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Abstract

Neurons use sequences of action potentials (spikes) to convey information across neuronal

networks. In neurophysiology experiments, information about external stimuli or behavioral

tasks has been frequently characterized in term of neuronal firing rate. The firing rate is con-

ventionally estimated by averaging spiking responses across multiple similar experiments

(or trials). However, there exist a number of applications in neuroscience research that

require firing rate to be estimated on a single trial basis. Estimating firing rate from a single

trial is a challenging problem and current state-of-the-art methods do not perform well. To

address this issue, we develop a new method for estimating firing rate based on a kernel

smoothing technique that considers the bandwidth as a random variable with prior distribu-

tion that is adaptively updated under an empirical Bayesian framework. By carefully select-

ing the prior distribution together with Gaussian kernel function, an analytical expression

can be achieved for the kernel bandwidth. We refer to the proposed method as Bayesian

Adaptive Kernel Smoother (BAKS). We evaluate the performance of BAKS using synthetic

spike train data generated by biologically plausible models: inhomogeneous Gamma (IG)

and inhomogeneous inverse Gaussian (IIG). We also apply BAKS to real spike train data

from non-human primate (NHP) motor and visual cortex. We benchmark the proposed

method against established and previously reported methods. These include: optimized ker-

nel smoother (OKS), variable kernel smoother (VKS), local polynomial fit (Locfit), and

Bayesian adaptive regression splines (BARS). Results using both synthetic and real data

demonstrate that the proposed method achieves better performance compared to compet-

ing methods. This suggests that the proposed method could be useful for understanding the

encoding mechanism of neurons in cognitive-related tasks. The proposed method could

also potentially improve the performance of brain-machine interface (BMI) decoder that

relies on estimated firing rate as the input.
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Introduction

In neural systems, signaling and interneuronal communication can be observed through the

characteristic of action potentials (or ‘spikes’). A sequence of spikes, known as a spike train,

may encode information based on different schemes. Currently, there are two main hypothe-

ses of neural coding schemes: temporal coding and rate coding. The temporal coding repre-

sents the information by the precise timing or occurrence of spikes. On the other hand, the

rate coding represents the information by the rate or frequency at which a neuron “fires”

spikes, also known as “firing rate”, and has been the most commonly used scheme to charac-

terize the neuronal or network responses to external stimuli or behavioral tasks [1, 2]. The fir-

ing rate is typically estimated in offline analysis by averaging spiking responses across multiple

repeated experiments known as trials. In practice, however, spiking responses may differ con-

siderably even though the trial setting remains approximately the same. This is partly due to

the inherent stochastic nature of neurons and the difference of cognitive states during the trials

[3, 4]. Averaging out many variably similar trials can obscure the temporal dynamics, which

may contain useful information, on each single trial. Furthermore, many research of interests

require the firing rate to be estimated on single trial basis. For example, quantifying trial-to-

trial variability of neuronal responses [5, 6], decoding task parameters in brain-machine inter-

face (BMI) applications [3, 5], and measuring neuronal responses in cognitive-related tasks

such as decision making, motor planning, learning and memory [7–9]. Therefore, it is essential

to be able to accurately estimate firing rate based on single trials.

Estimating firing rate as a continuous-time function from a single trial is a challenging task

since the underlying process provides only a sparse representation of the spiking data. A

widely used method known as peri-stimulus time histogram (PSTH) results in a coarse esti-

mate [10, 11]. To produce smooth estimate of firing rate, several methods have been proposed

such as optimized kernel smoother (OKS) [12], variable kernel smoother (VKS) [12], local

polynomial fit (Locfit) [13], and Bayesian adaptive regression splines (BARS) [14]. OKS and

VKS employ kernel density estimation technique in which the accuracy of estimation is heavily

impacted by the choice of the kernel bandwidth. Both methods automatically compute the

bandwidth based on mean integrated squared error (MISE) minimization principle. However,

in computing the bandwidth, these methods make assumption that spikes are generated by a

Poisson process. Even though superimposed spike trains across many trials approximate a

Poisson process, in the case of single trial, a spike train has been shown to depart from this

assumption [15, 16]. Single trial spike train exhibits history-dependent properties such as

refractory period and bursting, which cannot be modeled by Poisson process [15, 16]. The

deviation from Poisson assumption can lead both OKS and VKS to exhibit poor performance

under single trial cases. Locfit employs a generalized nonparametric regression technique

where the firing rate is approximated by polynomial. The estimation accuracy of Locfit

depends mostly on a smoothing parameter (bandwidth). How this bandwidth is selected along

with the Poisson assumption of the spike train are the main caveats of this method. Like Locfit,

BARS also employs a generalized regression technique, except that it estimates the firing rate

using splines (several polynomials connected at some points or knots). The challenge of using

a spline-based method is determining the number and location of the knots since these will

significantly impact the estimation. To determine the optimal knot configurations (number

and location), BARS utilizes a reversible-jump Markov chain Monte Carlo (MCMC) engine

with Bayesian information criterion (BIC). The flexibility and powerfulness of BARS comes at

a price of relatively high computational complexity [14, 17]. In addition, similarly to above-

mentioned methods, BARS also assumes that spikes are generated from a Poisson process. It is

intended to be used for firing rate estimation after pooling spikes across multiple trials [17].
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Within this context, it is highly desirable to have a method for estimating neuronal firing

rate from a single trial spike train, which features an adaptive capability and low computational

complexity. An adaptive capability is crucial as spiking activity may change rapidly within sin-

gle trial. The proposed method should be data-driven and able to accurately estimate the

underlying spike dynamics. Low computational complexity is needed to perform the computa-

tion within a short time, and is necessary for real-time BMI applications. In addition, it is

important to have a spike train model that mimics the spiking behavior encountered in real

neural recording. Using certain assumption on the underlying rate function (i.e. the “ground

truth” is known), single spike trains can be stochastically generated which can then be used to

evaluate the performance of the firing rate estimation method.

In this paper, we propose a new method for estimation of firing rate that addresses the

issues listed above. This method employs a kernel smoothing technique due to its simplicity.

The key parameter, bandwidth, is considered as a random variable with a prior distribution

and is adaptively determined under an empirical Bayesian framework. With the appropriate

selection of kernel and prior distribution functions, an analytical expression of posterior distri-

bution can be attained which reduces the computational complexity. We refer to this method

as Bayesian Adaptive Kernel Smoother (BAKS). We evaluate BAKS with synthetic data gener-

ated from two biologically plausible models: inhomogeneous Gamma (IG) and inhomoge-

neous inverse Gaussian (IIG). BAKS is then tested with real neural data recorded from motor

and visual cortex of non-human primate (NHP).

