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Abstract

Plasma cell segmentation is the first stage of a computer assisted automated diagnostic tool

for multiple myeloma (MM). Owing to large variability in biological cell types, a method for

one cell type cannot be applied directly on the other cell types. In this paper, we present

PCSeg Tool for plasma cell segmentation from microscopic medical images. These images

were captured from bone marrow aspirate slides of patients with MM. PCSeg has a robust

pipeline consisting of a pre-processing step, the proposed modified multiphase level set

method followed by post-processing steps including the watershed and circular Hough

transform to segment clusters of cells of interest and to remove unwanted cells. Our modi-

fied level set method utilizes prior information about the probability densities of regions of

interest (ROIs) in the color spaces and provides a solution to the minimal-partition problem

to segment ROIs in one of the level sets of a two-phase level set formulation. PCSeg tool is

tested on a number of microscopic images and provides good segmentation results on sin-

gle cells as well as efficient segmentation of plasma cell clusters.

Introduction

Cell classification via image processing has recently gained interest from the point of view of

building computer assisted diagnostic tools for hematological malignancies. The computer

assisted image processing tools can evaluate morphological features that are not discernable

with human eyes. If automated, these tools can be used to analyze large number of cells in an

objective manner for reliable assessment of specific cell populations of interest. The process

of ‘Cell Segmentation’ is a precursor to cell classification implemented via image processing

and hence, is the first stage of any computer assisted diagnostic tool. Several methods for cell

segmentation have been described in the literature and often multiple methods are combined

to achieve reasonable results depending on the type of cell images. Broad categories of
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segmentation methods include intensity thresholding methods, region-based segmentation

methods, machine learning based methods and active contour methods [1].

Intensity thresholding based segmentation is one of the simplest and fastest methods of

image segmentation. Dorini et al. [2] used intensity thresholding to segment nuclei of mature

lymphocytes. Sharif et al. [3] utilized information contained in YCBr color space along with

intensity thresholding, morphological operations, and watershed segmentation to segment red

blood cells from the microscopic images. The method of Dorrini et al. [2] fails to delineate the

regions of interest (ROI) and the method of Sharif et al. [3] does not accommodate spatial

intensity variation in images as it depends on the structuring element chosen. Hence, both the

methods do not yield robust results, especially, when cells are present in clusters.

Region-based segmentation approaches look for connected components on the basis of

properties such as texture and brightness. These approaches include seed based region growing

and merging approaches [4–6]. In general, region growing methods are computationally

expensive, are sensitive to noise, require correct identification of seeds, are local in nature

without any global view, and at times have problem with the stopping criterion.

Machine learning based methods carry out segmentation via grouping of similar pixels (e.g.

based on Euclidean distance on intensity) into clusters or by using other methods that learn

pixel characteristics. Watershed, k-means clustering, and Support Vector Machines (SVM) are

some of the most often used algorithms in segmentation [3, 7–10]. However, none of the

above methods are able to segment cells of interest from cell clusters.

Active contour approach works on deformable curves that change their shapes according to

the boundaries of targeted objects in an image using internal and external forces defining the

motion of closed 2D contours [11–17]. Sadeghian et al. [12] carried out edge detection using

Canny filter followed by geodesic snake contour method to segment leukocytes. However,

these methods work on single cell windows extracted from the full microscopic image. Also,

edge detection fails whenever intensity of nucleus and cytoplasm are similar.

With the focus of our study on building a robust automated pipeline for residual disease

estimation in Multiple Myeloma (MM), a type of plasma cell (PC) cancer, the segmentation of

the plasma cells was initiated as the first step. The pre-determined challenges specific to plasma

cell segmentation are as follows (Fig 1): 1) Plasma cell segmentation requires segmentation of

both nucleus and cytoplasm. At times, the color contrast of nucleus and cytoplasm and, more

often, of the cytoplasm with the adjacent background is less due to overstaining or understain-

ing. This poses difficulty in cell segmentation; 2) Plasma cells may be clustered together and

hence, segmentation of the overlapping/touching cells is required. Generally, this is difficult

because of different configurations as a) nuclei of different cells are touching, b) nuclei of one

and cytoplasm of another cell are touching, or c) the cytoplasm of different cells are touching;

and 3) Presence of more than one type of stained and unstained cells poses another challenge

in extracting plasma cells of interest.

Although region growing and machine learning based methods have largely been used in

cell segmentation, these methods are not effective in cluster segmentation [4–6, 8]. Contour

based approaches such as snake models, level set models, and their variants are increasingly

being used for segmentation in medical microscopic images [12–15, 17]. For example, Yang

et al. [13] incorporated a color based gradient in the standard Gradient Vector Flow (GVF)

model, a contour based approach to exploit the crucial information present in different histo-

logical components such as nucleus and cytoplasm of lymphocytes, follicle and mantle cells.

Zamani and Safabakhsh [14] worked on a similar approach using GVF based on color gradi-

ents with the gradient flow initialized with the nuclei contours to identify nuclei using adaptive

histogram thresholding to perform segmentation of lymphocytes. However, the accuracy of

segmentation depends on the preliminary step of locating nuclei using histogram thresholding
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that is generally not robust. Also, this approach fails to segment cell clusters. Yu et al. [15] used

level set by Chan-Vese [16] to first segment only the nuclei of nerve cells and later used another

level set to segment complete cells (nucleus and cytoplasm). Recently, Lu et al. [17] proposed a

joint level set initialized with cell nuclei for pap smear cell segmentation. However, this

approach fails in regions of low contrast between the nucleus and the cytoplasm.

