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Abstract

Recently, emergence of signaling conventions, among which language is a prime example,

draws a considerable interdisciplinary interest ranging from game theory, to robotics to evo-

lutionary linguistics. Such a wide spectrum of research is based on much different assump-

tions and methodologies, but complexity of the problem precludes formulation of a unifying

and commonly accepted explanation. We examine formation of signaling conventions in a

framework of a multi-agent reinforcement learning model. When the network of interactions

between agents is a complete graph or a sufficiently dense random graph, a global consen-

sus is typically reached with the emerging language being a nearly unique object-word map-

ping or containing some synonyms and homonyms. On finite-dimensional lattices, the

model gets trapped in disordered configurations with a local consensus only. Such a trap-

ping can be avoided by introducing a population renewal, which in the presence of super-

linear reinforcement restores an ordinary surface-tension driven coarsening and

considerably enhances formation of efficient signaling.

Introduction

Functioning of societies is to a large extent regulated by various norms and conventions shared

by its members [1]. In some cases, these rules are centrally imposed or coordinated, e.g., a

dress code in a company or the side of the road that one should drive on. But some conven-

tions, such as the color of cloth that we wear in grief or greeting our friends with a handshake,

appeared more spontaneously.

Perhaps the most important convention of this kind, which emerged in the absence of any

explicit, centralized coordination, is language. Human language provides a highly efficient

communication system acquired by individuals in cultural interactions. Some researchers try

to explain how such a system could have appeared and evolved using evolutionary game theory

[2, 3], evolutionary linguistics [4] or cognitive science [5]. A promising approach considers

language as a signaling system, which emerged via a reinforcement learning process. Such a

framework originates from Lewis signaling game [1]. In the simplest version, there are two

players and a fixed number of signals. The speaker sends a signal (which is to correspond to

the state of the world) and the hearer interprets the signal (i.e., takes some action). If he does it
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correctly, both players receive some payoff, which might influence their further actions. The

model can actually be considered as a certain urn model [6, 7]. Some mathematical subtleties

concerning, e.g., the convergence of the above scheme, were analyzed by Skyrms [8] and Beggs

[9], while an adaptation focusing on language evolution was proposed by Lenaerts et al. [10].

Attempts to compare several related approaches where learned signaling might emerge were

also made [11].

In all these studies, the examined number of agents was rather small (≲ 30), however, one

should note that the reinforcement learning leads to nontrivial results already in two-agent

models [1, 8, 12]. Nonetheless, having in mind the evolution of language, much larger popula-

tions of agents should certainly be examined. In such a case, for a population of agents, one

has to specify the network of their interactions. While for a small group, a complete graph,

where each agent interacts with each of the others, seems the most natural topology, for larger

groups of agents, some other structures such as planar or heterogeneous graphs can also be rel-

evant (e.g., when studying the emergence of a linguistic coherence in large-scale communities

such as a city population or a nation). The emergence of language is often modeled as a process

of reaching an agreement (consensus) about linguistic forms used in a population. Opinion

formation or ferromagnetism are also manifestations of such an agreement dynamics. For

such processes, the structure of the network usually plays an important role, determining

whether the consensus will be reached at all, and affecting the way it could be reached [13–15].

Networks examined in the present paper (Cartesian lattices, complete graphs, random graphs)

are only mathematically and computationally appealing idealizations of real networks. Cer-

tainly, placing our models on more realistic networks, which take into account a node-distri-

bution heterogeneity, directionality, small-worlds, modular structure or assortativity [16],

would be desirable.

A model that is often examined in the context of language emergence is the Naming Game

[17]. Due to its computational simplicity, the Naming Game allows for analytical as well as

numerical approaches, and global aspects of its dynamics are now relatively well understood

[18]. In particular, it is found that typically in the Naming Game, a consensus emerges and

reaching such a state resembles the coarsening in the Ising model. The similarity is not acci-

dental because due to the presence of a surface tension [19], both models operate with the

so-called curvature-driven dynamics [20]. Let us notice that the coarsening dynamics of the

Naming Game, which gradually eliminates certain languages and eventually leads to a global

consensus, can be found very appealing in some linguistic contexts. There are even some indi-

cations that the curvature-driven dynamics may underlie such linguistic processes as, e.g., an

evolution of dialects [21]. The simplicity of the Naming Game implies, however, simplicity of

an emerging language, and in many of its versions agents negotiate the name of just a single

object. On the other hand, for models that have a potential to generate more complex lan-

guages, global aspects of their dynamics are rather poorely understood. Such models could

incorporate agents, which, using the reinforcement learning, would try to establish a language

reflecting their multi-object and multi-agent world. An objective of the present paper is to

specify whether and how an efficient communication might emerge in such a system.

