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Abstract

Introduction

Studies on the associations between phthalate exposures and respiratory outcomes are lim-

ited. We investigated the association of phthalates exposure with pulmonary function and

airway inflammation in asthmatic children.

Methods

Fifty-six children with asthma living in Seoul Metropolitan Area, Korea aged 6–16 years

were enrolled. Their pulmonary function including forced expiratory volume in 1 sec (FEV1)

and peak expiratory flow rate (PEFR) were measured, and the fractional exhaled nitric oxide

(FeNO) as a marker of airway inflammation was examined repeatedly up to four times dur-

ing the study period. Urinary levels of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP)

and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), metabolites for di-(2-ethylhexyl) phthal-

ate (DEHP), and mono-n-butyl phthalate (MnBP), a metabolite of di-n-butyl phthalate

(DnBP), were also measured on the same days. The effects of phthalate metabolites on the

respiratory symptoms were analyzed using linear mixed effect models with adjustment for

potential cofounders.

Results

An increase in phthalate metabolites was associated with a decrease in pulmonary function

and an increase in FeNO in asthmatic children. As one natural log-unit (ln-unit) levels of uri-

nary MEHHP and MEOHP increased, FeNO levels on the same day increased by 19.47 ppb

[95% confidence interval (CI): 9.28, 29.67] and 17.93 ppb (95% CI: 5.86, 30.01), respec-

tively. An increases in the urinary level of MEHHP, MEOHP, and MnBP by one ln-unit was

associated with a decrease in PEFR on the next day by 12.17 L/min (95% CI: 2.59, 21.74),

10.80 L/min (95% CI: 0.29, 21.32), and 13.65 L/min (95% CI: 5.07, 22.24), respectively.
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Conclusion

Phthalates, especially DEHP, may worsen pulmonary function and airway inflammation in asth-

matic children. To control asthma symptoms, exposure to phthalates needs to be avoided.

Introduction

Chemicals emitted from environmental materials and personal care products have a variety of

adverse effects on animal and human health [1–3]. Among environmental chemicals, phthal-

ates have been considered as risk factors for asthma and allergic diseases [4–7]. Phthalates, a

group of high-production volume compounds added to plastics to confer flexibility (e.g., plas-

ticizers in polyvinylchloride plastics), are widely used in personal care products, medications,

and food processing and packaging materials [8–10].

The ubiquitous presence of phthalates and the potential consequences of human exposure

have raised concerns, particularly in children, because they are more likely to be exposed to

phthalate than adults through ingestion of dietary sources and sucking dust from phthalate-

containing products [11, 12]. Recently, phthalates commonly found in households including

vinyl products, toys and electronics have been reported to influence respiratory and asthma

symptoms [5–7,13–15]. For example, according to a study in 3 to 9 years old children [6],

mono-n-butyl phthalate (MnBP), a metabolite of di-n-butyl phthalate (DnBP), was related to

diagnosed asthma and daytime respiratory symptoms. Bekö et al. [13] demonstrated that di-

(2-ethylhexyl) phthalate (DEHP) metabolites were associated with the higher risk of wheeze

and bronchitis. In a study of 244 children, increases in fractional exhaled nitric oxide (FeNO),

a marker of airway inflammation, were associated with log-unit increases in urinary concen-

trations of metabolites of diethyl phthalate (DEP) and butylbenzyl phthalate (BBzP), but not

with concentrations of DEHP or DnBP metabolites [14]. In a Spanish birth cohort study by

Gascon et al. [16], the maternal urinary DEHP and mono-benzyl phthalate (MBzP) levels dur-

ing pregnancy were significantly associated with asthma at age 7 years, suggesting that high-

molecular weight phthalates increase the risk of asthma development in childhood. In the Tai-

wan Birth Panel Study, phthalate exposure at age 9 years was negatively associated with forced

expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) [17]. However, the

adverse effect of phthalate on the airway is still controversial, because Vernet et al. [15] found

no clear deleterious associations between in utero exposure to phthalates and respiratory out-

comes, including wheezing until age 5 years, and bronchiolitis/bronchitis episodes until age 3

years in offspring. Further studies to show the association of phthalates exposure with aggrava-

tion of asthma using objective measurements are needed.