Methods

In this section, we first introduce a kernel smoothing technique for estimating firing rate. We

then describe our proposed method, BAKS, a new variant of kernel-based firing rate estima-

tion method that incorporates an adaptive bandwidth. Lastly, we explain two models that we

used to generate synthetic spike train data for evaluating the performance of the proposed

method. The BAKS code and all the datasets that we synthesized (in Matlab) have been made

publicly available through https://github.com/nurahmadi/BAKS.

Kernel-based firing rate estimation

Let t1, t2, � � �, tn be a sequence of spike times (i.e. a spike train) which can be expressed mathe-

matically as

rðtÞ ¼
Xn

i¼1

dðt � tiÞ ð1Þ

where δ(t) is Dirac function and n is the total number of spikes. The underlying rate function

also known as firing rate, λ(t), can be estimated by using kernel smoothing, a method which

convolves the spike train with a kernel function K(t) as follows,

l̂ ðtÞ ¼
Z 1

� 1

KðtÞrðt � tÞdt ð2Þ

Eq (2) can also be represented as the sum over kernel functions centered at spike times ti,

l̂ ðtÞ ¼
Xn

i¼1

Kðt � tiÞ ð3Þ

The effectiveness of kernel smoothing technique depends on the choice of a kernel function

and the selection of a smoothing parameter (i.e. bandwidth). A kernel function is required to
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be a non-negative, normalized to a unit area, having a zero first moment and a finite variance

[5, 12]. Examples of kernel functions that have been widely used are Gaussian and Epanechni-

kov [18, 19]. In many occasions, the kernel bandwidth is set fixed over the whole observation

interval. A significant amount of literature has been reported in the field of statistics on select-

ing the proper value for this fixed bandwidth [20–24]. Even though a near-optimal fixed band-

width selection (e.g. [12, 25, 26]) may yield a better estimate compared to an arbitrary choice,

it may still suffer from simultaneously under- and over-smoothing depending on the underly-

ing spike dynamics. A rapid change in spiking activity is sometimes encountered in neural

responses and is of interest to neuroscientists. Thus, it is highly desirable to find optimal adap-

tive bandwidth selection method that can adaptively grasp the slow and rapid changes of firing

rate.

Bayesian Adaptive Kernel Smoother (BAKS)

BAKS employs a kernel smoothing technique and incorporates an adaptive bandwidth at the

estimation points, meaning the bandwidth at which firing rate is being estimated can adapt to

the dynamics of the underlying process. In so doing, BAKS considers the bandwidth as a ran-

dom variable with prior distribution and adaptively updates the posterior bandwidth given

spiking data using an empirical Bayesian framework.

Selection of kernel function. There are several choices of kernel functions that can be uti-

lized for firing rate estimation. Gaussian and Epanechnikov are among the popular kernel

functions in statistical research [18, 19]. In term of minimizing asymptotic mean integrated

squared error (AMISE), Gaussian kernel is slightly less efficient than Epanechnikov kernel

[18]. However, Gaussian offers more interesting properties, e.g. the availability of several types

of conjugate prior distributions. This conjugate property enables an analytical expression of

posterior distribution which simplifies the computation and avoids using a numerical approxi-

mation technique. Due to this mathematical convenience, in our proposed method, we select a

Gaussian kernel with adaptive bandwidth which can be expressed as,

KðtÞ ¼
1
ffiffiffiffiffiffi
2p
p

hðtÞ
exp

(

�
t2

2hðtÞ2

)

ð4Þ

where h(t) is the adaptive bandwidth. The bandwidth should be small (large) at the region of

high (low) spike density.

Selection of prior distribution. We select a prior distribution of bandwidth that incorpo-

rates prior belief about spiking data (i.e. informative prior) and also leads to an analytical

expression of posterior distribution. The informative prior is especially useful when the num-

ber of spiking data is relatively small as this prior can give more weight than the likelihood

function, while the analytical expression is crucial to simplifying the computation and avoiding

a numerical approximation technique (e.g. Markov chain Monte Carlo). In Eq (4), the Gauss-

ian kernel uses parameter bandwidth (i.e. standard deviation in statistical literature) that

describes how spread the observed data are around the mean. We can also represent the

parameter in term of precision (inverse of square bandwidth) that describes how concentrated

the observed data are around the mean. In computing firing rate estimation, the means of

Gaussian kernel are set to the spike times. These spike times can be represented as sum of the

interspike intervals (ISIs) that can be conveniently modeled by Gamma distribution [15, 27–

30]. Since sum of independent Gamma random variables follows Gamma distribution [31],

the spike times can also be represented as Gamma distribution. Hence, we propose a Gamma

prior distribution on the precision parameter σ(t), where σ(t) = 1/h(t)2. As Gamma distribu-

tion is a conjugate prior for Gaussian distribution with precision parameter [32], the choice of
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Gamma prior distribution results in an analytical expression of the posterior distribution. This

Gamma prior distribution is given by

pðsðtÞÞ ¼
sðtÞa� 1

GðaÞb
a exp

(

�
sðtÞ
b

)

; s > 0 ð5Þ

where α> 0 is the shape parameter, β> 0 is the scale parameter, and Γ(α) is Gamma function.

By the change-of-variable formula and transformation technique, we can express the prior dis-

tribution π(σ(t)) as a function of h(t):

pðhðtÞÞ ¼ pðsðtÞÞ �
dsðtÞ
dhðtÞ

�
�
�
�

�
�
�
�

¼
2hðtÞ� 2a� 1

GðaÞb
a exp

(

�
1

bhðtÞ2

) ð6Þ

BAKS modeling and inference. Under Bayesian framework, the statistical inference

depends on both likelihood function and prior distribution. The likelihood function is the

probability density function of the observed spike train ρ(t) viewed as a function of the

unknown bandwidth parameter h(t), which can be approximated by

f̂ ðrðtÞjhðtÞÞ ¼
1

n

Xn

i¼1

KhðtÞðt � tiÞ

¼
1

n

Xn

i¼1

1
ffiffiffiffiffiffi
2p
p

hðtÞ
exp

(

�
ðt � tiÞ

2

2hðtÞ2

) ð7Þ

where Kh(t)(t − ti) is Gaussian kernel as defined in Eq (4) with adaptive bandwidth and cen-

tered at spike event time ti.
Using Bayes’ theorem, the posterior distribution of kernel bandwidth, π(h(t)|ρ(t)), can be

computed by

pðhðtÞjrðtÞÞ ¼
f̂ ðrðtÞjhðtÞÞpðhðtÞÞ

Z

f̂ ðrðtÞjhðtÞÞpðhðtÞÞdhðtÞ
ð8Þ

Computing the denominator of Eq (8), also called marginal density, can be problematic if

there is no analytical solution of its integral expression since an approximation method will be

required instead. The choice of prior distribution in Eq (6) coupled with Gaussian kernel in Eq