Methods

Reinforcement learning via urn model

The basic building block of our model is a Pólya urn model. In the simplest version of this

model, a ball is drawn randomly from an urn with black and white balls [6, 7]. Then the ball is

put back into the urn along with an extra ball of the same color (reinforcement), and the pro-

cess is repeated ad infinitum. In this scheme, the probability to select a ball of a given color is
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proportional to the number of such balls in the urn. We can also consider a generalized version

of this model with the selection probability proportional to the number of balls raised to a cer-

tain power α [22]. In this case, the behavior of the model strongly depends on α. For α< 1, the

model converges toward an equal number of balls of each color, but for α> 1, a monopolistic

solution appears with the urn dominated by one color. The monopolistic solution is in fact a

simple manifestation of a spontaneous symmetry breaking, the phenomenon of much interest

in statistical mechanics or particle physics. The basic Pólya urn model is equivalent to the α =

1 case, thus determining the transition between these two different regimes.

Our intention is to study a multi-agent model of a signaling game with communicating

agents as interacting urns. In the simplest (single-object) version, agents engage in pairwise

interactions to negotiate the word to be associated with an object. After a weighted selection of

a word, the speaker and the hearer increase its weights (reinforcement learning), which affects

subsequent selections. It seems plausible that in the α> 1 regime, a monopolistic solution

would emerge with agents almost always selecting the same word. There is, however, a number

of questions, which one can ask concerning such a linguistic consensus. For example, is it a

global consensus, where the entire population of agents uses the same word, or rather a local

one corresponding to a certain multi-word solution. Most likely the answer will depend on the

topology of interactions between agents, e.g., networks of long-range connectivity should

favour the global consensus. Furthermore, agents may be involved in more complicated inter-

actions, e.g., negotiating simultaneously the names for several objects (multi-object version).

In that case they need some recognition mechanism, and the resulting language is likely to be

more complex.

It is difficult to advocate that in the linguistic contexts, α> 1 should be used. In economy,

the emergence of a monopoly is sometimes associated with a certain positive superlinear feed-

back known as Metcalfe’s Law [23]. For example, in social networks, the greater the number of

users with a certain service, the more valuable the service becomes to the community, and

hence its total value is likely to increase quadratically (α = 2) with the number of its users. One

might expect that a similar superlinear feedback appears during language formation processes.

Most of the results presented in our paper are for α = 2; some of our results demonstrate that

the behaviour of the model is qualitatively similar as long as α> 1. For α = 1 the convergence

toward consensus is typically much slower and in some cases the model does not evolve

toward consensus at all.

Single-object version

In the simplest version of our model, we have a population of N agents, which try to establish a

name for a given object. Each agent A has an inventory of the same Nw words Wi with their

corresponding weights wi(A) (i = 1, 2, . . ., Nw; initially all wi(A) = 1). In an elementary step, a

randomly selected agent (the speaker) interacts with one of its randomly selected neighbors

(the hearer) communicating a word. The probability that the speaker A will select the i-th

word depends on its weight and is given as

siðAÞ ¼ wa
i ðAÞ=

XNw

k¼1

wa

kðAÞ: ð1Þ

After the interaction, both the speaker and the hearer increase their weights of the communi-

cated word by 1. Such an elementary step of our model is illustrated in Fig 1. In our simula-

tions, a unit of time (t = 1) comprises N elementary steps (i.e., in a unit of time, each agent is

on average selected once as a speaker).

linguistic conventions and reinforcement learning
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Multi-object version

We also examine a more general version of our model, in which agents try to establish names

for a set of No objects. Their inventories are more complex now as they contain the same set of