We, therefore, aimed to investigate whether exposure to phthalates exacerbates pulmonary

function and airway inflammation in asthmatic children.

Methods

Study participants

In the present study, 56 asthmatic children (35 boys and 21 girls) aged 6–16 years living in the

Seoul Metropolitan Area in Korea were enrolled as a panel and followed from October 2013 to

February 2015. Asthma was diagnosed by physicians based on typical clinical symptoms in the

last 12 months and positive airway hyper-responsiveness. Asthma symptoms include recurrent

wheezing, cough or breathing difficulties. Airway hyper-responsiveness was confirmed by
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either provocation concentration of methacholine causing a 20% fall in FEV1 (PC20) less than

8 mg/mL or bronchodilator responses of at least 12% in FEV1.

Skin prick tests were performed to detect specific IgE against common inhalant allergens

including Dermatophagoides pteronyssinus, D. farinae, tree pollen mixture, grass pollen mix-

ture, weed pollen mixture, cockroach, cat, dog, Alternaria alternata, and Aspergillus fumigatus
(Allergopharma, Germany). Histamine was used as a positive control and normal saline was

used as a negative control. A positive response to the skin prick test was determined when

wheal size was� 3 mm and controls showed adequate reactions.

Written informed consent was obtained from parents or guardians of all participating chil-

dren. The study protocols were reviewed and approved by the Institutional Review Board

(IRB) at Samsung Medical Center (Approval number: 2013-05-009).

Exposure to phthalates

To assess the exposure to phthalates, we measured the urinary concentrations of phthalate

metabolites including mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono-(2-ethyl-

5-hydroxyhexyl) phthalate (MEHHP), biomarkers of DEHP, and MnBP, a biomarker of

DnBP. We selected the biomarkers for DEHP and DnBP to assess phthalate exposure because

the concentrations of urinary DEHP and DBP metabolites in Korea are relatively higher than

those reported in US and other countries [18]. In addition, the concentrations of DEHP

metabolites were higher among children compared to those in the older age group [19]. The

first urine in the morning and the last urine before sleep at night were collected from each

child up to six times on different days.

Urine samples were collected in sterile cups, stored in -80˚C freezer up to 3 months before

analysis. Concentrations of the three phthalate metabolites (MEOHP, MEHHP, and MnBP)

were analyzed using a high performance liquid chromatography-mass selective detector

(HPLC-MS/MS, Agilent 1200 series, Santa Clara, CA, USA). Method detection limits (MDLs)

of MEHHP, MEOHP and MnBP were 0.186 μg/L, 0.260 μg/L, and 0.423 μg/L, respectively.

The concentrations of the phthalate metabolites were adjusted with creatinine concentrations.

Based on the levels of urinary phthalates metabolites, we estimated the daily intake (DI) of

phthalates in asthmatic children by adopting physiologically based pharmacokinetic modelling

(PBPK) to compare with reference doses (RfD) recommended in U.S. Environmental Protec-

tion Agency (USEPA) [20]. We used urinary metabolite excretion factors that have been estab-

lished in metabolic studies before [20,21] and extrapolated the amount of ingested parent

phthalate. The formula used to estimate the DI of phthalates is as follows:

DI ¼
UE� CE

Fue� 1000
�

MWd

MWm
ð1Þ

Where, DI denotes daily intake (μg/kg-day), UE is the urinary concentration of metabolite

per gram creatinine (μg/g), CE is the creatinine excretion rate normalized by body weight; Fue
is the creatinine excretion to total elimination (ku/ktotal), and MWd and MWm represent the

molecular weights of the diesters and metabolite, respectively. Parameters for Fue were 0.69

for MnBP [22] and for MEHHP and MEOHP 0.23 and 0.15, respectively [23].