(7) leads to an analytical expression for the denominator in Eq (8) as follows,

pðhðtÞjrðtÞÞ ¼

Xn

i¼1

hðtÞ� 2a� 2 exp

(

�
1

hðtÞ2
ðt � tiÞ

2

2
þ

1

b

� �)

1

2
G aþ

1

2

� �
Xn

i¼1

ðt � tiÞ
2

2
þ

1

b

� � � a� 1
2ð Þ

ð9Þ

The adaptive bandwidth can then be estimated under squared error loss function by using the

posterior mean formulated as

ĥðtÞ ¼
R
hðtÞpðhðtÞjrðtÞÞdhðtÞ ð10Þ
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The closed-form expression of Eq (10) is given by

ĥðtÞ ¼
GðaÞ

Xn

i¼1

ðt � tiÞ
2

2
þ

1

b

� �� a

G aþ
1

2

� �
Xn

i¼1

ðt � tiÞ
2

2
þ

1

b

� �� a� 1
2

ð11Þ

Eqs (9)–(11) define what is called a mixture of t-distributions in statistical literature. By substi-

tuting the adaptive bandwidth in Eq (11) into Eq (3), we can compute firing rate estimation

using the following formula:

l̂ ðtÞ ¼
Xn

i¼1

1
ffiffiffiffiffiffi
2p
p

ĥ
ðtÞ exp

(

�
ðt � tiÞ

2

2ĥðtÞ2

)

ð12Þ

BAKS is graphically illustrated in Fig 1. The derivation of the closed-form expressions of band-

width posterior distribution and the adaptive bandwidth estimate are given in Appendix 1 and

Appendix 2, respectively.

Parameter setting of prior distribution. The effectiveness of firing rate estimation using

BAKS depends on the adaptive bandwidth estimate, which is influenced by the setting of

parameter shape (α) and scale (β) of the prior distribution. According to prior distribution of

bandwidth in Eq (6), we can calculate its mean and variance as follows,

E½hðtÞ� ¼
R
hðtÞpðhðtÞÞdhðtÞ

¼

G a �
1

2

� �

GðaÞb
1
2

ð13Þ

V½hðtÞ� ¼
Z

ðhðtÞ � mÞ2pðhðtÞÞdhðtÞ; m ¼ E½hðtÞ�

¼

GðaÞGða � 1Þ � G a �
1

2

� �2

GðaÞ
2
b

ð14Þ

where E½hðtÞ� and V½hðtÞ� are the mean and variance of π(h(t)), respectively. It can be

observed from both Eqs (13) and (14) that the mean and variance are inversely proportional to

the value of parameter β. As the number of spike events (n) increases, the bandwidth decreases.

Hence, to obtain consistency of the estimation, the value of β is set to be a function propor-

tional to the number of spike events (n). Here, we propose β = n4/5 in accordance with MISE

convergence rate of Gaussian kernel [33].

To yield accurate estimate of firing rate, we tune parameter α by minimizing mean inte-

grated squared error (MISE). Since h(t)> 0, the numerator of Eqs (13) and (14) must be

greater than zero, which in turn requires α> 1. The value of parameter α is tuned such that it

minimizes MISE function given fixed value of β = n4/5. This tuning process is mathematically

expressed as follows,

at ¼ argmin
a
fMISEðaÞg ð15Þ

MISE is a common metric used in evaluating goodness-of-fit of a density estimation and has

been used in previous studies of firing rate estimation [5, 12, 34]. It is computed between the
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estimated firing rate (l̂ðtÞ) and the true underlying rate function (λ(t)) with the following for-

mula,

MISE ¼

Z

E½l̂ðtÞ � lðtÞ�2dt

� Dt
X
E½l̂ðtÞ � lðtÞ�2

ð16Þ

where E denotes the expectation with respect to stochastic process of spike generation model

and the integration/summation is performed over observation interval.

The tuning of parameter α was performed using synthetic spike train data generated by bio-

logically plausible models –inhomogeneous Gamma (IG) model and inhomogeneous inverse

Gaussian (IIG) model– which are described in the subsequent section. Parameter α value that

gives the smallest MISE during this tuning process was then fixed and used for firing rate esti-

mation during performance evaluation (testing) phase of our proposed method. The testing

phase was performed using distinct synthetic datasets (i.e. different than that of during tuning

phase) and real neural datasets.

Spike train generation model

It is essential to have a model for generating spike trains in order to tune the parameter of

BAKS and to evaluate its performance. A spike train can be modeled by using a point process;

a stochastic process that describes localized events or points in real (e.g. time, space) domain.

The most commonly used class of point processes to model a spike train is inhomogeneous

Poisson (IP) process. [3, 5, 12, 15, 25]. In this class, spike counts (increments) within any inter-

vals vary across time (i.e. nonstationary). The spike counts depend on integral value of the fir-

ing intensity function over interval in question but do not depend on the past spike times (i.e.

Fig 1. Graphical representation of BAKS. The various blocks describe the different components as follows: Circular

blocks denote continuous variables, and rectangle blocks denote discrete variables. Shaded blocks represent observed

variables, whereas white blocks represent hidden variables. Solid and dashed arrow indicate Bayesian modeling and

inference phase, respectively.

https://doi.org/10.1371/journal.pone.0206794.g001
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remain independent). As a consequence, IP process still possesses memoryless property; a

spike occurring at a particular time does not depend on the past spiking activities [35]. It has

been shown that IP process can be used to approximate the behavior of neural spikes when the

spikes are superimposed across trials [12, 16]. However, a Poisson process cannot model the

history-dependent properties (e.g. refractory period and bursting) of neural spike trains in the

case of single trial. Hence, another class of point process is required to model single trial spike

train.

Renewal process is an alternative class of point process that can describe the history-depen-

dent property of spike times by assuming that a spike fired at any point in time depending

only on the last spike, not the spikes before it. In the renewal process, spike times are no longer

independent, but it is their inter-spike intervals (ISIs) that remain independent. Spike trains

can be conveniently represented by their ISIs drawn from a certain distribution. Two classes of

distribution which have often been used to model non-Poisson spike train are Gamma and

inverse Gaussian distributions [6, 15, 27–30, 36]. The former is then called inhomogeneous

Gamma (IG) model while the latter is called inhomogeneous inverse Gaussian (IIG) model.