From the above literature review, it appears that a contour based method may be able to

provide a clear boundary of cells compared to morphological, thresholding, or clustering tech-

niques. Since most of the above contour based methods are deterministic, a probabilistic level

set formulation may be able to capture intra-subject and inter-subject related intensity varia-

tions within biological components such as within the cytoplasm. Region based and machine

learning based methods have largely been used in cell segmentation but these methods are not

observed to be effective in cluster segmentation. Contour based approaches such as snake

models or level set models are the state-of-the-art medical image segmentation methods that

are increasingly being used for segmentation in medical microscopic images [12–15, 17–19] as

well as in other medical imaging applications, say, CT segmentation and brain MRI segmenta-

tion [20–23].

This motivates us to explore level set formulation within the probabilistic framework for

plasma cell segmentation including cluster segmentation from microscopic images. In the

present study, the existing methods as well as a recently described method by Saeedizadehet al.

[24], using combination of thresholding, modified bottleneck algorithm, and watershed to seg-

ment plasma cells, was evaluated for segmentation of plasma cells in our set-up. The ultimate

purpose of our work is to build an automated multiple myeloma residual disease detection

tool for deployment in the hospital. Incorrect segmentation or partial segmentation of PCs will

hinder the development of the subsequent classifier. Thus, we were motivated to explore the

problem of PC segmentation afresh for robust results.

Materials and methods

Microscopic images were captured from bone marrow aspirate slides of patients diagnosed

with multiple myeloma as per the standard guidelines [25]. Slides were stained using Jenner-

Giemsa stain. Images were captured at 1000x magnification using Nikon Eclipse-200

Fig 1. Challenges associated with plasma cell segmentation; numbers in boxes indicate the following image regions: j1j nucleus of plasma cells, j2j

cytoplasm of plasma cells, j3j unstained cells, and j4j background. Three challenges are highlighted via this Fig: 1) At times, the color difference

between the cytoplasm with the adjacent background is less; 2) Plasma cells may be clustered together and hence, segmentation of the overlapping/

touching cells is required; and 3) there may be more than one type of stained and unstained cells posing difficulty in extracting plasma cells of interest.

https://doi.org/10.1371/journal.pone.0207908.g001
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microscope equipped with a digital camera. Images were captured in raw BMP format with a

size of 2560x1920 pixels. In all, our dataset consisted of 85 images. We trained our pipeline on

15 images. All the images were stain normalized, using the methodology proposed earlier [26],

before being used for segmentation.

Written informed consent was obtained from all the subjects as per the guidelines of

the Institute Ethics Committee (IEC) of All India Institute of Medical Sciences (AIIMS),

New Delhi, India (Approval No. IEC/NP-145/2013 & RP-32/06.05.2013). Subsequently, a

waiver for written informed consent for obtaining photomicrographs from the bone mar-

row aspirate slides was taken from IEC (approval No. OP-06/01.12.2017). One of the co-

authors (RG) had access to the patient identifying information which was completely

removed from the image data sets before sharing of data with the other co-authors for build-

ing up the PCSeg tool presented in this paper. The dataset is available at the public reposi-

tory [37].

For the purpose of segmentation, an MM image can be divided into four regions of inter-

est (ROI): (1) nucleus of PC, (2) cytoplasm of PC, (3) unstained cells, and (4) background

(Fig 1). For efficient segmentation of all the four ROI, PCSeg Tool has been designed with the

following four steps:

Step-1: Statistical modeling and computation of separability index of the four ROI in the

images

Step-2: Removal of unstained cells

Step-3: Extraction of nucleus and cytoplasm of plasma cells using the proposed multiphase

level set methodology

Step-4: Cluster cell segmentation using watershed and circular Hough transform

Step-1: Statistical modeling and computation of separability index of

regions of interest

First, the statistical characterization of the four ROI of MM images, i.e., nucleus of PC, cyto-

plasm of PC, unstained cells, and background (Fig 1) was done and the intensity profile of

these regions was studied in different color spaces. A set of fifteen reference MM images, rep-

resentative of the color histograms, were chosen and the histograms of RGB, HSV, and Lab

color channels of the four ROI were marked in these reference images as shown in Fig 1. Since

images were at a very high resolution of 2560 x 1920, sufficient numbers of pixels were avail-

able for computing the histogram. Histograms of RGB, HSV, and Lab color channels of the

four ROI and their corresponding Gaussian probability density functions (PDFs) were fitted

to the normalized histograms.

Fitted PDFs are drawn in Fig 2 in the intensity ranges of the original histograms. It is evi-

dent from these histograms that 1) nucleus and cytoplasm overlap in every color channel,

although this overlap is considerably less in blue (B), hue (H), and value (V) channels; 2)

nucleus and cytoplasm appear considerably separated from the background in red (R) and

green (G) channels; and 3) the unstained cells do not overlap with nucleus and cytoplasm of

plasma cells in the hue (H) channel. Thus, although it may be possible to remove unstained

cells using the intensity profile in H-channel, nucleus and cytoplasm of plasma cells cannot be

discerned using any single color channel. Rather, a combination of color channels would be

required to separate these.