Respiratory outcomes

For the evaluation of pulmonary function, the measurements of FEV1, the percentages of

FEV1 to FVC (FEV1/FVC(%)) and forced expiratory flow at 25–75% (FEF25-75(%)) were con-

ducted using Vmax encore (Cardinal health, USA) on the same day as urine sampling. These

spirometric tests were performed up to four times on different days when each subject did not
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manifest common cold. Rescue medicine such as bronchodilators was not used on the measure-

ment day. Trained technicians assisted the children in performing pulmonary-function maneu-

vers in accordance with the standards of 2005 European Respiratory Society/American Thoracic

Society (ERS/ATS) recommendations. The maximum values among 3 acceptable measures rec-

ommended by the ATS/ERS were used for the analysis of spirometric data for each subject. The

airway obstruction was assessed by measuring the peak expiratory flow rate (PEFR) in the morn-

ing by patients or guardians using Mini-Wright (Clement Clarke International Ltd., Harlow,

UK) on the same day as the spirometric tests. Airway inflammation was evaluated by measuring

FeNO using Niox mino (Aerocrine, Solna, Sweden). For the analyses of the relationship between

phthalate biomarkers in urine and respiratory outcomes, we measured the metabolites of phthal-

ates in the first urine in the morning when analyzing FEV1, FEV1/FVC(%), FEF25-75(%), and

FeNO measured in the morning at hospital. Morning PEFRs were matched with the first urine

in the morning, while the evening PEFRs were with the urine collected at night.

Statistical analyses

Natural log (ln)-transformed phthalate metabolites were used because their distribution was

skewed and not normally distributed according to the Shapiro-Wilk W-test.

Two to eight observations with phthalate metabolites and respiratory outcomes were made

in individual children. Considering the repeated measurement of the variables, a linear mixed

effect (LME) model was used to estimate the association between the ln-transformed phthalate

metabolites and respiratory outcomes. Age, sex, body mass index (BMI), urinary cotinine

level, and the use of controller medication were adjusted in the model as they are related to

pulmonary function. The basic model specifications are as follows:

EðYÞ ¼ b0 þ b1 � lnðPMÞ þ
P

CFi þ gðsubjectÞ þ e ð2Þ

where E(Y) is the expected expression of pulmonary function or inflammation; PM refers to

natural log-transformed levels of phthalate metabolites, and CFi indicates the confounding fac-

tors including age, sex, BMI, urinary cotinine level, and the use of controller medication; γ
denotes the random effect for each subject.

The pulmonary function is significantly associated with outdoor temperature [24] and air

pollutants such as particulate matter with an aerodynamic diameter of 10 μm or less (PM10)

[25]. We, therefore, included ambient PM10, outdoor temperature, and relative humidity (RH)

as covariates in the LME models and compared the results from the adjusted models with those

from the basic model, Formula 2. Data for PM10 were obtained from the National Institute of

Environmental Research, while temperature and RH values were collected from the Korean

Meteorological Administration. We used PM10 level on the previous day as a confounding fac-

tor when we fitted models for lung functions (morning PEFR, FEV1, FEV1/FVC(%), FEF25-

75(%)) and FeNO measured in the morning. In contrast, we used PM10 concentrations on the

same day for analyzing evening PEFR. Daily 24 hour-average values of temperature and RH

were used on the same day as the measurements of respiratory outcomes and urinary biomark-

ers. Delayed effects of phthalates exposure on PEFR were also analyzed up to 2 days.

We also used penalized regression curves of a generalized additive mixed model (GAMM)

to examine the relationship between phthalate biomarkers in urine and respiratory outcomes.

All the predicting variables were included in the GAMM model adopting smoothing splines

with adjustment for age, sex, BMI, ambient PM10, outdoor temperature and RH, urinary cotin-

ine level, and controller medication.

All the procedures were conducted using R version 3.2.2 (The Comprehensive R Archive

Network: http://cran.r-project.org) using the “mgcv” package (version1.8–7) for GAMM and
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“lme4” package (version 3.2.3) for LME model fitting. All tests were two-sided, and an alpha

level of less than 0.05 was considered significant.

Results

We enrolled 56 asthmatic children (35 boys and 21 girls) in this study. Table 1 shows the char-

acteristics of the study population. The average age and BMI was 8.6 years (SD = 2.5) and 17.5

kg/m2 (SD = 2.7), respectively. Controller medications such as leukotriene modifier or inhaled

corticosteroid were used in approximately 88.8% of the patients. There were no differences in

demographic characteristics between boys and girls.

