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Abstract

The performance of three machine learning methods (support vector regression, random

forests and artificial neural network) for estimating the LAI of paddy rice was evaluated in

this study. Traditional univariate regression models involving narrowband NDVI with opti-

mized band combinations as well as linear multivariate calibration partial least squares

regression models were also evaluated for comparison. A four year field-collected dataset

was used to test the robustness of LAI estimation models against temporal variation. The

partial least squares regression and three machine learning methods were built on the raw

hyperspectral reflectance and the first derivative separately. Two different rules were used

to determine the models’ key parameters. The results showed that the combination of the

red edge and NIR bands (766 nm and 830 nm) as well as the combination of SWIR bands

(1114 nm and 1190 nm) were optimal for producing the narrowband NDVI. The models built

on the first derivative spectra yielded more accurate results than the corresponding models

built on the raw spectra. Properly selected model parameters resulted in comparable accu-

racy and robustness with the empirical optimal parameter and significantly reduced the

model complexity. The machine learning methods were more accurate and robust than the

VI methods and partial least squares regression. When validating the calibrated models

against the standalone validation dataset, the VI method yielded a validation RMSE value of

1.17 for NDVI(766,830) and 1.01 for NDVI(1114,1190), while the best models for the partial least

squares, support vector machine and artificial neural network methods yielded validation

RMSE values of 0.84, 0.82, 0.67 and 0.84, respectively. The RF models built on the first

derivative spectra with mtry = 10 showed the highest potential for estimating the LAI of

paddy rice.
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Introduction

Leaf area index (LAI), which is defined as half of the all-sided green leaf area per unit ground

area [1, 2], is a key biophysical parameter that is commonly used as a surrogate for vegetation

foliar cover, biomass, productivity and plant variability in precision agriculture (PA) and is

widely used in plant growth and climate models [3–5]. Remote sensing is a reliable, fast and

non-destructive way to measure regional and global LAI [6, 7]. Hyperspectral remote sensing,

which provides a continuous reflectance spectrum with narrow contiguous wavebands, can

characterize vegetation with a far greater amount of information than traditional multispectral

techniques [8–11].

There are two main approaches to building relationships between remote sensing data and

LAI—the empirical statistical approach and the radiative transform models (RTM) approach

[2, 12, 13]. The former approach includes univariate regression models built on a vegetation

index (VI) as well as multivariate regression models using the full spectrum, various transfor-

mations and selected features of the raw spectrum. Multivariate calibration techniques include

traditional multilinear regression (MLR) methods, partial least squares regression (PLS) meth-

ods and modern machine learning (ML) methods such as support vector regression (SVR),

random forests (RF) and artificial neural networks (ANN). The latter approach usually com-

bines RTM with different inversion techniques. The RTM approach suffers from ill-posed

problems and is highly reliant on the realism of the RTM simulation and appropriate RTM

parameter initialization [9, 13].

The traditional multispectral vegetation index, which usually calculated using the red and

near infrared (NIR) bands, is criticized as asymptotically approaching saturation levels in

scenes with dense canopy. However, the narrowband normalized difference vegetation index

(NDVI) with specific band combinations optimized for specific cases could improve the LAI

estimation accuracy and avoid the saturation problem [14–16]. Zhao et al. [14] found that

NDVI calculated using the 690 nm–710 nm and 750–900 nm bands yielded high R2 values

when regressed against LAI. Hansen et al. [15] concluded that red edge (RE) bands are impor-

tant in formulating narrowband NDVIs for quantity per unit surface area-based variables such

as LAI for exploring field-collected winter wheat data over different growth stages and culti-

vars. Delegido et al. [16] reported that NDVI(674nm, 712nm) exhibited the highest linear relation-

ship with LAI by studying a field-collected dataset on nine crop types.

