it resembles the target 

population with respect to the distribution of the observed baseline covariates 𝑋, 𝑍. Depending 

on the source of target population data – a full population (𝑃 = 1) dataset or a representative 

(𝑆 = 2) sample, and how it relates to the trial sample (see example scenarios in Fig. 1) – the 

specific weighting procedures vary. All these weighting procedures, however, relate to one idea 

we call “ratio-of-probability weighting”. We borrow this term from [1], who used it in a different 

context (mediation analysis), but the term is appropriate for our current purpose. The idea is 

simple: to weight a sample E so that it resembles sample/population F with respect to the 

distribution of variables 𝐶, we use weights that are ratios of sample membership probabilities 

conditional on 𝐶, 𝑊𝑖 =
P(E|𝐶 = 𝐶𝑖)

P(F|𝐶 = 𝐶𝑖)
. We now elaborate how this plays out in several data 

scenarios. 

 

In scenario 1(b), the weights for the 𝑆 = 1 sample to make it resemble the 𝑆 = 2 sample with 

respect to baseline covariates 𝑋, 𝑍 are 

𝑊𝑖 =
P(𝑆 = 2|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)
. (w1) 

With data only from these two samples (assumed to be disjoint), we estimate these weights by 

stacking the two datasets and fitting a model for sample membership 𝑆 with 𝑋, 𝑍 as predictors 

(e.g., using logistic or another model deemed appropriate), and obtaining for each trial 

participant a weight that is the model-predicted odds of 𝑆 = 2 vs. 𝑆 = 1 given their 𝑋, 𝑍 values. 

Formally, this is an estimate of 
P(𝑆 = 2|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖 , (𝑆 = 1 or 𝑆 = 2))

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖 , (𝑆 = 1 or 𝑆 = 2))
, which is equivalent 

to (w1). This weighting-by-the-odds method [2,3] is analogous to the propensity score weighting 

version for estimating the average treatment effect on the treated, where control units are 

weighted by their predicted odds of being in the treatment vs. control condition [4]. 

 

In scenario 1(a), the weights for the 𝑆 = 1 sample to make it resemble the 𝑃 = 1 dataset with 

respect to baseline covariates 𝑋, 𝑍  are 

𝑊𝑖 =
P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)
. (w2) 

If we know which units in the target population dataset are the specific units in the trial, we can 

fit to the target population dataset a model for trial participation with 𝑋, 𝑍  as predictors, and use 

inverse-trial-participation-probability weighting to weight the trial sample up to the population. 

The weights are estimates of 
1

P(𝑆 = 1|𝑋 = 𝑋𝑖 , 𝑍 = 𝑍𝑖, 𝑃 = 1)
=

P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖, 𝑃 = 1)

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖 , 𝑃 = 1)
, 

which are equivalent to (w2). This weighting is analogous to inverse-probability-of-selection 

weighting in complex survey design [5]. If, on the other hand, the trial participants cannot be 

linked to their records in the population dataset, we can still estimate these weights by treating 
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the population dataset as an 𝑆 = 2 dataset, stacking it with the trial dataset and using weighting-

by-the-odds as in scenario 1(b). In this case, these artificial “odds” are estimates of 
P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)/[P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)+P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)]

P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)/[P(𝑃 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)+P(𝑆 = 1|𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖)]
, which are 

equivalent to (w2). 

 

In a slightly different scenario where the trial sample has been drawn from within an 

observational sample that represents the target population, we proceed as in scenario 1(a), but 

treating the observational sample as if it were the population. 

 

When the problem is one of transportation, where the trial sample is not part of the target 

population, the same weight formula (w2) or (w1) applies. Given a 𝑃 = 1 or 𝑆 = 2 dataset for 

the target population, we need to stack it with the 𝑆 = 1 dataset, and use weighting-by-the-odds.  

 

In the description of the sensitivity analyses, we mentioned that weighting-based sensitivity 

analyses are used only if a target population dataset (either 𝑃 = 1 or 𝑆 = 2) is available. To be 

precise, in a special case where there is no target population dataset, but information is available 

on the target population distribution of {𝑋, 𝑍} (e.g., from a census or a prior population 

estimation exercise that reported these variables’ joint distribution), weighting may also be 

implemented, using 𝑊𝑖 =
P(𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖|𝑃 = 1)

P(𝑋 = 𝑋𝑖, 𝑍 = 𝑍𝑖|𝑆 = 1)
, which are proportional to (w2). Here the 

numerator and denominator are the prevalences/densities of the {𝑋𝑖, 𝑍𝑖} pattern in the target 

population and in the trial sample, respectively. This is only recommended for discrete {𝑋, 𝑍} 

with a small number of combined categories, because beyond this situation, it is generally hard 

to estimate the denominator and the available estimates for the numerator may not be reliable. 

 

To sum up, in most data scenarios where a dataset for/representing the target population is 

available, weighting the trial sample to make it resemble the target population involves data 

stacking and weighting-by-the-odds. The exception is when the trial sample is part of and can be 

identified within the population dataset, in which case inverse-probability weighting is used. If 

only summary statistics are available for the target population, the sensitivity analyses that 

involve weighting will generally not be used, except the very special case mentioned in the 

previous paragraph. 
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