A total of 156 urinary samples were collected from 56 children. The urinary levels of phthal-

ate metabolites in asthmatic children are shown in Table 2. Geometric means of MEHHP,

Table 1. Characteristics of the study subjects.

Variable Total

(N = 56)

Boys

(N = 35)

Girls

(N = 21)

P-valuea

Age (year) 8.6 ± 2.5 8.5 ± 2.6 8.7 ± 2.4 0.793

Height (cm) 132.4 ± 16.3 133.9 ± 17.7 130.0 ± 13.6 0.374

Weight (kg) 31.7 ± 11.6 32.6 ± 12.8 30.2 ± 9.2 0.420

BMI (kg/m2) 17.5 ± 2.7 17.5 ± 2.9 17.5 ± 2.5 0.997

Total IgE (U/L) 683.8 ± 545.4 707.2 ± 556.1 646.5 ± 540.1 0.699

PC20 (mg/mL) 2.4 ± 1.7 2.5 ± 1.7 2.4 ± 1.6 0.804

Sensitization to inhalant allergensb) (%) 88.4 92.3 82.4 0.256

Use of controller medication (%) 88.8 85.6 90.9 0.301

Data are expressed as mean ± standard deviation
aTest for differences between boys and girls: chi-squared test for sensitization to inhalant allergens and the use of controller medication, and t-test for means of

remaining variables
bSensitized to house dust mites (Dermatophagoides pteronyssinus, D. farinae), pollen mixtures (tree, weed, grass), cat, dog, cockroach, Alternaria alternata or Aspergillus
fumigatus. BMI, body mass index; PC20, provocation concentration of methacholine causing a 20% fall in forced expiratory volume in one second (FEV1).

https://doi.org/10.1371/journal.pone.0208553.t001

Table 2. Distribution of urinary metabolites and outdoor environments.

N Total

(N = 56)

Boys

(N = 35)

Girls

(N = 21)

P-valuea

Urinary phthalate metabolites

(μg/g-creatinine)

MEHHP 156 49.6

(35.2–85.7)

51.1

(36.0–89.8)

47.6

(34.0–65.8)

0.297

MEOHP 156 38.4

(27.2–60.6)

38.6

(28.1–64.8)

38.2

(26.1–55.7)

0.426

MnBP 156 71.8

(45.8–100.5)

76.3

(46.2–119.6)

66.0

(45.7–84.5)

0.123

Urinary cotinine

(μg/g-creatinine)

156 0.9

(0.2–3.1)

0.8

(0.1–2.5)

1.0

(0.2–3.6)

0.168

PM10 (μg/m3) 154 47.8 ± 29.6 46.0 ± 27.0 50.3 ± 32.8 0.481

Temperature (˚C) 156 10.1 ± 8.4 10.0 ± 7.9 10.2 ± 9.1 0.905

Relative humidity (%) 156 61.9 ± 14.0 61.8 ± 14.1 62.0 ± 13.9 0.926

Data are expressed as geometric mean and interquartile range for urinary phthalate metabolites and cotinine levels, and also expressed as mean ± standard deviation for

PM10, temperature, and relative humidity.
aTest for differences between boys and girls: Mann-Whitney U test for the differences in MEHHP, MEOHP, MnBP, and cotinine and t-test for outdoor environments;

MEHHP, mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono-(2-ethyl-5-oxohexyl) phthalate; MnBP, mono-n-butyl phthalate; PM10, particulate matter with a

diameter less than 10 μm.

https://doi.org/10.1371/journal.pone.0208553.t002
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MEOHP, and MnBP were 49.6 μg/g-creatinine [interquartile range (IQR), 35.2–85.7], 38.4 μg/

g-creatinine (IQR, 27.2–60.6), and 71.8 μg/g-creatinine (IQR, 45.8–100.5), respectively. No sig-

nificant differences were found in the levels of phthalate metabolites between boys and girls,

although the levels in boys appeared to be higher than in girls. Outdoor environmental indica-

tors including PM10, temperature, and RH on the same days as the urinary metabolites mea-

surements are also shown in Table 3.