Inhomogeneous Gamma (IG) model. The Inhomogeneous Gamma (IG) model general-

izes a Poisson model by allowing more flexible ISI distribution that is controlled by shape

parameter (γ) [15, 27–30]. The gamma probability density of the ISI is defined as

ftðtÞ ¼
1

GðgÞy
g t

g� 1 exp

(

�
t

y

)

ð17Þ

where τ> 0 denotes the ISI, γ> 0 represents the shape parameter, θ is the scale parameter,

and Γ(γ) is the Gamma function. As shown in Eq (17), when γ = 1, the ISI follows an exponen-

tial distribution as in a Poisson process. If γ< 1, the probability density value declines faster

than exponential, which means the ISI tends to become smaller. This can be used to describe

neuron’s rapid firing (bursting) phenomena. If γ> 1, the probability density value will

increase from zero up to a certain peak value and then decrease again to zero. This indicates

the refractory period property where a neuron is less likely to fire again immediately after it

fires a spike.

To generate a spike train from such a model, we employ time-rescaling theorem which

transforms the original spike times into new rescaled spike times where the ISIs are indepen-

dently and identically drawn from fixed distribution (e.g. Gamma) [29]. In the IG model, this

transformation is defined as integration of underlying rate function, λ(t), on the interval (0, t]
and multiplied by the shape parameter (γ). This transformation is formulated as

LðtÞ ¼ g
R t

0
lðuÞdu ð18Þ

Since λ(t) is a non-negative function, Λ(t) is a monotonically increasing and one-to-one

function and usually called integrated intensity function. Thus, we can obtain the original

spike times from i.i.d. ISI samples (τ) by performing the inverse of time-rescaling transform as

follows,

ti � Lti� 1
ðtiÞ ¼ LðtiÞ � Lðti� 1Þ ¼ g

Z ti

ti� 1

lðuÞdu ð19Þ

ti ¼ L
� 1

ti� 1
ðtiÞ ð20Þ

where 0< t1 < t2 <, � � �,< tn� T represent the spike times within interval (0, T] and L
� 1

ti� 1
ðtÞ

is the inverse of time-rescaling transform.
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Inhomogeneous inverse Gaussian (IIG) model. It has been suggested that inhomoge-

neous inverse Gaussian (IIG) model is more biologically plausible to describe the characteristic

of neural spike train than IG model [15, 37]. The IIG model uses inverse Gaussian distribution

for the ISI and has been applied in multiple studies [38, 39]. The inverse Gaussian ISI distribu-

tion used in this model is given by

ftðtÞ ¼
g

2pt3

h i1=2

exp �
gðt � mÞ

2

2m2t

� �

ð21Þ

where τ> 0 denotes the ISI, γ is the shape parameter, and μ is the location parameter. In the

IIG model, the value of ISI density is zero at the origin, then increases to certain peak value,

and decreases again to zero. How quick the density value rises or falls is controlled by the

shape parameter (γ), which demonstrates the flexibility of IIG model in describing different

neural spike characteristics such as rapid bursting and refractory period. The smaller (larger)

value of γ, neuron tends to fire more bursty (regularly).

To generate a spike train using the IIG model, we employ a similar procedure as that of IG

model, with the exception that the time-rescaling transform here is expressed as

LðtÞ ¼
Z t

0

lðuÞdu ð22Þ

where the interval between subsequent spike times (ISIs) in the rescaled domain are drawn

from i.i.d. inverse Gaussian distribution. The spike times in the original domain can be com-

puted by using the inverse of time-rescaling transform as shown in Eq (20).

Results

Synthetic datasets

In our synthetic data, the spike trains were generated from IG and IIG models with different

underlying rate functions that represent non-stationary processes usually encountered in

empirical datasets. These rate functions include (1) a continuous process with changing (het-

erogeneous) frequency, (2) a continuous process with oscillatory (homogeneous) frequency,

and (3) a discontinuous process with sudden rate changes. In this study, the first, second, and

third rate functions are referred to as ‘chirp’, ‘sine’, and ‘sawtooth’ rate functions, and are

mathematically expressed as,

lcðtÞ ¼ Zþ A sin ð2pft2 þ �Þ ð23Þ

lsðtÞ ¼ Zþ A sin ð2pft þ �Þ ð24Þ

lstðtÞ ¼ Zþ
2A
p

arctan ð cot ðpft þ �ÞÞ ð25Þ

where η indicates the base or average number of spikes per second and A denotes the intensity

(or amplitude) which controls the dynamic range of the rate function. Parameter f is frequency

whereas ϕ is phase. The chirp, sine and sawtooth rate functions are represented by λc(t), λs(t)
and λst(t), respectively.

The chirp rate function used in this study is similar to that of Rao and Teh [40], whereas the

sine and sawtooth processes are similar to that of Shimazaki and Shinomoto [12] but with dif-

ferent intensity, frequency, and spike train model. Examples of chirp, sine, and sawtooth rate

functions with certain parameter settings are illustrated in Fig 2a, 2b and 2c, respectively.
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During parameter tuning of BAKS (tuning phase), we set η to 50 spikes/s and A to

25 spikes/s (corresponds to dynamic intensity range between 25 and 75 spikes/s) as in [28].

These intensity values are referred to as medium intensity. This setting is reasonable as in prac-

tice cortical neurons do not often fire more than 100 spikes/s [41]. The frequency of chirp (fc),
sine (fs) and sawtooth (fst) rate functions were set to 0.5, 1 and 1, respectively. These frequency

values are referred to as medium frequency. We generated randomly 100 single spike trains

(duration of 2s) from two models (IG and IIG) and three rate functions (chirp, sine, and saw-

tooth). In IG model, the shape parameter (γ) that determines the regularity of firing rate was

set to 4, while the scale parameter (θ) was set to 1. This setting is comparable to real neural

spiking data and also used in [27, 36]. Analogously, the shape (γ) and location (μ) parameters

in IIG model were respectively set to 4 and 1. The parameter value (α) of prior distribution in

BAKS was tuned by minimizing the average MISE from two models and three rate functions

mentioned above. The same procedure was performed to tune the smoothing parameter value

of Locfit.