Univariate regression models based on VIs, which usually use two to three bands, are con-

sidered too simple to capture the intrinsic relationships between the observed remote sensing

data (especially hyperspectral data) and biochemical or biophysical parameters of interest, and

lack the ability to parameterize spatial-temporal variability [17]. PLS has been considered a

powerful alternative to univariate methods and provides better performance in most cases [18,

19], although some studies have reported the opposite results [15]. Hansen and Schjoerring

[15] concluded that the relationship between optimized narrowband NDVI and winter wheat

LAI and could not be further improved significantly by PLS using information on all hyper-

spectral bands. Several studies [20–24] have explored the potential performance of state-of-art

ML methods such as SVR, RF and ANN for LAI estimation. Wang et al. [20] showed that SVR

performed better than PLS and MLR for paddy rice LAI estimation with 15 selected bands

from field-collected 350 nm–2500 nm hyperspectral data. In Yuan et al. [23], an RF model

built on whole growth stages outperformed PLS, SVR and ANN methods for retrieving soy-

bean LAI, while the ANN method performed best in the single-growth stage models. Kira et al.
[22] built ANN and PLS models on selected bands from field-collected hyperspectral data on

two different crop types (maize and soybean) and found that the ANN method outperformed

the PLS method regardless of whether using the model with the two crops was combined
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without re-parameterization or the models for each crop. Kiala et al. [21] reported that PLS

provided higher accuracy for heterogeneous grassland LAI prediction than SVR at lower vege-

tation density, while SVR slightly outperformed PLS at higher vegetation density.

In general, ML techniques appear to be more efficient than VI and PLS methods in most

LAI estimation cases. However, previous studies have reported contrasting results on the accu-

racy of different ML techniques. Most of these studies were based on limited datasets with a

single growth stage or within one seasonal lifecycle, and thus, the robustness of the ML tech-

niques under temporal variation still require further exploration. The object of this study was

to comparatively assess the performance of three machine learning techniques—SVR, RF and

ANN—in estimating paddy rice LAI in comparison to the VI and PLS methods. A multi-stage

and multi-year dataset was used to assess the robustness of these methods under temporal

variation.

Materials and methods

Study area and experimental setup

The study was conducted during the 2014–2017 growth seasons on a farmland located in the

Ningxia Yellow River irrigation region, China (38˚7025@ N, 106˚11035@ E). The farmland

owned by Ningxia Zhengxinyuan modern agricultural development group CO. LTD. The

company have given the permission for data collection. We confirm that the field studies did

not involve endangered or protected species. This region is characterized by a temperate conti-

nental semi-arid climate. The average annual precipitation and average annual accumulative

temperature are 192.9 and 3866.3˚C, respectively. The paddy rice variety Ningjing NO. 37 was

used as test material. The paddy rice was sown in a nursery bed in late April and transplanted

in late May during different growth seasons.

A plot experiment was established with twelve fertilization treatments to get reflectance and

LAI reference values with a large variation. The fertilization treatments were combinations of

three nitrogen fertilization rates (0 kg ha−1, 240 kg ha−1, and 300 kg ha−1) and four biochar

rates (0 kg ha−1, 4500 kg ha−1, 9000 kg ha−1, and 13 500 kg ha−1). Each treatment was per-

formed in triplicate over 36 plots in total. The phosphates and potash fertilizer were applied at

the same rates at recommend levels for the region (P2O5 90 kg ha−1, K2O 90 kg ha−1). The area

of each plot was 70 m2 (14 m by 5 m).

Field data collection

Canopy reflectance was measured with an SVC HR1024i spectroradiometer with a 8˚ field of

view lens. The spectroradiometer has 1024 channels ranging from 350 nm to 2500 nm. In each

plot, canopy reflectance was measured at three fixed sample points and five times at each sam-

ple point. The fifteen measurements were averaged to represent the canopy reflectance of the

plot. During the measurement, the spectroradiometer was fixed at 1 m above the canopy. All

measurements were collected under cloudless weather conditions between 11 am to 2 pm at

local time near solar noon. A 2nd order Savitzky-Golay filter [25] was used to filter the sensor

noise, and then, the reflectance data were resampled to a spectral resolution of 4 nm. The

bands beyond 2400 nm were omitted because of the low signal-to-noise ratio, leaving 513

bands for further analysis.

LAI was measured on the same day with a SunScan Canopy Analysis System. In each plot,

two sample areas were selected randomly. For each sample area, measurements were taken

every 45˚, starting from the across-ridge direction. The eight measurements were averaged to

represent the LAI of the plot.
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Data collection campaigns were conducted within each vegetative, reproductive pre-head-

ing and reproductive post-heading growth stage during the 2014–2017 rice growth seasons

(Table 1).