Nw words Wi (coupled with their respective weights) for each object. In other words, each

inventory consists now of No copies of inventories from the single-object version and thus

each agent A has Nw No weights wi, j(A), where i = 1, . . ., Nw and j = 1, . . ., No. First, a randomly

selected speaker chooses an object with a uniform probability 1/No. Then the speaker selects

the word to be communicated taking into account the weights associated with the words for

the chosen object. By analogy with Eq (1), the probability that agent A will select the i-th word

for the j-th object equals

si;jðAÞ ¼ wa
i;jðAÞ=

XNw

k¼1

wa

k;jðAÞ: ð2Þ

Next, the role of the hearer (H) is to assign an object to the communicated word. This word,

say Wi, appears in the hearer’s inventory No times with weights wi, j(H), where j denotes the

object. The hearer uses these weights to guess which object the speaker is talking about. Hence,

the hearer recognizes the j-th object as that communicated by the i-th word with probability

ri;jðHÞ ¼ wa
i;jðHÞ=

XNo

k¼1

wa

i;kðHÞ: ð3Þ

Provided that the object recognized by the hearer is the same as that chosen by the speaker,

both agents increase the corresponding weights by 1. An elementary step of this version of the

model is illustrated in Fig 2.

The above specified rules are consequences of a number of simplifying assumptions and

certainly more realistic versions might be considered. For example, one might assume that the

words in agents’ inventories are not necessarily identical and agents could learn new words

Fig 1. An elementary step of a single-object version of the model (Nw = 3). Using the probabilities defined in Eq (1),

the speaker selects one of its words (here: W2). Next both the speaker and the hearer increase their weights of the

selected word by 1.

https://doi.org/10.1371/journal.pone.0208095.g001
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from each other. Most likely such a change would require a more sophisticated recognition

mechanism and perhaps a notion of a distance between words would have to be used. Further

analysis of such a version, although it seems more realistic and potentially interesting, is left

for the future.

Population renewal

We also introduce a simple modification of our model (both in its single and multi- object ver-

sions), which takes into account a population renewal. The modification seems to be plausible,

especially for modeling a formation of a communication system in a population of humans. In

such population, when considered at a timescale of, say, hundreds of years, we should take

into account a generational turnover (and possibly migrations [24]). A child learns the lan-

guage of its parents but it might also acquire a (possibly different) language of its neighbors.

Certainly, for a young person this is more likely to happen than for an adult. Let us notice that

in urn models, due to the accumulation of weights after a large number of iterations, it is

almost impossible to shift their balance (i.e., change the language). To allow for such a shift, we

introduce a population renewal: With (usually small) probability p, the agent selected to be a

Fig 2. An elementary step of a multi-object version of the model (Nw = 3, No = 2). With a uniform probability 1/No,

the speaker chooses an object (the corresponding section of the inventory is encircled by the dotted line). Using the

relevant weights (in solid circles), the speaker calculates the probabilities defined in Eq (2) and selects one of its words

(here: W1). Next the hearer tries to guess the object the speaker is talking about by calculating the probabilites (3) based

on its weights of the communicated word (in circles). When the hearer’s guess is correct, both agents increase their

corresponding weights by 1.

https://doi.org/10.1371/journal.pone.0208095.g002
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speaker is replaced with a new agent (with all weights equal to 1), while with probability 1 − p,

the speaker acts as previously defined.

Results

Single-object version

We analysed the behavior of our model for several interaction networks, namely Cartesian lat-

tices, complete graphs and random graphs. The results obtained indicate that on Cartesian lat-

tices the model gets stucked in a disordered structure, where consensus is only local (Fig 3).

Most of the agents reach a monopolistic regime and communicate with their neighbors with

the same words. There is only a small fraction of interfacial agents, which persist in a more

symmetric state. For Nw = 2, it is tempting to confront our results with some other statistical-

mechanics models. In particular, the snapshot configurations in Fig 3 suggest that initally our

model coarsens, similarly to the Naming Game and low-temperature Ising models. However,

contrary to these models, the evolution of our model gets trapped in a disordered state much

before reaching the uniform (mono-word) state.

To examine in more detail the behavior of the model, we calculated for Nw = 2 the quanti-

ties mG and mL defined as

mG ¼ j
1

N

X

A

ðs1ðAÞ � s2ðAÞÞj;

mL ¼
1

N

X

A

js1ðAÞ � s2ðAÞj
ð4Þ

where summation is over all agents A in our model.