In order to quantify the separability of different image regions using probability distribu-

tions in RGB, HSV, and Lab color spaces, we used Bhattacharyya distance (DB) as a metric that
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Fig 2. Histogram of four image regions (nucleus, cytoplasm, background, and unstained cells) in:(a)-(c) RGB, (d)-

(f) HSV, and (g)-(i): Lab color spaces; Corresponding fitted probability density functions (PDFs): (a0)-(c0) RGB, (d0)-

(f0) HSV, and (g0)-(i0): Lab color spaces.

https://doi.org/10.1371/journal.pone.0207908.g002
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quantifies separation between two PDFs p and q [27] as:

DBðp; qÞ ¼ � log e

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p
dx

� �

:

Prior to computing DB, we applied contrast stretching on the RGB image such that 1% of

lower and higher intensity values are saturated to 0 and 255, respectively. Next, we converted

this contrast stretched image (Fig 3b) to HSV and Lab color spaces. The distance between all

required combinations of two ROI in RGB, HSV, and Lab color spaces were computed

(Table 1). These values are indicative of the separability between different regions and are used

in the proposed modified multiphase level set method.

Step-2: Removal of unstained cells

It is observed that both nucleus and cytoplasm of plasma cells have maximum separability

with unstained cells in H color channel with large values of DB distance (Table 1). Thus, we

identified unstained cells using the H-color channel. Since both background and unstained

Fig 3. Contrast stretching followed by unstained cell removal, image patch size 2560 × 1920 this figure shows (a) an original image that is (b)

contrast stretched such that 1% of lower and higher intensity values are saturated to 0 and 255, respectively. From the probability density functions

of the four regions of interest (nucleus of PC, cytoplasm of PC, unstained cells, and background) of the resulting contrast stretched images, it is

observed that nucleus and cytoplasm of plasma cells have maximum separability with unstained cells in H color channel. Unstained cells are removed

by replacing intensity of pixels having values less than 120 in the H-channel with the background pixel intensity leading to (c).

https://doi.org/10.1371/journal.pone.0207908.g003

Table 1. Bhattacharyya distance calculated between different image regions using the ground truth data.

Color

Channels

Bhattacharyya distance between two regions of interest

PC Nucleus and PC

Cytoplasm

PC Nucleus and

Background

PC Nucleus and

Unstained Cells

PC Cytoplasm and

Background Cells

PC Cytoplasm and

Unstained Cells

Background and

Unstained Cells

R 0.06 8.27 2.38 3.86 1.06 3.31

G 0.85 15.89 6.27 4.21 1.02 2.38

B 1.17 5.74 0.04 1.00 1.03 4.44

H 1.76 1.10 11.19 1.26 73.13 1.09

S 0.02 0.96 0.03 0.7 0.08 1.31

V 1.25 14.48 3.75 2.17 0.15 2.85

L 0.68 7.67 3.30 2.52 0.57 3.05

a 0.87 2.09 4.74 0.18 1.54 1.97

b 0.14 0.45 4.38 1.28 6.70 4.89

https://doi.org/10.1371/journal.pone.0207908.t001
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cells are unwanted regions for the purpose of plasma cell segmentation, we replaced unstained

cell pixels with the background pixels. This is carried out by replacing intensity of pixels having

values less than 120 in the H-channel with the background pixel intensity (Fig 2). This replace-

ment of unstained cells’ intensity with the background intensity ensured that no additional

region is created for the subsequently used multiphase level set algorithm (Fig 3(c)). Although

unstained cells were removed, some outliers were still left (Fig 3(c)) that were subsequently

removed in Step-3 of the proposed algorithm.

Step-3: Stained cell extraction using the proposed modified multiphase

level set method

We modified the multiphase level set formulation by utilizing statistical information of the

four ROI in the image, i.e., nucleus, cytoplasm, unstained cells, and the background, wherein

the four ROI were modeled via four-phases of two level sets. Each of the ROI was assigned one

phase and the corresponding label. We assigned labels O11 and O10 to the first level set ϕ1 for

the nucleus and cytoplasm, respectively. Likewise, we assigned labelsO01 andO00 to the second

level set ϕ2 for the background and the remaining unstained cells, respectively. Next, four

probability maps of the entire image were created corresponding to each of the four phases of

the level set (one each for their respective regions of interest, namely, nucleus, cytoplasm,

unstained cells, and the background) as below:

pðU0jOijÞ ¼

P9

c¼1
wc;Oij

� pðU0;cjOijÞ
P9

c¼1
wc;Oij

; ð1Þ

where U0 is the contrast stretched image and c corresponds to color channels with c = 1, 2, 3, 4,

. . ., 8, 9 for channels R, G, B, H, S, V, L, a, and b, respectively. U0,c is the cth color channel of

the image U0,Oij is one of the four ROI with i, j 2 {0, 1}, wc;Oij
are the weights, p(U0,c|Oij) is the

conditional probability (over the ROI Oij) of the color channel image, and p(U0|Oij) is the con-

ditional probability of the original image over all four phases constructed using the weighted

probability in all color channels.