The DIs of the phthalates were estimated using the Formula 1: DI of DEHP was estimated

at 3.1 μg/kg body-weight(bw)/day (IQR, 2.2–5.4) and 3.8 μg/kg bw/day (IQR, 2.6–5.9)

obtained from MEHHP and MEOHP, respectively. DI of DnBP based on MnBP was estimated

at 7.6 μg/kg bw/day (IQR, 4.9–10.7).

Among 56 children, only 40 children measured their respiratory outcomes. A total of 47

pulmonary function data including FEV1, FEV1/FVC (%), FEF25-75 (%), and FeNO were col-

lected from one measure of 22 children, two measures from 11, and three measures from 1

child. We also obtained 95 PEFR records from each of the 40 subjects; one measure of 7 chil-

dren, two measures from 20, three measures from 4 children, and four measures from 9 chil-

dren. The average values with standard deviations of respiratory outcomes are summarized in

Table 3. There were no significant differences in the levels of pulmonary outcomes between

boys and girls.

Fig 1 demonstrates the relationships between ln-transformed levels of urinary phthalate

metabolites and pulmonary functions or airway inflammation on the same day by the analysis

of the GAMM, controlled for age, sex, BMI, urinary cotinine, the use of controller medication

and outdoor environment. Pulmonary function (PEFR, FEV1, FEV1/FVC(%), and FEF25-

75(%)) showed negative relationships with levels of urinary phthalate metabloites. FeNO

showed positive linear relationships with all three urinary phthalate metabloites.

Table 4 shows the associations of phthalate exposures with respiratory outcomes for a ln-

unit increase in urinary metabolites as a result of basic LME model adjusted for age, sex, BMI,

urinary cotinine, and the use of controller medication and LME model with outdoor environ-

mental indicators as confounders. As the urinary MEHHP, MEOHP, and MnBP levels

increased, all the pulmonary function (PEFR, FEV1, FEV1/FVC(%), and FEF25-75(%)) tended

to decrease in both basic LME model and the model with outdoor environmental indicators.

However, only the association of MEHHP with FEV1 was statistically significant in that FEV1

decreased by 0.12 L [95% confidence interval (CI): 0.02, 0.22] as one ln-unit of MEHHP

increased. Meanwhile, FeNO increased as the urinary phthalate metabolites increased. As one

ln-unit of urine MEHHP and MEOHP increased, the FeNO level significantly increased by

13.77 ppb (95% CI: 4.71, 22.82) and 12.99 ppb (95% CI: 2.86, 23.12), respectively, according to

the basic LME model. When ambient PM10, temperature, and RH were controlled, the FeNO

Table 3. Summary of respiratory outcomes of the study subjects.

Respiratory outcome No Total Boys Girls P-valuea

PEFR (L/min) 95 226.9 ± 54.1 228.8 ± 50.8 225.1 ± 57.1 0.755

FEV1 (L) 47 1.6 ± 0.4 1.6 ± 0.5 1.6 ± 0.4 0.730

FEV1/FVC(%) 47 84.2 ± 10.2 83.1 ± 11.2 85.5 ± 9.0 0.389

FEF25-75 (%) 47 69.4 ± 18.6 71.6 ± 19.7 67.4 ± 17.3 0.462

FeNO (ppb) 47 42.7 ± 23.7 41.3 ± 22.0 44.0 ± 22.7 0.688

Data are expressed as mean ± standard deviation
a Test for differences between boys and girls: t-test for means of each variable; PEFR, peak expiratory flow rate; FEV1, forced expiratory volume in 1 second; FVC, forced

vital capacity; FEF25-75, forced expiratory flow at 25% to 75% of FVC; FeNO, fractional exhaled nitric oxide.

https://doi.org/10.1371/journal.pone.0208553.t003
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level increased by 19.47 ppb (95% CI: 9.28, 29.67) and 17.93 ppb (95% CI: 5.86, 30.01), as

MEHHP and MEOHP increased, respectively, showing slightly higher effect sizes compared to

the basic model.