Methods

Theoretically there should be 36 × 3 × 4 = 432 samples. However, reflectance of nine plots

were missing because spectroradiometer failure at 2016 vegetative stage data collection cam-

paign, and another four samples were deleted because of invalid spectra data. Thus 419 valid

data samples were further analyzed. To evaluate the models’ robustness to temporal variation,

all models were calibrated on the data for the 2014–2016 growth seasons (313 Samples) and

were validated on the data for the 2017 growth season (106 Samples). Four statistical tech-

niques were evaluated in this study, namely, PLS, SVR, RF and ANN. The raw reflectance

(raw) and its first derivative (D1) were separately used as inputs of different calibration tech-

niques (The Raw and D1 spectrum are presented in Fig 1). Both raw and D1 spectra were

normalized by subtracting the mean and dividing by the standard deviation before model

Table 1. Day after transplantation (DAT) on which the data collection campaigns were conducted.

2014 2015 2016 2017

vegetative 44 41 48 46

reproductive pre-heading 75 70 81 78

reproductive post-heading 94 90 103 110

https://doi.org/10.1371/journal.pone.0207624.t001

Fig 1. The measured original spectrum (Raw) and and first derivative spectrum (D1).

https://doi.org/10.1371/journal.pone.0207624.g001
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calibration. No feature selection procedure was made to reduce spectral dimensions. In addi-

tion, the linear regression model using NDVI was used as the baseline method.

All models were built in the R environment [26]. The PLS, RF and SVR models were built

using the R packages ‘pls’ [27], ‘randomForest’ [28], and ‘kernlab’ [29], respectively, and the

ANN model was built with the R package ‘keras’ [30] with a Tensorflow backend [31].

Normalized difference vegetation index. Two different NDVIs were evaluated: (1) the

classical NDVI with red (670 nm) and NIR (830 nm) band combination; (2) NDVI with opti-

mized band combination. All possible two-pair λ1 < λ2 band combinations among the 513

bands were used in the NDVI equation (Eq 1). Then, linear regression models were built on

the calculated index and calibrated against the LAI dataset. A contour plot of the models’ R2

values was used to find the optimized band combinations.

NDVIðl1;l2Þ ¼
l2 � l1

l2þ l1
ð1Þ

Partial least squares regression. PLS is a bilinear regression method [32]. PLS performs

component projection by successively reducing the original input data to a few independent

latent variables (LVs) while maximizing co-variability to the response variable of interest and

then regressing the latent variables against the response variable. The component projection

operation reduces the dimension and eliminates the multi-collinearity of the input data. The

component projection operation also reduces noise. The number of LVs controls the model

complexity and determined by a grid search in this study.

Support vector regression. SVR, which has roots in Vapnik-Chervonenkis (VC) theory

as a generalization of support machines (SVMs), is characterized by the use of kernel func-

tions, sparse solutions, and VC control of the margin and the number of support vectors [29,

33]. Using an ε tube, which is an ε-insensitive region around the object function, the SVR

reforms the optimization problem to minimize a convex ε-insensitive loss function and finds

the flattest tube that contains as many training samples as possible. The object function is rep-

resented by training samples that lie outside the tube’s boundary, and these training samples

are called support vectors. The complexity of an SVR model is based on the number of support

vectors other than the dimension of the input data, and thus, this approach is efficient in high-

dimensional space and is still efficient when the number of observations is less than the input

dimensions. In this study, the ε-SVR algorithm with a radial basis kernel function (RBF) was

used. The kernel parameter σ of the RBF kernel and regularization parameter C were deter-

mined by a grid search. σ defines how far a training sample can influence, while a large σ
means ‘close’ and a small σ means ‘far’. C defines the tradeoff between the smoothness of the

object function and the maximum deviation allowed. A large C results in selecting more sam-

ples as support vectors, and a small C denotes a smooth object function.

Random forests. The RF algorithm is based on the decision tree algorithm and bagging

method with an additional layer of randomness in the bagging process [28, 34]. The RF algo-

rithm is as follows:

1. Draw bootstrap samples ntree times from the original dataset, then, each bootstrap sample

is used to build a tree;

2. Grow an unpruned tree for each bootstrap sample. For each tree, only randomly selected

mtry predictors are used;

3. Perform prediction by aggregating the ntree trees prediction results. The aggregation strat-

egy is usually the majority of votes for classification and the average for regression.

Rice LAI ML remote sensing estimation
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The ntree and mtry are the two key parameters controlling the performance and complexity

of RF models. In this study, ntree was set at 500 as suggested by Breiman [34], and this value is

efficient for most cases. The mtry was determined by a grid search.