Bhattacharyya distance DB in Table 1 was used to determine weights because it provides an

appropriate metric for discerning ROI. Weights for a channel were assigned based on the abil-

ity of discerning the desired ROI from all other ROI in that channel. Since Bhattacharyya dis-

tance would be higher for larger separation, it can be used as the weight, provided this distance

is larger than some minimum threshold. For example, nucleus is discernible from both cyto-

plasm and background in blue channel with DB> 1 for each ROI (Table 1). Hence, the maxi-

mum of the two distances (distance between nucleus and cytoplasm, and distance between

nucleus and background) is chosen as the weight for nucleus in blue channel. On the other

hand, nucleus cannot be separated from cytoplasm in the red channel, although it is widely

separated from the background in this color channel. This implies that nucleus cannot be

extracted from all other ROI in red channel and hence, a zero weight is chosen for nucleus in

this channel. Likewise, weights were chosen in stepwise manner for all the ROI, as detailed

below.

For determining weights, wc;O11
, in (1) for nucleus, a channel was chosen (R, G, B, H, S, V,

L, a, or b) and if the Bhattacharya distance DB (Table 1) between both 1) nucleus and cyto-

plasm, and 2) nucleus and background was greater than 1, the maximum distance of the above

two was chosen as the weight for nucleus in that channel. Else a value of zero was assigned to
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the weight in that channel (2). The process was repeated for all the channels.

wc;O11
¼

(
max½DBðpðU0;cjO11Þ; pðU0;cjO10ÞÞ;DBðpðU0;cjO11Þ; pðU0;cjO01ÞÞ�

if DBðpðU0;cjO11Þ; pðU0;cjO10ÞÞ > 1

and DBðDBðpðU0;cjO11Þ; pðU0;cjO01ÞÞ > 1

0 otherwise

ð2Þ

Similarly, weights were assigned for cytoplasm based on the Bhattacharya distance DB

between both 1) cytoplasm and nucleus, and 2) cytoplasm and background in each of the

channels (3).

wc;O10
¼

(
max½DBðpðU0;cjO10Þ; pðU0;cjO11ÞÞ;DBðpðU0;cjO10Þ; pðU0;cjO01ÞÞ�

if DBðpðU0;cjO10Þ; pðU0;cjO11ÞÞ > 1

and DBðDBðpðU0;cjO10Þ; pðU0;cjO01ÞÞ > 1

0 otherwise

ð3Þ

Weights were assigned for background based on the Bhattacharya distance DB between

both 1) background and nucleus, and 2) background and cytoplasm. Weights were assigned

for unstained cells based on the Bhattacharya distance DB between both 1) unstained cells and

nucleus, and 2) unstained cells and cytoplasm. Since plasma cells are required to be clearly

delineated from the background and unstained cells, a greater threshold of 3 was considered

for background (4) and unstained cells (5).

wc;O10
¼

(
max½DBðpðU0;cjO01Þ; pðU0;cjO11ÞÞ;DBðpðU0;cjO01Þ; pðU0;cjO10ÞÞ�

if DBðpðU0;cjO01Þ; pðU0;cjO11ÞÞ > 3

and DBðDBðpðU0;cjO01Þ; pðU0;cjO10ÞÞ > 3

0 otherwise

ð4Þ

wc;O00
¼

(
max½DBðpðU0;cjO00Þ; pðU0;cjO11ÞÞ;DBðpðU0;cjO00Þ; pðU0;cjO10ÞÞ�

if DBðpðU0;cjO00Þ; pðU0;cjO11ÞÞ > 3

and DBðDBðpðU0;cjO00Þ; pðU0;cjO10ÞÞ > 3

0 otherwise

ð5Þ

Final weights (wc;Oij
) obtained using the above scheme are summarized in Table 2.

Next, we defined an energy functional Ep(ϕ1, ϕ2) for the multiphase level set formulation,

where ϕ1 and ϕ2 are the two level set functions that capture the curves of cell boundaries. The
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energy functional Ep(ϕ1, ϕ2) utilizes the above constructed probability maps and was added

to the overall functional required to be minimized for the derivation of level set equations.

Epð�1; �2Þ ¼ �

Z

O

log eðpðU0ðxÞjO11ÞÞHð�1ðxÞÞHð�2ðxÞÞdx

�

Z

O

log eðpðU0ðxÞjO10ÞÞHð�1ðxÞÞ½1 � Hð�2ðxÞÞ�dx

�

Z

O

logeðpðU0ðxÞjO01ÞÞ½1 � Hð�1ðxÞÞ�Hð�2ðxÞÞdx

�

Z

O

log eðpðU0ðxÞjO00ÞÞ½1 � Hð�1ðxÞÞ�½1 � Hð�2ðxÞÞ�dx;

ð6Þ

where H is the Heaviside function, O � R2
is an open and bounded domain, U0 : O 7! R is

the given bounded function representing the initial image, and C as the closed subset in O

made up of finite set of smooth curves.

We also defined another energy functional, namely, distance energy functional Ed(ϕ1, ϕ2)

that measures the intensity difference of a given pixel from each of the region’s mean color

value. To this end, we first defined and computed the distance images Ud;Oij
for each of the

regions in (7) as:

Ud;Oij
ðxÞ ¼

P9

c¼1
wc;Oij
ðU0;cðxÞ � mc;Oij

Þ
2

P9

c¼1
wc;Oij

" #

; ð7Þ

where mc;Oij
is the mean color value of the distribution in region Oij and wc;Oij

is the weight of

color channel c in region Oij as tabulated in Table 2. Accordingly, we defined the distance

Table 2. Weights of each ROI for level set equations.