Fig 3. Spatial distribution of s1, the probability that an agent will select word W1 (Eq (1)). Results for a single-

object model on a square lattice with N = 102 � 102 = 104, α = 2, Nw = 2. The dynamics traps the model in a disordered

state (the configurations for, e.g., t = 103 and t = 104 differ only slightly). Since s1 is generally close to unity or to zero, it

means that almost every agent developed a strong preference toward one of the words.

https://doi.org/10.1371/journal.pone.0208095.g003
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The quantities mG and mL allow us to examine the global (mG) and local (mL) symmetries

of the model. We do not present the results for α< 1, in which case the model remains sym-

metric (for each agent, s1 = s2 = 1/2), and consequently, mG = mL = 0. For α> 1, however, the

asymmetry in an agent’s inventory implies that s1 6¼ s2 and thus mL> 0. When the system is

disordered, as in Fig 3, then there is no global preference toward any of the two words and

mG = 0.

Numerical results for α = 2 support such an analysis. In two dimensions, relatively large mL

(Fig 4) indicates that most of the agents operate in a monopolistic regime. Moreover, mG

remains close to zero, which confirms the disordered nature of the regime (Fig 5). Results for

the one- and three-dimensional Cartesian lattices show a similar behavior. Much different

behavior is seen, however, for a complete graph, where each agent interacts with every other

one. In this case, mG quickly reaches unity, which indicates that basically all agents communi-

cate using the same word. It means that on the complete graph not only the local symmetry is

broken (mL> 0) but also the global one (mG> 0). For α = 1, simulations for both a square lat-

tice and a complete graph show that mL is small (and decreases in time) and thus even the local

symmetry is preserved (Fig 4).

Having in mind modeling the emergence of communicative consensus in a population of

agents, it is desirable to examine the behavior of our model also on heterogeneous networks.

The simplest ones are perhaps random graphs. We examined our model on Erdös-Rényi ran-

dom graphs [25, 26] of an average node degree z. For large z (z = 10), the model behaves simi-

larly as on a complete graph and quickly reaches a global consensus about the communicated

word (Fig 6). For smaller z (z = 2, 3), the model remains trapped in a disordered phase, where

consensus is reached only locally (similarly as on a square lattice).

Fig 4. Time dependence of mL. Results for a single-object model with Nw = 2 on complete graphs (N = 105) and

Cartesian lattices with d = 1 (N = 105), d = 2 (N = 3002 = 9 � 104), and d = 3 (N = 503 = 125 � 103). In the case of the

ordinary reinforcement (α = 1), none of the words is even locally preferred on a complete graph (since mL! 0), and

only a small asymmetry is seen for a square lattice. The results presented (also in the following figures) are averages

over 20 independent runs. Statistical errors are typically smaller than plotting symbols and are omitted.

https://doi.org/10.1371/journal.pone.0208095.g004
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Fig 5. Time dependence of mG. Results for a complete graph and Cartesian lattices with the same simulation

parameters as in Fig 4. Only for a complete graph and α = 2, a global symmetry gets broken and one word dominates

in the entire population of agents.

https://doi.org/10.1371/journal.pone.0208095.g005

Fig 6. Time dependence of mG (random graphs). Results for random graphs of an average node degree z and a

complete graph (α = 2, Nw = 2, N = 105). Only for sufficiently large z, the behavior on the random graphs is similar to

that on the complete graph. Averaging over 20 runs includes generation of independent graphs.

https://doi.org/10.1371/journal.pone.0208095.g006
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Let us recall that for random graphs, z = 1 marks the percolation transition [26]. To study

the formation of a global consensus, one needs to consider only z> 1, since for z< 1 the

graph decomposes into separate components. Random graphs for finite z are tree-like hence

they are effectively infinite-dimensional. One might thus expect that a statistical-mechanics

model placed on such graphs behaves similarly for any z> 1. Such an expectation is supported

with the exact solution of the Ising model on random graphs [27], which shows that for any

z> 1, the model has a finite-temperature critical point belonging to the mean-field universality

class. Also the Naming Game exhibits a similar behavior and numerical simulations show that

for any z> 1, it reaches a global consensus [14]. However, for directed random graphs, the

consensus dynamics does depend on z and a global consensus appears but only for z> 1.96 in

the Naming Game and for z> 1.85 in the Ising model [14]. The present model seems to have a

similar behavior with the average node degree z playing an important role. A global consensus

characterized by nonzero mG appears for z = 10 while for z = 2 and 3, which is still above the

percolation threshold, the model gets trapped in a disordered configuration. A precise location

of the transition between these two regimes remains, however, beyond the scope of the present

paper.