For evaluating the performance of BAKS (testing phase), we generated 5 datasets each con-

taining 100 repetitions from both IG and IIG models with the same and different setting from

that of parameter tuning phase. Dataset testing 1 was generated using the same setting as in

the tuning phase. Dataset testing 1 was used to evaluate BAKS when the underlying rate func-

tions are the same but their stochastic spiking data realizations are different. Dataset testing 2

was used to evaluate BAKS when the frequency and intensity of the underlying rate functions

are different. The frequency of chirp, sine and sawtooth rate functions were respectively set to

Fig 2. Illustration of the underlying rate functions used in this study. (a) Chirp rate function with η = 50, A = 25,

fc = 0.5, and ϕ = 0. (b) Sine rate function with η = 50, A = 25, fs = 1, and ϕ = −π/2. (c) Sawtooth rate function with

η = 50, A = 25, fst = 1, and ϕ = −π/4. (d) Gaussian-damped sinusoidal rate function with η = 50, A = 1, t0 = 0.2, σ = 1,

fgds = 0.5, and ϕ = −π/2.

https://doi.org/10.1371/journal.pone.0206794.g002
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low (0.25, 0.5 and 0.5) and high (0.75, 1.5 and 1.5) while keeping the intensity same as that of

tuning phase. Then, the dynamic intensity range of these three rate functions were set to low

(2–20) and high (25–175) while keeping the frequency same as that of tuning phase. In dataset

testing 3, the model setting was equal to during the tuning phase except that the parameter

shape (γ) was varied between 1 and 10 with an increment of 1. Dataset testing 4 was used to

assess the performance of BAKS under multiple trials (tr = {5, 10, 20, 30}). These multi trial

spike trains were obtained by superimposing spike trains from a number of trial (5, 10, 20 or

30) into single spike trains with the same setting as of tuning phase. In dataset testing 5, spike

trains were generated using Gaussian-damped sinusoidal rate function with variable intensity

and frequency. The idea of using this rate is taken from Mazurek’s work [41]. Mathematically,

the Gaussian damped sinusoidal rate function is given by

lgdsðtÞ ¼ Zþ ZA exp

(

�
ðt � t0Þ

2

2s2

)

sin ð2pft þ �Þ ð26Þ

During the generation of dataset testing 5, the frequency (fgds) was set to low (0.5), medium

(1.5) and high (2) while keeping the dynamic intensity range to medium (0 to 100) which cor-

responds to η = 50 and A = 1; the dynamic intensity range was varied between low (0 to 20),

medium (0 to 100) and high (0 to 200) while setting fgds = 1. An example of Gaussian-damped

sinusoidal rate function is illustrated in Fig 2d. The summary of model settings for generating

the synthetic datasets used in tuning and testing phase is shown in Table 1.

Tuning the shape parameter (α) of prior distribution

We investigated the choice of parameter value that yielded the most accurate firing rate esti-

mates measured by MISE metric. The tuned parameter (αt) obtained from the tuning phase

was then used as parameter value for our proposed method during testing phase. Spike trains

used during tuning phase were stochastically generated from two models (IG and IIG) and

three different underlying rate functions (chirp, sine, sawtooth) as described in previous sec-

tion. We performed firing rate estimation over tuning dataset using parameter α varying from

1 to 10 with an increment of 0.5. This estimation was carried out while keeping parameter β
fixed to n4/5, where n represents total number of spikes within observed duration.

Table 1. Model setting for synthetic dataset generation.

Phase Rate function Intensity Frequency Parameter shape (γ) Number of trial (tr)
Tuning {Chirp, sine, sawtooth} Medium Medium 4 1

Testing 1 {Chirp, sine, sawtooth} Medium Medium 4 1

Testing 2 {Chirp, sine, sawtooth} {Low, high} {Low, high} 4 1

Testing 3 {Chirp, sine, sawtooth} Medium Medium {1, 2, � � �, 10} 1

Testing 4 {Chirp, sine, sawtooth} Medium Medium 4 {5, 10, 20, 30}

Testing 5 {Gaussian-damped sine} {Low, medium, high} {Low, medium, high} 4 1

Tuning: medium intensity (η = 50, A = 25), medium frequency (fc = 0.5, fs = 1, fst = 1)

Testing 1: medium intensity (η = 50, A = 25), medium frequency (fc = 0.5, fs = 1, fst = 1)

Testing 2: low intensity (η = 11, A = 9), high intensity (η = 100, A = 75), low frequency (fc = 0.25, fs = 0.5, fst = 0.5), high frequency (fc = 0.75, fs = 1.5, fst = 1.5)

Testing 3: medium intensity (η = 50, A = 25), medium frequency (fc = 0.5, fs = 1, fst = 1)

Testing 4: medium intensity (η = 50, A = 25), medium frequency (fc = 0.5, fs = 1, fst = 1)

Testing 5: low intensity (η = 10, A = 1), medium intensity (η = 50, A = 1), high intensity (η = 100, A = 1), low frequency (fgds = 0.5), medium frequency (fgds = 1.5), high

frequency (fgds = 2)

https://doi.org/10.1371/journal.pone.0206794.t001
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The performance of estimation was quantified in term of MISE, mean of integrated squared

error between the underlying and estimated firing rates over the observed duration (2s). From

100 repetitions and 19 variation of parameter values (α = {1, 1.5, 2, � � �, 10}), we computed the

MISE values along with their 95% confidence intervals from these 6 scenarios (2 models and 3

rate functions). The MISE values and their confidence intervals for IG and IIG models are

shown in Fig 3a and 3b. In IG model, α values that resulted in smallest MISE for chirp, sine

and sawtooth rate functions are 4, 3 and 6, respectively. In IIG model, α values associated with

the smallest MISE for chirp, sine and sawtooth rate functions are 4.5, 3 and 5.5, respectively.

We tuned parameter α by computing the average MISE values across 6 scenarios. The value of

α that corresponds to the smallest average MISE is referred to as the tuned parameter (αt).
According to the results as shown in Fig 3c, we set αt = 4 and used this value during the testing

phase.

Comparison with established methods

We evaluated and compared the performance of the proposed method (BAKS) with estab-

lished methods which include optimized kernel smoother (OKS) [12], variable kernel

smoother (VKS) [12], local polynomial fit (Locfit) [13] and Bayesian adaptive regression

splines (BARS) [14]. The performances were quantified using MISE as expressed in Eq (16).

We did not include the the histogram (PSTH) method in the comparison as this cannot pro-

duce a smooth estimate under single-trial case. Shimazaki and Shinomoto demonstrated that

even if the number of trials is increased, the performance of PSTH is far outperformed by

OKS, VKS, Locfit, and BARS [12].

The two kernel smoothing methods used in the presented work, OKS and VKS, were devel-

oped by Shimazaki and Shinomoto [12]. In OKS, the bandwidth is fixed for the whole duration

and automatically selected based on global MISE minimization principle. Unlike OKS, VKS

employs a variable bandwidth and this bandwidth is automatically determined by minimizing

local MISE function. Thus, both OKS and VKS do not require manual user intervention in

selecting optimal bandwidth parameter. The Matlab codes for OKS and VKS can be obtained

from the author’s website (http://www.neuralengine.org/res/kernel.html).