Table 5 shows the lagged effects of phthalate exposure on PEFR in the LME model with

adjustment for outdoor environment in addition to age, sex, BMI, urinary cotinine, and the

use of controller medication. An increase in urinary MEHHP, MEOHP and MnBP was found

to have significant lag effects on the PEFR; an increase in ln-transformed MEHHP, MEOHP

and MnBP was related to a decrease in PEFR on the next day (LAG1) by 12.17 L/min (95% CI:

2.59, 21.74), 10.80 L/min (95% CI: 0.29, 21.32) and 13.65 L/min (95% CI: 5.07, 22.24),

respectively.

Discussion

In this longitudinal panel study, we found that increases in urinary phthalate metabolites were

associated with decreased pulmonary function and increased airway inflammation in asth-

matic children. Our results are consistent with previous studies [6,13,14], in which phthalate

biomarkers were related to changes in respiratory outcomes although the subjective symptoms

Fig 1. Relationship between urinary phthalate metabolites, pulmonary function and airway inflammation. FEV1,

forced expiratory volume in 1 second; FVC, forced vital capacity; FEF25-75, forced expiratory flow at 25% to 75% of

FVC; FeNO, fractional exhaled nitric oxide; MEHHP, mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono-

(2-ethyl-5-oxohexyl) phthalate; MnBP, mono-n-butyl phthalate; PEFR, peak expiratory flow rate.

https://doi.org/10.1371/journal.pone.0208553.g001
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such as wheeze were used instead of objective outcomes such as FEV1. In addition, we found a

significantly positive relationship between secondary metabolites of DEHP and FeNO, con-

trary to the previous study involving 244 children [14]. To the best of our knowledge, this is

Table 4. Estimated regression coefficients for the relationship between urinary phthalates metabolites and respiratory outcomes on the same day.

Respiratory outcome Phthalate metabolites Estimate (95% confidence interval)

Basic modela Model with outdoor environmentb

PEFR

(L/min)

MEHHP -7.18 (-15.74, 1.39) -8.40 (-17.39, 0.60)

MEOHP -7.28 (-16.25, 1.69) -7.50 (-16.89, 1.90)

MnBP -5.28 (-13.31, 2.75) -7.42 (-15.87, 1.04)

FEV1 (L) MEHHP -0.12 (-0.22, -0.02)� -0.07 (-0.18, 0.03)

MEOHP -0.10 (-0.25, 0.04) -0.04 (-0.16, 0.08)

MnBP -0.12 (-0.34, 0.09) -0.13 (-0.29, 0.03)

FEV1/FVC (%) MEHHP -1.10 (-7.75, 5.55) -1.91 (-8.63, 4.82)

MEOHP -0.10 (-7.31, 7.12) -1.08 (-8.49, 6.34)

MnBP -2.21 (-12.41, 7.99) -2.43 (-12.62, 7.77)

FEF25-75 (%) MEHHP -4.59 (-13.63, 4.46) -4.27 (-14.01, 5.47)

MEOHP -2.42 (-12.31, 7.46) -1.57 (-12.38, 9.24)

MnBP -8.17 (-22.05, 5.71) -6.59 (-21.46, 8.28)

FeNO (ppb) MEHHP 13.77 (4.71, 22.82)� 19.47 (9.28, 29.67)�

MEOHP 12.99 (2.86, 23.12)� 17.93 (5.86, 30.01)�

MnBP 10.40 (-5.03, 25.84) 16.42 (-2.09, 34.93)

All results were quantified according to natural log-transformed concentrations of urinary phthalate metabolites

�statistically significant
aresults from basic LME model controlling for age, sex, body mass index, urinary cotinine, and the use of controller medication
bresults from LME model with outdoor environments as additional confounders; MEHHP, mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono-(2-ethyl-

5-oxohexyl) phthalate; MnBP, mono-n-butyl phthalate; PEFR, peak expiratory flow rate; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity;

FEF25-75, forced expiratory flow at 25% to 75% of FVC; FeNO, fractional exhaled nitric oxide

https://doi.org/10.1371/journal.pone.0208553.t004

Table 5. Estimated regression coefficients for the relationship between urinary phthalate metabolites and delayed responses of peak expiratory flow rate (PEFR).