There is a number of models with dynamics driving the system toward consensus, such as,

for example, the Voter, Ising, or Naming Game models. All of them evolve toward consensus

but they differ in the details of the evolution. One of the important quantities characterizing

their dynamics is a surface tension [14], which keeps the interface (i.e., the boundary between

different phases) bounded and is responsible for shrinking droplet excitations. The dynamics

of the Ising model or the Naming Game exhibit a number of similarities, such as, for example,

a power-law coarsening, which is to a large extent a consequence of the surface tension present

in these models [20]. The absence of a surface tension results in a quite different dynamics.

Indeed, the Voter model, known to have a tensionless dynamics, exhibits, for example, in the

two-dimensional case, a logarithmically slow coarsening and in the three-dimensional version,

it does not coarsen at all. Let us notice that in certain disordered systems (spin glasses), the

dynamics might also be tensionless [28, 29]. The dynamics of our model on regular networks,

which (as shown in Fig 3) remains disordered, evolves very slowly and has a well developed

interface, may also be tensionless. Possible relations with some other disordered (and maybe

glassy) systems is interesting but beyond the scope of the present work. As we show in section

on population renewal, one can modify the dynamics of our model so that it does not get

trapped in a disordered state and most likely evolves as, e.g., an Ising model. It may indicate

that in such a way we restore the surface tension into the dynamics.

We do not present here the corresponding numerical results, but we analysed our model

also for Nw> 2 and observed a qualitatively similar behavior. The model gets stucked in a dis-

ordered structure for finite-dimensional Cartesian lattices but rather quickly reaches a mono-

word phase on a complete graph or sufficiently dense random graphs.

Multi-object version

In the previous section, we analysed a model, in which agents try to establish a name for a sin-

gle object. Here we examine its multi-object generalization. On a square lattice, the multi-

object version behaves similarly to the single-object one, namely it gets trapped in a disordered

configuration, where only some local consensus appears. Indeed, simulations for No = 2 show

that only small groups of agents communicate with the same word (Fig 7). We do not present

here our numerical results, but a group of agents may reach a fairly good consensus while talk-

ing on a certain object, while much worse agreement with respect to another one (in other

words, the panels in Fig 7, which present the dominant words used by agents for the first

linguistic conventions and reinforcement learning
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object, would be uncorrelated with those for the second object). As in the single-object version,

after some initial transient, the evolution of the model nearly stops (in Fig 7 the configurations

for t = 105 and t = 107 are almost identical). On a complete graph, a much better consensus is

reached. During simulations, we measured a success rate defined as a fraction of successful

communication attempts in a unit of time. Numerical results for No = 10 show that when Nw,

i.e., the number of words in agents’ inventories, is large enough (Nw = 50 and 70), the model

reaches rather fast a regime, where the success rate is nearly 1 (Fig 8). For smaller Nw (20, 30,

and 40), the success rate is much lower, even after long simulations. It suggests that large- and

small-Nw regimes may be qualitatively different. Let us also notice that for α = 1, the regime

with the success rate close to unity is reached in time approximately a decade longer than for

α = 2. Previous simulations in a similar numerical setup but for a much smaller number of

agents and shorter time scale suggested that the ordinary reinforcement (α = 1) does not lead

to an optimal communication system [11].