Artificial neural network. ANNs are fully connected neural nets organized into layers

[31, 35]. ANNs usually consist of one input layer, zero to multiple hidden layers and one out-

put layer. Every neuron in a layer is connected to every other neuron in the next layer. The

output of the jth neuron in layer l + 1 can be calculated by Eq 2, where xl
i denotes ith neuron in

layer l, wl
ij denotes the weight between the ith neuron in layer l and jth neuron in layer l + 1,

wlþ1
bj denotes the bias for the jth neuron in layer l + 1 and f denotes the (nonlinear) active func-

tion.

xlþ1
j ¼ f ð

X

i

wl
ijx

l
i þ wlþ1

bj Þ ð2Þ

In this work, a single-hidden-layer neural network were constructed. The number of neu-

rons in input layer were set to 513 according input feature dimension (513 bands). The num-

ber of neurons in hidden layer was determined by a grid search. A parametric rectified linear

unit (Eq 3) was used as active function for the hidden layer, where α was learned in the model

calibration procedure. A linear function y = x was used as the active function for the output

layer. The weights and bias were initialized by the Glorot normal initializer and regularized by

an L1 regularizer. Finally, the ANN model was optimized by the Adam algorithm with a mean

square error loss function.

f ðxÞ ¼

( x; if x � 0

ax; otherwise
ð3Þ

Parameter optimization and precision evaluation. The key parameters (LVs for PLS, C,

σ for SVR, mtry for RF and units for ANN) were determined by a grid search with a repeated

(5 times) 10-fold cross validation procedure on the calibration dataset (detailed in Algorithm

1) and on the same fold split scheme across different models to ensure fair comparison.

Algorithm 1: Model parameter optimation algorithm
Data: Calibration dataset
1 define sets of model parameters to evaluate;
2 foreach set of parameters do
3 foreach sampling iteration do
4 foreach fold do
5 Hold-out the samples in this fold;
6 Calibrate the model on samples in remainder folds;
7 Predict the hold-out samples and calculate RMSE between

observed and predicted values.;
8 end
9 end
10 Calculate RMSEcv with RMSEcv = mean(RMSE);
11 end
12 Determine the optimal parameter set;
13 Fit the final model with full training data using optimal parameter

set;

The optimal parameter values were determined in two ways.

• RULE1: The parameter (or parameter combination) associated with the lowest cross vali-

dated RMSEcv was considered optimal.

Rice LAI ML remote sensing estimation
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• RULE2: To limit the model complexity and avoid overfitting, raising the model complexity

must reduce the RMSEcv greater than 2%.

For PLS, RF, and ANN, the ordering of the model complexity is clear as a higher parameter

value (LVs for PLS, mtry for RF and units for ANN) means higher complexity. In this situation,

raising the model complexity means raising the corresponding parameter value. For SVR

models, the order of the model complexity is not clear, and thus, RULE2 is not utilized for the

SVR method.

After the key parameters were determined in these two different ways (RULE1 and

RULE2), the final models were calibrated on the full calibration dataset and evaluated on the

standalone validation data set. The root mean square error (RMSE) and coefficient of determi-

nation (R2) were used to assess and compare model performance.

Results

Descriptive analysis of LAI

To evaluate the model robustness under temporal variation, the 2014–2016 field-collected data

were used as the calibration dataset, and the 2017 field-collected data were used as the stand-

alone validation dataset. Descriptive statistics on the measured LAI are shown in Table 2. The

measured LAI ranges between 0.08 and 7.35 with a mean of 2.56 and a standard deviation of

1.62.

The distribution of measured LAI value was significantly different from the normal distri-

bution (pvalue< 0.001 in Shapiro-Wilk’s test). The LAI variance between the calibration and

validation dataset was homogeneous (pvalue< 0.01 in Fligner-Killeen test), but the LAI distri-

bution showed statistical significant difference (pvalue< 0.01 in Wilcoxon test) between the

calibration and validation dataset with a slightly higher mean in validation dataset. The result

of analysis of variance (ANOVA) showed that the nitrogen treatment effected the LAI signifi-

cantly, while neither the biochar treatment nor the interaction between the nitrogen treatment

and biochar treatment effected the LAI significantly(Table 3).

Optimized spectral index

By visualizing the calibration R2 values of the sequential linear regression models on the NDVI

(Eq 1) with all possible two-pair λ1< λ2 band combinations against LAI (Fig 2), two hotspots

Table 2. Descriptive statistics for measured LAI.