Phthalate metabolites Lagged day Estimate (95% confidence interval)

Basic modela Model with outdoor environmentb

MEHHP LAG0 -7.18 (-15.74, 1.39) -8.40 (-17.39, 0.60)

LAG1 -9.18 (-18.17, -0.18)� -12.17 (-21.74, -2.59)�

LAG2 -4.30 (-11.87, 3.28) -5.00 (-12.70, 2.69)

MEOHP LAG0 -7.28 (-16.25, 1.69) -7.50 (-16.89, 1.90)

LAG1 -9.42 (-19.39, 0.54) -10.80 (-21.32, -0.29)�

LAG2 -3.86 (-11.99, 4.26) -2.74 (-11.04, 5.56)

MnBP LAG0 -5.28 (-13.31, 2.75) -7.42 (-15.87, 1.04)

LAG1 -10.50 (-18.92, -2.07)� -13.65 (-22.24, -5.07)�

LAG2 -3.67 (-10.48, 3.13) -5.47 (-12.23, 1.30)

All results were quantified according to natural log-transformed concentrations of urinary phthalate metabolites

�statistically significant
aresults from basic LME model controlling for age, sex, body mass index, urinary cotinine, and the use of controller medication
bresults from LME model with outdoor environments as additional confounders; all effects were quantified per natural log-transformed concentrations of urinary

phthalate metabolites; MEHHP: mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP: mono-(2-ethyl- 5-oxohexyl) phthalate; and MnBP: mono-n-butyl phthalate.

https://doi.org/10.1371/journal.pone.0208553.t005
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the first study reporting a significant relationship between DEHP exposure and FeNO in asth-

matic children.

Interestingly, we also found that the adverse effect of phthalate exposure on pulmonary

function may have time-lagged effect up to one day. In a human single oral dose study, about

71% of the DEHP dose was excreted after 24 h and an additional 4% of the dose was excreted

in the next 20 h. In urine, the peak value of mono(2-ethylhexyl) phthalate (MEHP), the pri-

mary metabolite of DEHP, was observed only 2 h after administration, and MEHHP and

MEOHP after approximately 4 h [22,26,27]. The short lag effect of DEHP and DnBP on PEFR

may be related to the short physiological half-life of DEHP. However, more studies are

required to elucidate the delayed effect of phthalate exposure on pulmonary function.

It is unclear how phthalates aggravate the pulmonary function and airway inflammation in

asthmatic patients. One possible theory is that phthalate exposure induces oxidative stress and

thus aggravates respiratory outcomes. Asthma exacerbation was associated with increased oxi-

dative stress [28–30], and phthalates were related to increases in oxidative stress markers [31–

35]. Studies from the National Health and Nutrition Examination Survey (NHANES) demon-

strated that MnBP and mono-isobutyl phthalate (MiBP) were significantly associated with

8-hydroxydeoxyguanosine (OHdG), a biomarker of oxidative DNA damage. Additionally, the

urinary concentrations of MBzP were associated with C-reactive protein, a nonspecific marker

of systemic inflammation [31,34,35]. In a cross-sectional study of elementary school children

in Korea, Kim et al. [32] demonstrated that the urinary concentrations of malondialdehyde

(MDA), a product of lipid peroxidation, were significantly associated with the effect of several

metabolites of phthalates (e.g., MiBP, MnBP, and MEHP). In a recent study analyzing the

effect of phthalate on changes in pro-inflammatory cytokines at the gene, protein, and metabo-

lite levels, repeated exposures to MEHP over several days led to elevated lipogenesis and lipid

oxidation, suggesting that MEHP induces a pro-inflammatory state in differentiated adipo-

cytes [33]. Therefore, phthalate exposure may increase pulmonary inflammation via induction

of oxidative stress in asthmatic children. However, the comprehensive mechanism underlying

the effect of phthalate exposures on respiratory health remains unclear.