Fig 9 provides yet another indication that the dynamics for large and small Nw considerably

differ. In this figure, we present a total weight associated with a given word, defined as follows:

wtotal
i ¼

X

A;j

wi;jðAÞ; i ¼ 1; 2; . . . ;Nw ð5Þ

where summation is over all agents (A) and objects (j). In Fig 9, what is actually plotted is a

normalized total weight given as wtotal
i =

P
kw

total
k . For No = 10 and Nw = 50, we can notice 10

peaks corresponding to the 10 words that are mainly in use. Taking into account a very large

success rate (Fig 8), it means that the agents established a single word for each object, which

became dominant in their inventories related to this object. As a result only this word is

selected by speakers when they decide to talk about the object and just this word leads then to

a correct recognition of the object by hearers. The resulting language provides a nearly perfect

Fig 7. Distribution of the dominant words that agents use to talk about the first object. Left: simulations on a

square lattice with No = 2, Nw = 10, N = 50 � 50 = 2.5 � 103, α = 2. Right: the same simulations but with a population

renewal (with probability p = 10−5).

https://doi.org/10.1371/journal.pone.0208095.g007
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Fig 8. Time dependence of the success rate. Results for the model on the complete graph of size N = 104 with No = 10,

several values of Nw, and α = 2. For Nw = 50 and α = 1 (yellow line), we can see a much slower convergence to a

consensus than for Nw = 50 and α = 2. The black line shows the success rate for the version with a population renewal

(with probability p = 10−4).

https://doi.org/10.1371/journal.pone.0208095.g008

Fig 9. Distribution of the total (normalized) weights associated with particular words. Results for simulations with

No = 10 on the complete graph of size N = 104 and simulation time t = 106 (α = 2). Simulations for t = 105 lead to nearly

identical distributions.

https://doi.org/10.1371/journal.pone.0208095.g009
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one-to-one mapping between objects and words. Let us emphasize that such a global language

emerges spontaneously, as a result of two-agent interactions only.

Much different behavior can be seen for smaller Nw. In Fig 9, some peaks can be also distin-

guished for Nw = 30, but in addition there is an entire spectrum of less important but clearly

nonnegligible words, which are being used by agents. The one-to-one correspondence between

words and objects is missing in this case and the resulting language has a much smaller success

rate (Fig 8). Since agents increase the weights of the communicated word only when the object

is recognized correctly, it means that also nondominant words lead sometimes to a correct rec-

ognition—otherwise their weights (in relation to dominant words) would diminish to zero. It

is an analogue of synonymy, a common feature of natural languages. Synonymy, however,

does not reduce the success rate, while homonymy (or polysemy [30]) does. Homonymy

appears when a certain word has significant weights associated with more than one object.

Communicating such a word may result in an incorrect recognition of the object and the suc-

cess rate smaller than 1 indicates that homonyms are also present in the emerging language of

our model. The structure of our model is quite complex and some intermediate scenarios are

also possible. Namely, with respect to some objects, agents may develop a one-to-one relation

between objects and words (like for Nw = 50), while with respect to some others, a more com-

plex language containing synonyms and homonyms may be used.

Population renewal

As we have already seen, both the single- and multi-object versions of our model on a two-

dimensional lattice get trapped in a disordered regime, with only a local consenus reached. In

such a regime, the coarsening dynamics, which could lead to formation of larger clusters of

agents that reached a consensus, becomes very slow. Some other models with a consensus

dynamics, such as the Ising model or the Naming Game, are known to have much faster coars-

ening dynamics, which could be attributed to the surface tension generated in these dynamics.

In this section, we examine our model modified in such a way that the dynamics does not get

trapped in a disordered state and induces perhaps some kind of a surface tension. Namely, we

introduced a simple mechanism of a population renewal, which means that in each step, the

selected agent either (with some probability p) is replaced with a new one (with all weights

reset to 1) or else the agent acts as a speaker.

The time evolution of a single-object model with a population renewal on a square lattice is

shown in Fig 10. Certainly, the evolution in this case is different than in the absence of popula-

tion renewal (Fig 3). It seems that there is a tendency to reduce the length of interfaces in this

model, just as in some models with a surface tension.

Additional arguments that the dynamics generates some kind of an effective surface tension

come from the analysis of time dependence of 1 −mL (Fig 11). Let us notice that significant

contributions to this quantity come mainly from interfacial agents. Provided that the charac-

teristic cluster size is l, we easily find a scaling relation 1 −mL� l−1 [31]. From the time depen-

dence of 1 −mL (Fig 11), we conclude that l� t0.41 and such a value seems to be independent

of the renewal probability p> 0. Only for p = 0, we obtain a much slower increase of l, perhaps

logarithmic (in time), which reflects the trapping of the model in a disordered configuration

as, for example, in Fig 3. A small deviation from the Ising model increase l� t1/2 [20] may be

attributed perhaps to a diffusive structure of an interface in our model. Let us notice that a sim-

ilar increase l� t0.45 was observed also in certain opinion-formation models that are expected

to have a dynamics with an effective surface-tension [32].