Sample NO. mean s.d. min max range

ALL 419 2.56 1.62 0.08 7.35 7.27

Calibration 313 2.45 1.71 0.08 7.35 7.27

Validation 106 2.83 1.34 0.55 6.62 6.08

https://doi.org/10.1371/journal.pone.0207624.t002

Table 3. ANOVA test result on effects of nitrogen and biochar treatments to LAI. The N, C and N:C represent the nitrogen treatment, biochar treatment and interac-

tion between nitrogen and biochar treatment.

Df Sum Sq Mean Sq F value Pr(>F)

N 2 423.9 211.95 128.006 <2e-16 ���

C 3 2.9 0.98 0.592 0.621

N:C 6 12.0 2.00 1.206 0.302

Residuals 407 673.9 1.66

��� denotes significance at the 1% level.

https://doi.org/10.1371/journal.pone.0207624.t003
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were found, with one centred at (766nm, 830nm) and the other one centred at (1114nm,

1190nm). The calibrated models based on NDVI(760,830), NDVI(1114,1190) and NDVI(680,830),

which is with the classical red/NIR band combination, were then evaluated on the validation

dataset. The model based on NDVI(680,830) performed poorly with RMSE values of 1.60 and

1.59 and R2 values of 0.14 and 0.04 in the model calibration and validation, respectively

(Table 4). A clear underestimation of the data was observed when LAI> 3 and for all repro-

ductive post-heading data (Fig 3). The model based on NDVI(766,830) showed a moderate accu-

racy and robustness, with RMSE and R2 values of 1.02 and 0.65 in model calibration and 1.17

and 0.53 in model validation, respectively. The accuracy and robustness of the model based on

NDVI(1114,1190) were somewhat lower with RMSE and R2 values of 1.13 and 0.58 in model cali-

bration and 1.01 and 0.48 in model validation, respectively. No clear overestimation or under-

estimation was found in the observed vs. predicted LAI scatterplot (Fig 3).

PLS and machine learning methods

Selection of appropriate model parameters. The relationships between RMSEcv and the

models’ key parameters (LVs for PLS, C, σ for SVR, mtry for RF and units for ANN) are shown

Fig 2. Calibration R2 counterplot for linear regression models built on NDVI (Eq 1) with all possible two-pair λ1

< λ2 band combinations against LAI.

https://doi.org/10.1371/journal.pone.0207624.g002

Table 4. Goodness of fit for linear regression models with different NDVI against LAI.

Input Calibration (n = 313) Validation (n = 106)

RMSE R2 RMSE R2

NDVI(680,830) 1.60 0.14 1.59 0.04

NDVI(766,830) 1.02 0.65 1.17 0.53

NDVI(1114,1190) 1.13 0.58 1.01 0.48

https://doi.org/10.1371/journal.pone.0207624.t004
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in Fig 4. For PLS, the RMSEcv values were lowest when LVs = 21 and LVs = 11 for the raw and

D1 spectra, and the RMSEcv rate of decrease first falls below 2% when LVs = 6 and LVs = 4 for

the raw and D1 spectra, respectively. For SVR, the RMSEcv values were lowest when C = 64,

σ = 5.03 × 10−04 and C = 8, σ = 5.15 × 10−4 for the raw and D1 spectra, respectively. For RF, the

RMSEcv values were the lowest when mtry = 149 and mtry = 23 for the raw and D1 spectra, and

the RMSEcv rate of decrease first fell below 2% when mtry = 3 and mtry = 10 for raw and D1

spectra, respectively. For ANN, the RMSEcv values were lowest when units = 5 and units = 17

for the raw and D1 spectra, respectively, and the RMSEcv rate of decrease was either below 2%

or negative when the value of units increased from units = 2. The parameters used in the final

models are listed in Table 5.

Goodness of fit. Built on the optimized parameters selected using the two different rules

(detailed in Table 5), the PLS, SVR, RF and ANN models were calibrated on the full calibration

dataset and validated against the standalone validation dataset for both the raw and D1 spectra.