Color channels (c) Weights (wc;Oij
)

Region O11 (Nucleus) Region O10 (Cytoplasm) Region O01 (Background) Region O00 (Unstained cells)

R 0 0 8.27 0

G 0 0 15.89 0

B 5.74 1.17 0 0

H 1.76 1.76 0 73.13

S 0 0 0 0

V 14.48 2.17 0 0

L 0 0 0 0

a 0 0 0 0

b 0 0 0 6.70

https://doi.org/10.1371/journal.pone.0207908.t002
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energy functional Ed(ϕ1, ϕ2) in (8) as:

Epð�1; �2Þ ¼

Z

O

Ud;O11
ðxÞHð�1ðxÞÞHð�2ðxÞÞdx

þ

Z

O

Ud;O10
ðxÞHð�1ðxÞÞ½1 � Hð�2ðxÞÞ�dx

þ

Z

O

Ud;O01
ðxÞ½1 � Hð�1ðxÞÞ�Hð�2ðxÞÞdx

þ

Z

O

Ud;O00
ðxÞ½1 � Hð�1ðxÞÞ�½1 � Hð�2ðxÞÞ�dx:

ð8Þ

Adding the regularization terms of length and area, the proposed modified multiphase level

set energy functional is defined in (9) as:

Eð�1; �2Þ ¼ Z1Epð�1; �2Þ þ Z2Edð�1; �2Þ þ a1

Z

O

Hð�1ðxÞÞdx

þa2

Z

O

Hð�2ðxÞÞdx þ b1

Z

O

jrHð�1ðxÞÞjdx

þb2

Z

O

jrHð�2ðxÞÞjdx;

ð9Þ

where α is a constant regularizer that controls the area inside the contour C, β controls the

length of the contour and, η1 and η2 are the constants that control relative weighting of the two

energy functionals. The level set (ϕ1, ϕ2) is periodically re-initialized to the signed distance

function [28].

Fig 4 presents Steps 1 to 3 of the proposed method including the modified multiphase level

set formulation. The extracted mask of O11 [ O10 from the level set output provides the seg-

mented plasma cells. Fig 5 presents the segmentation results after processing the input image

with Steps-1 to 3.

On evaluation of the output of the multiphase level set step in Fig 5, it was noted that some

unwanted stained cells, such as lymphocytes, were segmented to final output. On careful

observation, we noted that the cytoplasm of stained PCs covered large cell area compared to

unwanted stained cells and therefore, unwanted cells could be rejected using a threshold on

cytoplasm cell area. In addition, some small disconnected components that were noisy patches

owing to faulty manual staining were also captured by the multiphase level set. These small

noisy disconnected components that are too small to form any ROI were rejected at the output

of level set by thresholding on the size of the component.

Although all the four ROI were captured by the multiphase level set, plasma cell clusters

were not segmented as observed from Fig 5. To address this problem, Step-4 was added to the

tool as detailed below.

Step-4: Cluster cell segmentation using watershed and circle Hough

transform

Since stained plasma cells are approximately circular in shape, a combination of watershed

and circular Hough transform (CHT) was applied to segment PC clusters. First, it is necessary

to segment nuclei as the cases of touching nuclei will lead to improper cell segmentation. The

nucleus of a plasma cell has a few distinct features as: 1) the nucleus is dark colored, 2) it is

PCSeg Tool: Plasma cell segmentation from microscopic images
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Fig 4. Schematic diagram of Steps 1 to 3 of the proposed method of PCSeg tool: Regions of interest (ROI) are:

Nuclei of Plasma Cells (O11), Cytoplasm of Plasma Cells (O10), unstained cells (O01), and background (O00).

https://doi.org/10.1371/journal.pone.0207908.g004
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differently colored than the background, and 3) it is always encapsulated within the cytoplasm.

Thus, the center of the nucleus could serve as an ideal seed for the watershed algorithm and

the nuclei mask obtained as an output of O11 phase of the level set could be used to compute

the distance transform required by the watershed algorithm.

However, due to the variability in cytoplasm staining, the O11 phase was observed to cap-

ture nuclei regions more liberally in some images as shown in Fig 6b. This led to unnecessary

rejections of some PCs as shown in Fig 6d. Since it is vital for any medical imaging work to seg-

ment as many correct cells as possible, k-means (instead of O11 phase of the level set) was used

to extract the nuclei mask (Fig 6c) and distance transform was applied on this mask. This

basin was used by the watershed algorithm to segment the nuclei from clusters. From the

watershed output, only those segmented nuclei regions were retained that were circular in

nature, i.e., segmented regions that contained a center point of CHT. The non-circular regions

identified as nuclei were discarded.

Following this, the distance transform of the mask of the stained portions (O11 [ O10) was

obtained. The centers of the segmented nuclei obtained from k-means above were used to

impose a minima on this basin and subsequently used by the watershed algorithm to segment

full plasma cells from clusters. Again, we retained only those segmented regions as cells that

were circular in nature, i.e., segmented regions that contained a center point of CHT.