Geometric mean values of urinary MEHHP, MEOHP, and MnBP in this study were

49.6 μg/g-creatinine (50th–95th percentile, 50.4–141.1), 38.4 μg/g-creatinine (50th–95th per-

centile, 37.3–102.5), and 71.8 μg/g-creatinine (50th–95th percentile, 69.9–206.6), respectively.

These levels are comparable to those from a study of 1,030 non-asthmatic Korean children

aged 3–18 years; geometric means of MEHHP, MEOHP, and MnBP were 49.7 μg/g-creatinine

(50th–95th percentile, 48.0–223.3), 29.5 μg/g-creatinine (50th–95th percentile, 27.3–131.7),

and 63.8 μg/g-creatinine (50th–95th percentile, 55.6–206.8), respectively [36], although MnBP

level in our patients was slightly higher than in children in the general population. Of note, the

levels of all three phthalate metabolites in Korean children are greater than those reported in

342 American children aged 6–11 years [37]. In addition, phthalate exposure level in young

children was higher than that in old children in this study. Concentrations of phthalate metab-

olites under 8.6 years were greater than in those above 8.6 (P-values� .0001 for all three

metabolites), which suggested the need for additional investigation in infants exposed to

phthalates.

In the present study, we estimated DIs for DEHP and DnBP. Based on the urinary MEHHP

and MEOHP, the geometric means of DIs for DEHP were estimated at 3.1 μg/kg bw-day

(range, 0.1–23.5) and 3.8 μg/kg bw-day (range, 0.6–27.6), respectively. The geometric mean of

DI for DnBP was estimated at 7.6 μg/kg bw-day (range, 1.1–140.0) based on MnBP. Compared

with RfD values of DEHP (20 μg/kg bw-day) and DnBP (100 μg/kg bw-day) proposed by

USEPA [20], the geometric means of DIs for the asthmatic children in this study were lower.

However, exposures to DEHP in two children and DnBP in one child were estimated to be
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greater than RfDs, suggesting that a few children, but not all, may require careful attention due

to potential health risks associated with allergic and respiratory diseases.

Bekö et al. [38] reported that more than 90% of the total intake of DEHP was derived from

sources other than indoor air and dust. A previous study also reported that consumption of

dairy products or meat and the use of plastic packaging or storage were significantly associated

with urinary DEHP metabolites [32], implying that oral intake is the main pathway of DEHP

exposure. However, significant associations were also found between non-dietary exposures to

DEHP in the indoor environment and allergic sensitization [13]. Therefore, all potential path-

ways of exposure to DEHP including ingestion and inhalation must be considered in asthmatic

children to reduce the risk properly.

This study is limited because a small number of patients were enrolled from a single center.

Neither FEV1/FVC (%) nor FEF25-75(%) showed statistical significance in the associations with

phthalate exposure, and it might be due to the small sample size. Nevertheless, the association of

phthalate exposure with FeNO and PEFR was robust and significant. Another possible limitation

was that we used spot urine samples instead of 24-hour urine to determine the phthalate expo-

sure in each patient. Urinary concentrations of phthalate metabolites were found to vary accord-

ing to sampling time in a previous study [32], and most phthalates have short half-life [39,40]. It

is still controversial whether the concentrations of phthalate metabolites in a single spot urine

sample reflect the actual levels of daily exposure to phthalate. In contrast, a single measurement

of urinary concentrations of phthalate metabolites in children represented a 6-month mean con-

centration, indicating a reasonable degree of temporal reliability [41]. Therefore, it might be

appropriate to measure the phthalate metabolite levels in a single urine sample for epidemiologic

study to evaluate the risk of allergic diseases [6]. It should be also considered that we did not con-

trol indoor environmental indicators such as PM10, volatile organic compound, temperature,

and humidity in the statistical model, which is another weakness of our study.

Conclusions

Our results suggest that exposures to specific phthalates such as DEHP and DnBP are signifi-

cantly related to exacerbation of pulmonary function and airway inflammation in asthmatic

children. Avoidance of exposure to phthalates may be needed to prevent aggravation of respi-

ratory outcomes in asthma.

Supporting information

S1 Dataset. Data set for the analyses of the associations between phthalate exposures and
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