The calibration and validation RMSE and R2 values of these models are listed in Table 6. The

difference between the validation and calibration RMSE and R2 values are not clear, with the

differences in RMSE ranging from -0.08–0.31 and the differences in R2 ranging from -0.24–

0.06 for all models with the four calibration techniques, two optimal parameter selection rules

and two different input datasets. These results demonstrated the robustness of the PLS, SVR,

RF and ANN methods under temporal variation and demonstrated that there were no clear

overfitting problems in the calibrated models. For all of the four methods, models built on D1

spectra yielded lower RMSE and higher R2 values than corresponding models built on raw

spectra both in model calibration and validation except for the PLS method, for which the

models built on D1 spectra yielded slightly higher RMSE and lower R2 values than the models

built on raw spectra. These results revealed that the D1 spectra outperformed the raw spectra.

When comparing the corresponding PLS, RF and SVR models built on the optimized parame-

ters determined by RULE2 and RULE1, the RMSE differences ranged from 0.00–0.11 and

-0.04–0.03, while the R2 difference ranged from -0.06–0.00 and -0.04–0.06, during model cali-

bration and validation, respectively. These results mean that the optimized parameters selected

Fig 3. Observed vs. predicted LAI scatterplot of the linear regression models built on NDVI(680,830), NDVI(766,830)

and NDVI(1114,1190) and evaluated on the validation dataset. The grey solid line is the 1:1 line. The colour and shape

of points indicate different growth stages.

https://doi.org/10.1371/journal.pone.0207624.g003
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by RULE2 did not clearly reduce model accuracy or robustness while reducing the model

complexity.

Compared with the validation results of NDVI(766,830), the best PLS, SVR, RF and ANN

models increase the prediction accuracy by 28.21%, 29.91%, 42.74% and 28.21% as measured

by RMSE and explained 20.75%, 32.08%, 43.40% and 37.73% of the additional variance as mea-

sured by R2, respectively. The machine learning methods outperformed the linear VI and PLS

methods by achieving lower RMSE and higher R2 values both in model calibration and valida-

tion. The SVR model built on D1 spectra performed best in model calibration (RMSE = 0.69,

R2 = 0.84), but not when validated against the standalone validation dataset (RMSE = 0.82,

Fig 4. Relationship between RMSEcv and LV s of partial least squares (PLS) models (A), mtry of random forests (RF) models (B), units of artificial

neural network (ANN) model (C), as well as the relationship between RMSEcv and C, σ of support vector regression (SVR) models built on raw

spectra (D), D1 spectra (E). The colour and shape of points as well as colour and line type of line in panel A-C indicate two models with different input

data—raw reflectance (raw) and first derivative spectra (D1), while the colour in panels D-E indicates the values of RMSEcv.

https://doi.org/10.1371/journal.pone.0207624.g004

Table 5. Parameters used in final models with different input data (RAW and D1) and two different parameter selection criteria. The parameter selection criteria

RULE1 and RULE2 were defined in Section Methods.

Selection criterion Input PLS SVR RF ANN

RULE1 Raw LVs = 21 C = 64, σ = 5.03 × 10−04 mtry = 149 units = 5

RULE1 D1 LVs = 11 C = 8, σ = 5.15 × 10−04 mtry = 23 units = 17

RULE2 Raw LVs = 6 − mtry = 3 units = 2

RULE2 D1 LVs = 4 − mtry = 10 units = 2

https://doi.org/10.1371/journal.pone.0207624.t005
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R2 = 0.70). The RF model built on D1 spectra with mtry = 10, which was selected by RULE2,

yielded comparable results with the SVR model built on D1 spectra in model calibration with

RMSE = 0.71 and R2 = 0.83 and yielded the best validation results with the lowest RMSE and

highest R2 (RMSE = 0.67, R2 = 0.76). The scatterplot of the observed and predicted LAI for this

model (Fig 5) shows no clear overestimation or underestimation for specific LAI value ranges

or growth stages. The observed and predicted LAI relationship in Fig 5 is less scattered than

that in Fig 3.

Table 6. Goodness of fit for PLS, SVR, RF and ANN models with two different input datasets (raw and D1) and different optimized parameters determined by two

selection criteria (RULE1 and RULE2).