We have named the developed tool as PCSeg Tool-1 for the complete pipeline with k-

means based nuclei mask for cluster cell segmentation in Step-4 and named the developed tool

as PCSeg Tool-2 for the complete pipeline with O11 phase based nuclei mask for cluster cell

Fig 5. Output of the modified multiphase level set method after Step-3 on an image patch. It was noted that some

unwanted stained cells (e.g. lymphocytes) were segmented to final output. In addition, some small disconnected

components that were noisy patches owing to faulty manual staining were also captured by the multiphase level set.

Also plasma cell clusters were not segmented.

https://doi.org/10.1371/journal.pone.0207908.g005
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segmentation in Step-4. The complete process pipeline of cluster cell segmentation with PCSeg

Tool-1 is shown in Fig 7.

We noted that while most PCs were segmented, some of the stained lymphocytes and

unwanted regions were also retained. In general, the amount of cytoplasm in lymphocytes is

considerably less in comparison to PCs. Thus, for each segmented region, the ratio of the

nucleus area to the total cell area was used to detect and discard these unwanted cells. As stated

earlier, it was observed that the use of nuclei segmented from the phase O11 led to inadvertent

rejection of some PCs (Fig 6d), while the use of nuclei segmented from k-means helped us in

retaining such cells of interest (Fig 6e). Hence, PCSeg Tool-1 based segmentation pipeline

Fig 6. Output of cluster cell segmentation on an image patch Subfigure (a) shows the level set output wherein red

boundary shows nucleus of PC being captured by levelset and green boundary shows cytoplasm of PC being captured.

However, the cluster of cells are not segmented. (b) shows nuclei identified by levelset phaseO11 and the problem

therein of some extra mask of cytoplasm in nucleus. (d) shows cluster cell segmentation using nuclei mask identified

by level setO11 in (b). One cell is falsely rejected. (c) shows nuclei identified by k-means on the levelset phaseO11 and

(e) shows correct cluster cell segmentation using the mask of (c).

https://doi.org/10.1371/journal.pone.0207908.g006
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appeared more useful. Fig 6e shows the correctly segmented cluster, while the complete pro-

cess pipeline is shown in Fig 7.

Experimental set-up

All experiments were performed on a Ubuntu 14.04 system with an Intel1 Xeon(R) CPU E5-

2630 v2 @ 2.60GHz 12 processor and a GeForce GTX 980/PCIe/SSE2 graphics card supporting

CUDA. Level set results depend on the initialization of ϕ’s and therefore, initial contour was

set to small circles covering the entire image to ensure faster convergence. The initialization

and the energy functionals were calculated on the CPU. The level set propagation and the re-

initialization of ϕ’s was implemented on GPU using MEX compiled files containing CUDA

code. While the implementation was memory bound, the code achieved upto 75x speed up as

compared to the MATLAB R2015b implementation. The rest of the pipeline was implemented

in MATLAB. The GPU versus CPU computational speed results are shown in Fig 8.

Evaluation metrics

A total of 85 images were considered, where parameters were fine tuned on 15 randomly cho-

sen images. For our experiments, the level set parameters α1 = α2 = 0, β1 = 2, β2 = 1, η1 = 1 and

η2 = 3 provided the best results. Parameters α1 and α2 are related to the compactness and the

area of level set phase captured at the end. Since our images contained both isolated single cells

as well as cluster of cells, putting constraints on the area provided poor results. Hence, we

Fig 7. Schematic diagram of cluster cell segmentation (Step 4 of PCSeg tool) using watershed and circle Hough transform (CHT).

https://doi.org/10.1371/journal.pone.0207908.g007
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chose these parameters to be zero. Parameters β1 and β2 control the tightness of the boundary.

Since Level set 1 captures the desired plasma cell, we wanted its boundary to be tighter com-

pared to that of Level set 2. Hence, a higher β value was chosen for Level set 1 compared to

Level set 2, i.e., β1 was chosen to be greater than β2. Since we used stain normalized images, the

mean color vector based energy functional captured cells of interest neatly, while the probabil-

ity based energy functional term took care of the slight color variations owing to subject vari-

ability and/or other variability. Hence, η2� η1 provided us best results.

The image dataset evaluated contained 260 single cells and 45 clusters in total. These 45

clusters had a total of 102 cells, with each cluster having two or more cells. For a quantitative

assessment of the proposed pipeline and the method, we used TPR (True Positive Rate) or

Recall rate defined as

TPR ¼
TP

TPþ FN
;

PPV (Positive Predictive Value) or Precision defined as

PPV ¼
TP

TP þ FP
;

and F1-Score defined as

F1 � Score ¼
2 � precision � recall
precisionþ recall

;

where TP, TN, FP, and FN stand for true positive (PC detected and segmented as PC), true

negative (non-PC rejected), false positive (non-PC segmented as PC) and false negative (PC

rejected as non-PC), respectively. In TP or true positives, we only considered those plasma

cells that were completely segmented from the image. Any plasma cell that was over-seg-

mented or segmented out with partial portion was discarded. This is to note that F1- Score is

same as the Dice coefficient that is used as a standard metric to assess the performance of

segmentation.