We also analysed how the coarsening dynamics depends on α. Our results for the renewal

probability p = 10−3 are shown in Fig 12. It seems that the asymptotic decay of 1 −mL is
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Fig 10. Spatial distribution of s1, the probability that an agent will select word W1 (Eq (1)). Results for a single-

object model on a square lattice with N = 102 � 102 = 104, α = 2, Nw = 2, and with the renewal probability p = 10−4. In

this case, contrary to Fig 3, clusters of agents with the same dominant word grow steadily.

https://doi.org/10.1371/journal.pone.0208095.g010

Fig 11. Time dependence of 1 −mL for several values of the renewal probability p. Results for a single-object,

square-lattice version of our model. Simulations were made for α = 2, Nw = 2, and N = 200 � 200 = 4 � 104, and the

results are averages of 20 independent runs. The line segment has a slope corresponding to t−0.41.

https://doi.org/10.1371/journal.pone.0208095.g011
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characterized by the same exponent for any α> 1. A qualitatively different behavior is seen

only for α = 1, where the model does not coarsen. These results suggest that the behavior of

our model, also with respect to other properties, should not depend on a particular choice of α
as long as α> 1 (superlinear reinforcement).

The population renewal affects also a multi-object version of our model. In the absence of

the renewal, the model on the complete graph (for No = 10 and Nw = 30) develops a language

with a reduced success rate (Fig 8) and with no clear object-word mapping (Fig 9). However,

even a tiny renewal probability (p = 10−4) considerably increases the success rate of communi-

cation (Fig 8). We do not present our numerical data here but in this case, a clear object-word

mapping does emerge, similar to that in the upper panel of Fig 9. Also a multi-object square-

lattice version of the model behaves differently for p> 0. Indeed, the snapshot configurations

(Fig 7) show that in this case the model does not get trapped (as for p = 0) but coarsens simi-

larly to the single-object version with population renewal (Fig 10).

The overall behavior of our models is summarized in Table 1.

Discussion and conclusions

The objective of the present study was to examine the emergence of linguistic conventions in a

multi-agent model with reinforcement learning. Models of this kind have a potential to gener-

ate a complex language, which reflects their multi-object and multi-agent structure, but global

aspects of their dynamics are rather purely understood. This is much in contrast to some sim-

pler models with agreement dynamics, like Ising model or Naming Game, which due to the

surface tension have curvature-driven dynamics [20], or voter model, which lacks the surface

tension and has a much different dynamics [33].

In the single-object version, agents do not need to recognize the object and each communi-

cation attempt is in a sense successful. It turns out that it is the structure of the network of

interactions between agents that plays a decisive role and determines the asymptotic state of

Fig 12. Time dependence of 1 −mL for several values of α. Results for a single-object square-lattice version of our

model for the renewal probability p = 10−3. Simulations were made for Nw = 2 and N = 200 � 200 = 4 � 104, and the

results are averages of 20 independent runs.

https://doi.org/10.1371/journal.pone.0208095.g012
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the model. While for a complete graph or sufficiently dense random graphs, a global consensus

is reached and all agents use the same word for communication, on finite-dimensional lattices

or sparse random graphs, only a local consensus is reached and the model gets trapped in a dis-

ordered configuration.

In the Naming Game, which is an alternative model describing formation of linguistic con-

sensus, agents also try to establish a name for a given object. However, in this case a global con-

sensus is much easier to reach except on networks with a strong community structure [34, 35].

Such a strong tendency to reach a consensus could be explained using the notion of an effec-

tive surface tension, which is generated in the Naming Game. It turns out that when a popula-

tion renewal is introduced, the surface tension emerges also in our model and its evolution

toward consensus is much enhanced. However, such a curvature-driven evolution appears

only for α> 1, which indicates the importance of a superlinear reinforcement. Our study thus

shows that a physical intuition developed for some statistical-mechanics models may be also

used to understand to some extent reinforcement learning systems.