Selection Criterion Input Method Parameter Calibration (n = 313) Validation (n = 106)

RMSE R2 RMSE R2

RULE1 Raw PLS LVs = 21 0.73 0.82 0.96 0.55

RULE2 Raw PLS LVs = 6 0.84 0.76 0.93 0.61

RULE1 D1 PLS LVs = 11 0.78 0.80 0.90 0.62

RULE2 D1 PLS LVs = 4 0.88 0.74 0.84 0.64

RULE1 Raw SVR C = 64, σ = 5.03 × 1004 0.77 0.80 1.08 0.52

RULE1 D1 SVR C = 8, σ = 5.15 × 1004 0.69 0.84 0.82 0.70

RULE1 Raw RF mtry = 149 0.95 0.70 1.06 0.58

RULE2 Raw RF mtry = 3 1.01 0.67 1.05 0.58

RULE1 D1 RF mtry = 23 0.71 0.83 0.68 0.75

RULE2 D1 RF mtry = 10 0.71 0.83 0.67 0.76

RULE1 Raw ANN units = 5 0.93 0.56 0.85 0.62

RULE2 Raw ANN units = 2 0.93 0.55 0.88 0.58

RULE1 D1 ANN units = 17 0.77 0.70 0.87 0.72

RULE2 D1 ANN units = 2 0.79 0.68 0.84 0.73

https://doi.org/10.1371/journal.pone.0207624.t006

Fig 5. Observed vs. predicted LAI scatterplot for RF model built on D1 spectra and parameter selected by RULE2

evaluated on the validation dataset. The grey solid line is the 1:1 line. The colour and shape of points indicate

different growth stages.

https://doi.org/10.1371/journal.pone.0207624.g005
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Discussion

The narrowband NDVI with the RE/NIR band combination (788 nm, 830 nm) and combina-

tion of two SWIR bands (1114 nm, 1190 nm) were optimal for paddy rice LAI estimation in

this study. The drawbacks of traditional VIs calculated using the red/NIR band combination,

including that this approach saturates when LAI increases above 2–3, have been widely dis-

cussed [16, 36]. NDVI with a band combination optimized by an exhaustive search of all possi-

ble band combinations has been demonstrated to be more effective than with the traditional

RE/NIR band combination [16, 22, 37]. Although the specific optimal band combinations

appear to be different across studies with different crop types and study areas, the importance

of the RE bands and SWIR bands has been widely demonstrated [22, 37]. Tanaka et al. [37]

concluded that the difference, ratio and normalized ratio of reflectance at 760nm and 739nm

showed outstanding performance for winter wheat LAI (range between 0.3 and 5.5) assess-

ment with RMSE range between 0.372 and 0.455, which were lower than the RMSE of other

nine major and potentially useful spectral index for LAI prediction. Kira et al. [22] showed

that the ratio and normalized ratio of RE/NIR bands were essential for LAI estimation for

maize and soybean and both corps combined. On a dataset of conifer forest, Peng et al. [36]

analyzed 12 two band spectral index by constructing them using all possible two band combi-

nations then related them to the corresponding LAI values. The results showed that bands in

SWIR and some in NIR region were essential in forming spectral indices for LAI estimation.

These findings are consistent with the result of this study.

Several studies have evaluated whether the derivative spectrum could enhance the perfor-

mance of PLS and ML methods compared to the raw hyperspectral reflectance [38–40]. These

works have revealed that the derivative spectrum are not always better options to build multi-

variate regression models. Cho et al. [38] showed that the PLS models for grass/herb biomass

estimation on Raw and D1 spectrum yielded similar RMSE and R2 values. Yao et al. [39] con-

cluded that the performance of the SVM and ANN models could not be improved when using

derivative spectrum except for the PLS model when monitoring the wheat leaf nitrogen con-

centration. Another work [40] demonstrated that the stepwise multilinear regression models

built on D1 spectra explained more variability of paddy rice aboveground biomass than Raw

spectra. In this work, both the PLS and three ML method yielded lower RMSE and higher R2

when built on the D1 spectrum. The derivative of raw spectra can overcome atmospheric and

background disturbance and enhance the spectral signature [25]. The flooded water in paddy

rice fields adds additional noise in the canopy reflectance, which may explain why the D1 spec-

tra outperformed the raw spectra for the PLS and three MLs methods for paddy rice canopy

parameters estimation.

While the abundant bands provided by hyperspectral data give more detailed spectral fea-

tures, these data also pose the challenge of multicollinearity in spectral features and the poten-

tial overfitting problem. The four multivariate calibration methods evaluated in this study are

intrinsically able to handle data with high input feature spaces in different ways. The PLS

method lowers the input feature space to few LVs by component projection. The RF method

builds each decision tree on a subset of (mtry) input variables. The SVM is built on the struc-

ture-risk-minimum principle and is independent of the input feature dimension. The ANN is

combined with a regularizer (the L1 regularizer is utilized in this study) to regulate the weights.