Fig 8. Running times on CPU and GPU.

https://doi.org/10.1371/journal.pone.0207908.g008
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Since the rate of detection of false positives is also crucial in medical applications, we evalu-

ated False Discovery Rate (FDR) in our samples as

FDR ¼
FP

TP þ FP
:

Results

We compared the results with the traditional levelset, multiphase levelset and k-means in Fig

9. From Fig 9, we notice that the output of these methods do not yield correctly segmented

cells (including both nucleus and cytoplasm). Hence, quantification of results will not yield

any accuracy with these methods that is worth comparison. Since the work by Saeedizadeh

et al. [24] specifically addresses the problem of plasma cell segmentation, its pipeline is tuned

to this cell type. Hence, of the existing methods including levelset, we could quantify results of

this method only and thus, used the method by Saeedizadeh et al. [24] as the state-of-the-art

work as of today for comparison on the given problem statement.

Quantitative results obtained on 260 numbers of isolated single PC and 45 clusters (with

102 PC) are tabulated in Table 3 and the statistical quantities on TPR, PPV, F1-score, and FDR

are tabulated in Table 4. The PCSeg Tool-1 correctly segmented 83.5% of single and isolated

plasma cells and 93.3% of PC clusters (71.1% complete clusters and 22.2% partial clusters).

PCSeg Tool-2 performed slightly inferior and segmented 55.8% of single plasma cells and

64.5% of PC clusters (48.9% complete clusters and 15.6% partial clusters). Further, the number

of false positives detected with PCSeg Tool-1 were about 90 cells leading to an FDR of 23.44%

(Table 4). Compared to this, PCSeg Tool-2 detected 102 false positives and thus, had a higher

FDR of 34.11% (Table 4). Thus, the PCSeg Tool-1 performed better than PCSeg Tool-2 in

terms of both TPR and FDR.

Further, we compared both the proposed methods, i.e., PCSeg Tool-1 (PCSeg Tool with k-

means as nuclei mask for cluster cell segmentation) and PCSeg Tool-2 (PCSeg Tool with O11

Fig 9. Qualitative comparison of MM cell segmentation using different methods: (a) Gold standard (showing cells of interest with white outlines),

(b) k-means, (c) Chan-Vese active contour method [16], (d) Chan-Vese multiphase method [29], (e) Saeedizadeh et al. [24] method, (f) PCSeg Tool-1,

and (g) PCSeg Tool-2. All white outlines in (b)-(g) denote the outlines of regions segmented out. These regions are required to be compared with the

regions contained in the Gold Standard shown in (a).

https://doi.org/10.1371/journal.pone.0207908.g009
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phase of level set as nuclei mask for cluster cell segmentation) with existing cell segmentation

methods relevant to our problem. These existing methods included k-means method, Chan-

Vese active contour, Chan-Vese multiphase methods, and a recently described method by

Saeedizadeh et al. [24]. k-means is a widely used method, while the proposed multiphase level

set method in PCSeg Tool-1 and PCSeg Tool-2 is a refinement over standard active contour

methods of Chan-Vese active contour [16] and Chan-Vese multiphase [29] methods. All these

methods, i.e., k-means and standard active contour methods, have been used earlier on seg-

mentation of cells other than plasma cells. The method of Saeedizadeh et al. [24] addresses spe-

cifically the plasma cell segmentation. Hence, all the above four methods were chosen for

qualitative comparison with PCSeg Tool-1 and PCSeg Tool-2.

Discussion

The k-means method provided many false positives, missed many PCs, and could not segment

clusters of PCs (Fig 9). Similar was the case with standard active contour methods of Chan-

Vese active contour and Chan-Vese multiphase methods. Sincek-means, Chan-Vese active

contour [16], and Chan-Vese multiphase [29] methods performed poorly on PC segmentation,

quantitative results have been presented on only the rest of the three methods (Tables 3 and 4).

As compared to Saeedizadeh et al. [24], PCSeg Tool-1, and PCSeg Tool-2 performed far

more superior to k-means and standard active contour methods (Tables 3 and 4). While

PCSeg Tool-2 did not outperform [24] in the number correct PC cell segmentation, it did bet-

ter with FDR compared to [24] which led to a very high number of 192 false positives with an

FDR of 47.52% (Table 4). The method by [24] performed second best by segmenting 62% of

single plasma cells and 64.5% of PC clusters (57.8% complete clusters and 6.7% partial clus-

ters). However, one of the 4 plasma cells present in Fig 9 has been incorrectly segmented by

[24]. On the other hand, PCSeg Tool-1 and PCSeg Tool-2 captured all 4 cells. This result

shows that both the variants of PCSeg Tool (1 and 2) performed better in capturing the cells of

interest.

Table 4. Statistical results on a total of 364 (260+102) plasma cells.

Method True Positive Rate or Recall (%) Positive Predictive Value or Precision (%) False Discovery Rate (%) F1-Score (%)

PCSeg Tool-1 81.66 76.56 23.44 79.03

PCSeg Tool-2 54.72 65.88 34.12 59.78

Saeedizadeh et al. [24] 58.88 52.47 47.53 55.49

https://doi.org/10.1371/journal.pone.0207908.t004

Table 3. Quantitative results on plasma cell segmentation.