Having in mind linguistic contexts, the multi-object version of our model is more interest-

ing. The results show that in this case the structure of the network plays an important role as

well. On complete graphs, an efficient global communication may be established, such that

all agents unambiguously match each object with the same corresponding word. On finite-

dimensional lattices, such a mapping is again only local (and partial) and the model gets

trapped in a disordered configuration. In the multi-object version, in addition to the network

structure, other parameters are also important, namely the number of objects No and the num-

ber of words that agents have at their disposal Nw. Our simulations suggest that a unique

object-word matching may emerge only when Nw is considerably greater than No. If this is not

the case, the resulting communication is less efficient and the emerging language contains

some homonyms and synonyms. Of course, such behavior should be by no means considered

as undesirable or unrealistic, since all natural languages contain such forms. Further studies

Table 1. Behavior of our models as a function of dynamics and network structure.

Dynamics Network Behavior

Single-Object

α> 1, no renewal Cartesian local consensus

Complete graph global consensus

Random Graph global/local consensus for large/small z
α> 1, renewal Cartesian global consensus, power-law coarsening

α = 1, no renewal Cartesian no local consensus

Complete graph no local consensus

α = 1, renewal Cartesian no local consensus

Multi-Object

α> 1, no renewal Cartesian partial local consensus

α> 1, no renewal, large Nw Complete graph unique object-word mapping

α> 1, no renewal, small Nw Complete graph language with homonyms and synonyms

α > 1, renewal, small Nw Complete graph unique object-word mapping

α> 1, renewal Cartesian unique object-word mapping, power-law coarsening

Global consensus means that all agents communicate using the same word. Local consensus means that only

neighbouring agents use the same word. Partial local consensus means that neighbouring agents use the same words

to communicate only with respect to some objects while with respect to others, there may be no efficient

communication.

https://doi.org/10.1371/journal.pone.0208095.t001
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concerning, for example, the frequency and durability of homonyms and synonyms in our

model would be desirable, but are left for the future.

In the multi-object version, the population renewal also enhances formation of an efficient

communication. The population renewal basically resets the weights of an agent, and thus it

plays a role similar to forgetting, which is a factor already known to improve the performance

of reinforcement learning systems [36]. Our snapshot configurations show that also in this

case, the population renewal most likely induces a certain surface tension, similarly to the sin-

gle-object version. Hence, one of the merits of our work is the demonstration that reinforce-

ment learning systems with the population renewal and superlinear reinforcement (α> 1)

reveal certain similarities to some other models with the agreement dynamics (such as the

Naming Game) and exhibit a power-law coarsening. However, without (or perhaps with a suf-

ficiently small) population renewal or for (sub-)linear reinforcement (α� 1), the dynamics of

these two systems considerably differ.

Let us notice that the surface tension might be of some importance also in linguistic pro-

cesses and, for example, some recent works show that the boundaries of dialect regions are

controlled by a length-minimizing effect analogous to the surface tension [21]. Moreover,

the fast extinction of natural languages, especially those of a small number of users, indicates

that some coarsening does take place. Hopefully, some simple models can be propounded,

which might provide some insight into such a linguistic dynamics. Of course, the processes of

emergence, diversification or extinction of languages are very complex and affected by a large

number of factors such as, for example, politics, geography, economy, or technological devel-

opment. Thus computational modeling may provide their very crude, qualitative description

at most.

Population renewal supplies a new generation of language users. Similarly as children, they

quickly learn a language of the neighbors they interact with. Let us notice that some linguists

strongly advocate the view that profound language changes occur in the process of language

learning and children perhaps play an important role in this process, for example, making mis-

takes [37, 38]. However, such a view can be questioned because the modifications children

generate seldom survive till their adulthood [39, 40] due to, for example, usually lower social

and economic status of youngsters [41]. In our opinion, it would be certainly interesting, as

well as feasible, to consider an aged-structured version of our model and analyse the role of the

young generation. As we have already noticed, young users are needed to generate a surface

tension and coarsening (which in the context of human language evolution is probably more

realistic than a population trapped in a multilanguage regime). In the aged-structured popula-

tion, a peer communication is an expected feature, but with such preference being too strong,

the population could split up into separate linguistic communities. Analysing the emergence

of a young generation dialect and its possible influence on the language of adults is, however,

left as a future problem.
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