Locfit is part of Chronux analysis software that at the time of this study can be downloaded

from http://chronux.org/. This method estimates the firing rate by maximizing local log-likeli-

hood where the log-density function is approximated by a local polynomial. Locfit has some

Fig 3. MISE comparison under different values of prior parameter (α). (a) MISE values (star marks) and their 95% confidence intervals (vertical bars) for

IG model. (b) MISE values (star marks) and their 95% confidence intervals (vertical bars) for IIG model. (c) Average MISE values across 2 models and 3 rate

functions. We set αt = 4 as it yields the smallest average MISE.

https://doi.org/10.1371/journal.pone.0206794.g003
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parameters such as degree of polynomial, weight function, and bandwidth. However, it is the

bandwidth that is considered as the most crucial parameter affecting the accuracy of estima-

tion [13]. We used nearest neighbor bandwidth so that the local neighborhood always contains

sufficient data (spikes). This can reduce data sparsity problem that may arise in real neural

data. The nearest neighbor bandwidth parameter was determined by a tuning process similar

to that of BAKS, while the parameter of degree of polynomial and weight function were set to

the default values which are two and tricube (‘tcub’), respectively. We performed MISE com-

parison from three underlying rate processes (chirp, sine, and sawtooth) for nearest neighbor

bandwidth between 0.2 to 0.8 with increment 0.1. We set the bandwidth parameter value to

0.4 since the average MISE associated with this value was the smallest among others. The value

0.4 means that Locfit uses 40% of the total data in each estimation point.

BARS estimates the firing rate by using a cubic spline basis function with free parameters

on the number and location of knots [14]. The optimal knot configuration is determined by a

fully Bayesian approach with a reversible-jump Markov chain Monte Carlo (MCMC) engine

and locality heuristic procedure. BARS takes spike counts within bin intervals (histogram) cen-

tered on estimation times of interest. In our study, we used Matlab implementation of BARS

which is available at http://lib.stat.cmu.edu/~kass/bars/bars.html. We used a Poisson prior dis-

tribution on the number of knots and set the sample iterations to 5000 and burn-in samples to

500. We used spike counts within 10ms bin intervals as the input and mean of fitted function

as the output estimate.

We performed 100 repetitions of single-trial firing rate estimation using dataset testing 1.

MISE comparison of all the methods for three underlying rate functions and two models is

plotted as a boxplot (Fig 4). In all 6 scenarios, the medians, means, and interquartile ranges

of MISE computed by BAKS are smallest among other competing methods. As shown in

Fig 4a for IG model and Fig 4b for IIG model, BAKS (blue boxplot) yields significantly

lower MISE compared to the other methods. This demonstrates the effectiveness of BAKS

which features an adaptive bandwidth in estimating the underlying rate from single trial

spike train.

Fig 4. MISE comparison of BAKS with other methods. (a) MISE comparison for three rate functions (chirp, sine, and sawtooth)

from IG model. (b) MISE comparison for three rate functions (chirp, sine, and sawtooth) from IIG model. In each boxplot, black

lines show the medians; black circles indicate the means; colored solid boxes represent interquartile ranges; whiskers extend 1.5×
from upper and lower quartiles; gray crosses represent outliers.

https://doi.org/10.1371/journal.pone.0206794.g004
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Examples of the underlying rate functions and the estimated firing rates from all methods

are given in Fig 5. In this figure, BAKS (blue line) shows qualitatively good firing rate estimates

across 6 scenarios.

Comparison under different values of intensity and frequency

We studied the effect of different intensity and frequency values of the underlying rate func-

tions to the performance of BAKS. In real neural data, the number of spikes (intensity) and the

temporal fluctuation of spikes (frequency) may change slowly and rapidly. Therefore, we var-

ied the values of intensity and frequency parameters as described in Table 1 (Testing 2). Using

dataset testing 2, we performed 100 repetitions of single trial firing rate estimation from all

methods. The statistical summaries of MISE comparison across all methods for the cases of IG

and IIG models are shown in Fig 6 and S1 Fig, respectively. From a total of 24 cases (2 models,

3 rate functions and 4 variations of intensity and frequency), BAKS outperforms other com-

peting methods in 16 cases (66.67%) as shown in Fig 6 and S1 Fig. On average, BAKS performs

better than other methods. Large performance improvements by BAKS are achieved in the

cases of chirp and sawtooth rate functions with high frequency. This suggests that BAKS is

more effective at estimating a continuous or discontinuous rate function with rapidly changing

spike dynamic. On the other hand, BAKS exhibits poor performance in the case of sine rate

function with low frequency. This suggests that BAKS is not suitable for estimating a continu-

ous rate function with slowly changing spike dynamic.

Fig 5. Comparison of firing rate estimates across all methods. (a)-(c) Firing rate estimates from IG model with chirp, sine, and sawtooth rate functions, respectively.

(d)-(f) Firing rate estimates from IIG model with chirp, sine, and sawtooth rate functions, respectively. Black lines with gray-shaded regions indicate the underlying rate

functions. Black raster in the bottom of each plot represents the spike train generated from the associated model and underlying rate function.

https://doi.org/10.1371/journal.pone.0206794.g005
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Comparison under different values of shape parameter (γ)

The flexibility of BAKS when the assumption of ISI shape deviates from that of used during

the tuning phase is addressed in this section. Using dataset testing 3 (γ = {1, 2, � � � 10}), we per-

formed 100 repetitions of single trial firing rate estimation. From a total of 60 cases (2 models,

3 rate functions and 10 variations of γ values), BAKS shows superior performance over the

other methods in 55 cases (91.67%) as shown in Fig 7. In the remaining cases, BAKS results in

comparable performance to OKS and VKS which perform good under inhomogeneous Pois-

son model (corresponds to γ = 1). We also investigated the performance of BAKS when γ< 1

which corresponds to bursting activity. We performed firing rate estimations using synthetic

data generated with γ = {0.25, 0.5, 0.75}. The results show the superiority of BAKS to other

methods in all 18 scenarios (2 models, 3 rate functions, 3 variations of γ values) as depicted in

S2 Fig. These results demonstrate the flexibility of BAKS in estimating the underlying rates

under various ISI characteristics of spike train models.