Method Performance on 260

single/isolated cells

Performance on clusters, Out of (45 clusters, 102 cells in 45 clusters) �completely

rejected clusters

False

positives

Correctly segmented cells (completely segmented clusters,

completely segmented cells from

clusters)

(partially segmented clusters,

completely segmented cells from these

clusters)

PCSeg Tool-1 217 (32,64) (10,13) 3 90

PCSeg Tool-2 145 (22,43) (7,9) 16 102

Saeedizadeh

et al. [24]

161 (26,46) (3,5) 16 192

�Some clusters were completely rejected out of the total of 45 clusters.

https://doi.org/10.1371/journal.pone.0207908.t003
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This is an expected result because the methods specifically designed for plasma cell segmen-

tation, i.e., PCSeg Tools 1 and 2 and [24] take into account the problems inherent to plasma

cell segmentation. Further, these results establish that the method applicable on one cell type

cannot be ported for segmentation of another cell type directly, i.e., no single method or seg-

mentation pipeline can be applied to all the different cell types.

We also compared the performance of the above three segmentation tools with reference to

Precision, Recall, and F1-score. While recall rate quantifies a tool’s performance with respect

to false negatives (how many plasma cells were missed out in segmentation), precision rate

informs us about the performance of the tool with respect to false positives, i.e., other cells seg-

mented out as plasma cells. Thus, recall informs what ratio of correct plasma cells could be seg-

mented, while precision tells how many of the cells segmented as plasma cells were erroneous.

Thus, both precision and recall have a significance and both these are imbibed in the F1-score

that should be as high as possible and informs about the overall performance of the segmenta-

tion tool. It is noted that recall of PCSeg Tool-1 is good as 81.66% compared to 54.72% of

PCSeg Tool-2 and 58.88% of [24]. Precision of PCSeg Tool-1 is also good as 76.56% compared

to 65.88% of PCSeg Tool-2 and 52.47% of [24]. Thus, as expected, PCSeg Tool-1 provides best

F1-score of 79% compared to 59.78% of PCSeg Tool-2 and 55.49% of [24]. Thus, although

PCSeg Tool-2 could not segment as many PCs as [24], it yielded more correct segmented cells

compared to [24].

Overall, PCSeg Tool-1 performed best and provided better TPR, PPV, and smaller FDR. It

was not only able to reduce the number of false negatives; it was also able to reduce false posi-

tives. For use in real clinical treatment, false negative rate of PCs should be low as well as false

positives should be low because less than required number of chemotherapy sessions due to

poor recall (or missing of large number of true PCs) or more than required number of chemo-

therapy sessions on aged people owing to high false discovery can prove to be fatal.

Fig 10 presents qualitative (visual) comparison of these methods on some more images.

The good performance of PCSeg Tool-1 with k-means identified nuclei mask for cluster cell

segmentation in the modified level set formulation implies that perhaps the proposed proba-

bility based and mean color vector based energy functionals in the multiphase level set, added

with the robustness of the k-means on the level set output for nuclei mask for subsequent clus-

ter cell segmentation, is playing a key role in the robust segmentation of PCs. Thus, we name

the PCSeg Tool-1 as the final PCSeg Tool product for use with plasma cell segmentation.

Conclusions and future work

In this paper, we designed, described, and implemented PCSeg tool for the segmentation of

plasma cells from microscopic images. This tool has a robust pipeline consisting of modified

multiphase level set method that utilizes statistical information about the probability densities

of regions of interest (ROI) and the mean color vector of ROI in the color spaces in the multi-

phase level set. The level set stage removed the background and most of the unwanted cells.

Only the stained single cells or the clusters of cells were retained after its application. Next, we

tried two variations of PCSeg Tool: Tool-1 that utilized k-means based nuclei mask in the clus-

ter cell segmentation and Tool-2 that utilized one of the phases of the level set for nuclei mask

in cluster cell segmentation, where cluster segmentation was carried out with watershed and

circular Hough transform and unwanted cells are completely removed in the post-processing

stage of PCSeg Tool. PCSeg Tool-1 provided best results with better recall, precision, and

F1-score. Further, the implemented PCSeg Tool-1 provided good results on segmentation of

single isolated plasma cells as well as segmentation of plasma cells from cell clusters.
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Recently, cell segmentation with deep learning (DL) has started picking up pace. However,

as of now there are only a few papers with DL on cell segmentation [30–35]. Most of these

methods have dealt with nucleus segmentation and so far, there is no paper on plasma cell

segmentation using deep learning. Plasma cell segmentation is a more challenging problem

compared to nucleus segmentation because (i) it requires both nucleus and cytoplasm segmen-

tation, (ii) the color contrast of cytoplasm is sometimes very near to background, and (iii) clus-

ter segmentation is also a problem because it can include a cluster of touching nuclei, touching

nucleus with cytoplasm, touching cytoplasm of different cells, etc. Hence, recently proposed

DL methods cannot be directly ported on this dataset. Solving the problem of plasma cell seg-

mentation using DL is a challenging research problem that we plan to attempt in the near

Fig 10. Qualitative comparison of MM cell segmentation using different methods over five images: (a) Gold standard (showing cells of interest

with white outlines), (b) Saeedizadeh et al. [24] method, (c) PCSeg Tool-1, and (d) PCSeg Tool-2. White outlines in all figures (b)-(d) denote the

outlines of regions segmented out. These regions are required to be compared with the regions contained within the white boundaries in Gold Standard

shown in (a).

https://doi.org/10.1371/journal.pone.0207908.g010
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future. In addition, recent optimization/regularization based methods used in other domains

of medical image segmentation similar to low rank and sparse decomposition method of [36]

can also be explored in cell segmentation.
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