Given these features, although the observation numbers (n = 313 for model calibration) was

not large enough given the dimension of the input data (513), no clear overfitting phenomena

were observed for any of the calibrated models.

The RF method resulted in suboptimal calibration accuracy and the best validation accu-

racy. The superiority of the RF method to other methods was consisted with recent studies [23,

Rice LAI ML remote sensing estimation
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41, 42]. Wei et al. [41] showed that the RF model gave more accurate result than the ANN and

SVM models when trying to retrieve the multiple growth stages soybean LAI. The excellent

performance of the RF model may be due to its ‘majority vote’ principle, which reduces the

negative effects of outliers. In addition, building each decision tree on a subset of (mtry) bands

is intrinsically resistant to the overfitting problem. The SVM yielded the best calibration accu-

racy and suboptimal validation accuracy, which means that the SVM method is potentially

efficient for paddy rice LAI estimation but is less robust than the RF method under temporal

variation. The superiority of ANN to VI methods has been demonstrated repeatedly in various

studies, but the ANN method is not always optimal compared with other ML methods [23].

The performance of ANN models is influenced by the model structure. Too many or too few

layers/units reduce the model performance significantly. The PLS is simple, computationally

efficient and capable of avoiding the multicollinearity in input features while handling high-

dimensional hyperspectral bands. However, the PLS method is intrinsically a linear calibration

technique and cannot estimate the nonlinear relationship between spectral data and LAI.

A plot experiment with different nitrogen and biochar treatments were used to obtain spec-

tra/LAI reference data in this study. However the ANOVA analysis showed that neither the

biochar nor the the interaction between nitrogen and biochar effected the LAI value signifi-

cantly (Table 3). This resulted in a relative lower variance of LAI values (Table 2). To get a

large variance of LAI reference values by controlling the biochar levels is indeed not a good

choice. However, given the large range of LAI value (0.08–7.35) at mean of 2.56 and stand

deviation of 1.62, we believe the models built on these dataset still have reference value. The

bichar application to agricultural soils has been highlighted that is able to decrease soil nitro-

gen leaching and increase rice nitrogen uptake [43]. The insignificant effects of biochar treat-

ment as well as interaction between nitrogen and bichar treatment on LAI variance could be

due to that the variance of nitrogen use efficiency caused by bichar was not strong enough to

effect the paddy rice LAI significantly.

Conclusion

A multi-year field-collected dataset was used to evaluate the performance of three machine

learning (ML) methods—support vector regression(SVM), random forests (RF) and artificial

neural network (ANN)—for paddy rice LAI estimation, and a comparison with vegetation

index (VI) and partial least square (PLS) methods was conducted. The VI models were built

on the NDVI with red/NIR band combination and optimized band combinations. The PLS

and ML models were built on raw reflectance (raw) spectra and first derivative (D1) spectra.

Two different rules were used to determine the parameters of the PLS, RF and ANN methods.

The first rule (RULE1) chose the parameter with the lowest cross validated calibration RMSE,

and the second rule (RULE2) considered both the model complexity and the cross validation

calibration RMSE. To evaluate the models’ robustness, all models were calibrated on the 2014–

2016 growth seasons datasets and validated on the 2017 growth season dataset.

The results demonstrated that the NDVI with red/NIR bands did not work in this study.

The NDVI with red edge band and NIR band combination (766 nm, 830 nm), as well as two

SWIR band combinations (1114, 1190) could give reasonable estimations. For PLS and three

ML methods, the models built on D1 spectra yielded higher accuracies. The models with opti-

mized parameters determined by RULE2 resulted in comparable accuracy and robustness with

the the models with optimized parameters determined by RULE1 and significantly reduced

the complexity of the models. For the RMSE validation metric, the best PLS, SVM, RF and

ANN models reduced the prediction error by 28.21%, 29.91%, 42.74% and 28.21%, respec-

tively, compared to the linear regression model built on NDVI(766,830). The SVM model built

Rice LAI ML remote sensing estimation
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on D1 spectra yielded the best calibration result (RMSE = 0.69, R2 = 0.84) but showed a small

decrease in accuracy when validated against the standalone validation dataset (RMSE = 0.82,

R2 = 0.70). The RF model built on D1 spectra with parameters selected by RULE2 yielded the

second best calibration accuracy (RMSE = 0.71, R2 = 0.83) and performed best when validated

against the standalone validation dataset (RMSE = 0.67, R2 = 0.75).
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