Comparison under different numbers of trials

In offline analyses, the firing rate is typically estimated using spike trains from many similar

trials aggregated into a single, compact, spike train. To study the effect of increasing number

of trials, we assessed the performance of BAKS under different numbers of trials (tr = {5, 10,

Fig 6. MISE comparison under different values of intensity and frequency for IG model. (a) MISE comparison for

the case of low intensity. (b) MISE comparison for the case of high intensity. (c) MISE comparison for the case of low

frequency. (d) MISE comparison for the case of high frequency. In each boxplot, black lines show the medians; black

circles indicate the means; colored solid boxes represent interquartile ranges; whiskers extend 1.5× from upper and

lower quartiles; gray crosses represent outliers.

https://doi.org/10.1371/journal.pone.0206794.g006

Estimation of neuronal firing rate using BAKS

PLOS ONE | https://doi.org/10.1371/journal.pone.0206794 November 21, 2018 15 / 31

https://doi.org/10.1371/journal.pone.0206794.g006
https://doi.org/10.1371/journal.pone.0206794


20, 30}) using dataset testing 4. We performed firing rate estimation using all methods, each

for 100 times. MISE comparison for these multi-trial cases is depicted in Fig 8. The increasing

number of trials improves the performance of all methods as indicated by the decreasing MISE

values. However, with the increasing number of trials, the rate of improvement declines as the

MISE values reach their convergences. BAKS on average performs better than other methods

except BARS. Compared to Locfit, BAKS always shows significantly better performance in all

multi-trial cases. In comparison to OKS and VKS, BAKS shows worse performance only in the

cases of sine rate functions for tr� 10 (Fig 8b and 8e). However, compared to BARS, BAKS

shows inferior performance in most multi-trial cases with the exception of sawtooth rate cases

(tr< 30) as can be seen in Fig 8c and 8f. These overall results suggest that BAKS perform well

on multi-trial cases with moderate number of spikes. Nevertheless, when it comes to multi-

trial cases with large number of spikes, BARS always performs the best among others.

Comparison under different underlying rate functions

In practice, the true underlying rate function that generates the spiking data is unknown.

There is infinite spaces of rate function that underlie the spiking generation. During the tuning

phase, we used 3 underlying rate functions (chirp, sine and sawtooth) to tune the parameter of

BAKS that minimizes the MISE. Next, we studied the impact of different underlying rate func-

tion along with its intensity and frequency variations to the performance of BAKS. We per-

formed 100 repetitions of firing rate estimation using dataset testing 5 which corresponds to

single trial spike trains generated from Gaussian-damped sinusoidal rate function as in Eq

(26). This rate function is chosen as another representation of continuous rate functions with

Fig 7. MISE comparison under various values of shape parameter (γ). (a)-(c) MISE comparison for chirp, sine, and sawtooth rate functions, respectively, from IG

model. (d)-(f) MISE comparison for chirp, sine, and sawtooth rate functions, respectively, from IIG model. Vertical bars represent the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0206794.g007
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changing spike dynamic. The performance comparisons across all methods using this dataset

for IG and IIG models are plotted in Fig 9 and S3 Fig, respectively. From a total of 12 cases,

BAKS outperforms all other methods in 8 cases (66.67%).

We also evaluated the performance of BAKS using synthetic data generated from square

rate function which represents discontinuous rate functions with changing spike dynamic.

The choice of square rate function is inspired by other studies [12, 42]. We performed firing

rate estimations using synthetic data generated from IG model with square rate function. We

varied the values of frequency and intensity of the square rate function. From a total of 5 cases,

BAKS always shows superior performance than other methods as depicted in S5 Fig. These

overall results demonstrate the reliability of BAKS even when the underlying rate functions

depart from that of used during the tuning phase.

Examples of estimated firing rates from all methods for IG and IIG models with Gaussian-

damped sinusoidal rate function are shown in Fig 10 and S4 Fig, respectively, whereas exam-

ples of estimated firing rates for IG model with square rate function are depicted in S6 Fig.

Comparison of computational complexity

Computational complexity affects how fast the computation of each method is completed. A

computationally fast method allows significant reduction in data analysis process when work-

ing with large number of iterations. Furthermore, fast computation of firing rate is necessary

in online spike-based BMI experiments to generate real-time feedback to the subject. This sec-

tion describes and compares the computational complexity of each method.

Kernel smoothing technique has the advantage of being relatively simple and computation-

ally fast. This is especially the case when the bandwidth is fixed throughout the observation

Fig 8. MISE comparison under different numbers of trials. (a)-(c) MISE comparison for chirp, sine and sawtooth rate functions, respectively, for IG model. (d)-(f)

MISE comparison for chirp, sine and sawtooth rate functions, respectively, for IG model. Vertical bars (not clearly seen for tr� 5) represent the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0206794.g008
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interval such as in OKS. OKS uses binned spike counts within certain bin intervals (centered

at estimation times) and kernel function with fixed bandwidth to estimate firing rate. The fir-

ing rate computation is performed by convolving the binned spike counts with the kernel

function. OKS incorporates a Fast Fourier Transform (FFT) for computing the convolution to

further reduce the computation time. In OKS, the bandwidth is selected by minimizing mean

integrated squared error (MISE) function over the whole duration [12]. An extension to OKS

is VKS, which incorporates a variable bandwidth. This variable bandwidth is computed by

minimizing local MISE which requires large number of iterations with varying local interval.

This iterative process makes VKS significantly more complex than OKS. Unlike OKS and

VKS, Locfit uses a polynomial to fit log-rate function by maximizing a local likelihood func-

tion. Locfit has relatively low complexity because it uses a fixed bandwidth selected in manual

fashion; it does not employ an automatic selection of bandwidth. In this study, the bandwidth

(in term of nearest neighbor) of Locfit was set to 0.4, meaning that the computation involves

40% of the total data within the whole duration.

Our proposed method, BAKS, even though incorporating an automatic selection of adap-

tive bandwidth, it still offers relatively low computational complexity. This advantage arises

from the simple kernel smoothing technique with proper choice of prior distribution and ker-

nel function which leads to closed-form expression of posterior bandwidth. This in turn sim-

plifies the computation process of determining the adaptive bandwidth. This type of

convenient closed-form expression cannot be obtained in the case of BARS; thus, a numerical

approximation technique is required. BARS uses an iterative procedure involving computa-

tionally expensive Markov chain Monte Carlo (MCMC) technique and Bayes information

Fig 9. MISE comparison under different underlying rate functions for IG model. In each boxplot, black lines show the medians; black circles

indicate the means; colored solid boxes represent interquartile ranges; whiskers extend 1.5× from upper and lower quartiles; gray crosses

represent outliers.

https://doi.org/10.1371/journal.pone.0206794.g009
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criterion (BIC) to find the optimal smoothing parameters (i.e. number and location of knots).

This process takes relatively long computation to yield “converged” results.

The computational complexity among these methods can be indicated by the time required

for completing the firing rate estimation in computer simulation (i.e. computational runtime).

Since this runtime comparison is impacted by the code implementation of each method, this

should be viewed as an estimation of the real computational complexity of each method. The

code for BAKS can be downloaded from https://github.com/nurahmadi/BAKS. The OKS and

VKS codes can be downloaded from http://www.neuralengine.org/res/kernel.html. The Locfit

code is available through http://chronux.org/; while the BARS code is available through http://

lib.stat.cmu.edu/~kass/bars/bars.html. All the program codes were written and run in Matlab

R2016b software (The Mathworks Inc., Natick, MA) installed on Windows 7 64-bit PC with 8

Intel cores i7-4790 @3.6 GHz and RAM 16 GB. This comparison uses 100 repetitions of single

trial synthetic spike train data (2s duration) generated by IG model with chirp rate function.

As shown in Table 2, Locfit and OKS are the two fastest methods; both methods complete

the computation within the order of few milliseconds. VKS requires around 2 order of

Fig 10. Firing rate estimate comparison for IG model with Gaussian-damped sinusoidal rate function. (a)-(c) Firing rate estimates for the cases of low, medium and

high frequency, respectively. (d)-(f) Firing rate estimates for the cases of low, medium and high intensity, respectively. Black lines with gray-shaded regions indicate the

underlying rate functions. Black raster in the bottom of each plot represents a spike train generated from the associated underlying rate function.

https://doi.org/10.1371/journal.pone.0206794.g010

Table 2. Average runtime comparison of BAKS with other methods (in second).

Single trial case BAKS OKS VKS Locfit BARS

Low intensity 0.0016 0.0017 0.2340 0.0012 4.8438

Medium intensity 0.0062 0.0018 0.3306 0.0012 4.6563

High intentisy 0.0126 0.0017 0.3306 0.0014 4.5527

https://doi.org/10.1371/journal.pone.0206794.t002

Estimation of neuronal firing rate using BAKS

PLOS ONE | https://doi.org/10.1371/journal.pone.0206794 November 21, 2018 19 / 31

https://github.com/nurahmadi/BAKS
http://www.neuralengine.org/res/kernel.html
http://chronux.org/
http://lib.stat.cmu.edu/~kass/bars/bars.html
http://lib.stat.cmu.edu/~kass/bars/bars.html
https://doi.org/10.1371/journal.pone.0206794.g010
https://doi.org/10.1371/journal.pone.0206794.t002
https://doi.org/10.1371/journal.pone.0206794


magnitude longer time than both Locfit and OKS, whereas BARS requires the longest time (in

the order of seconds). In BARS parameter setting, we set burn-in iterations to 500 and sample

iterations to 5000. The BARS runtime can be reduced by setting the burn-in and sample itera-

tions to smaller values. However, this may result in decreasing accuracy as the trade-off. There-

fore, these parameters should be carefully set to find good trade-off between accuracy and

runtime. Wallstrom et al. suggested that the default values for burn-in and sample iterations

are 500 and 2000, respectively [43].

The runtime performance of BAKS is significantly better than that of both VKS and BARS,

but worse than that of Locfit and OKS. Table 2 shows that BAKS runtime is influenced by the

intensity of the underlying rate function (i.e. number of spikes), whereas other methods’ run-

time is relatively consistent. This is because other methods incorporate binning procedure for

the spiking data prior to their core computation. This makes the number of input data fed to

the core computation always uniform regardless of the number spikes within the observation

interval. This is not the case for BAKS. Our current BAKS code is a straightforward implemen-

tation of the formula described in section. In this study, we have not considered the efficient

implementation of BAKS. It is important to note, as neurons have a property of refractory

period, the number of spikes within observation interval is limited. This guarantees that under

single trial cases, even with current implementation code, the runtime performance of BAKS

will only decrease up to certain bound.

Application to real neural data

In this section, we apply our proposed method for estimating the neuronal firing rate from

real data obtained from two public neural databases, which are database for reaching experi-

ments and models (DREAM) and neural signal archive (NSA). The DREAM and NSA data-

bases can be accessed from http://crcns.org/ and http://www.neuralsignal.org/, respectively. In

the DREAM database, we used Flint_2012 dataset that were recorded from primary motor cor-

tex area (M1) of monkey’s brain when the subject was performing center-out reaching task.

Single unit spikes were obtained by using thresholding and offline sorting technique. More

detailed information on the recording tools and experimental setup can be found in [44]. In

the NSA database, we used nsa2004.1 dataset recorded from visual cortex (MT/V5) area when

random dot stimuli was being presented to a monkey [45]. The detailed electrophysiological

recording is given in [46].

Unlike the synthetic data in which the true underlying rate function is known (i.e. ground

truth), in the case of real neural data, we do not have access to the ground truth. Therefore, the

ground truth underlying rate in real neural data was estimated by averaging and smoothing

the spike counts across many similar trials. This procedure is similar to the work of Cunning-

ham et al. [27]. We assume that neurons respond similarly upon given same tasks/stimuli, e.g.

moving hand to the same target direction or observing the same visual stimuli. These similar

trials were selected such that each trial contains greater or equal to 50 spikes/s within observa-

tion interval (1s for the Flint_2012 dataset, 2s for the nsa2004.1 dataset). This limited number

of spikes was taken on the assumption that neurons likely fire more spikes when performing

tasks or receiving stimuli. In this work, we considered only neurons that satisfy this criterion

in more than 30 trials in order to obtain sufficiently small error as we observed in multi-trial

synthetic data (Fig 8). To this end, we obtained 47 (4) subdatasets with total trial of 1791 (134)

for the Flint_2012 (nsa2004.1) dataset. In the Flint_2012 dataset, we aligned the spiking

responses over same-direction reaching tasks to the time when the monkey started the actual

hand movement (indicated by cursor movement). To make the observation interval the same

from inherently different trial duration for each trial, we used on average 200ms before and
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800ms after the movement (total duration of 1s). In the nsa2004.1 dataset, the spiking

responses were aligned to the time when random moving dot stimuli was firstly presented to

the monkey. In this type of experiment, the trial duration was fixed to 2s.

To estimate the ground truth underlying rate, we employed trial averaging and smoothing

processes. Trial averaging process was done by superimposing the spike trains from single

neuron and averaging the spike counts within predefined bin interval (10ms) across all similar

trials. This trial averaging process still results in a coarse or jagged estimate. Therefore, to get a

smooth estimate of the underlying rate, a smoothing process is required. The smoothing pro-

cess was performed by using BARS. BARS was selected because, based on the synthetic data, it

demonstrates the most superior performance in multi-trial cases with a large number of trials

(see Fig 8). In these multi-trial cases where there exists spike train variability across trials, we

increased the sample iteration to 30,000 and burn-in samples to 5,000 to ensure the conver-

gence of BARS results. One of the advantages of BARS is that it provides the output estimate

along with its credible interval. In this work, we used 95% credible interval. When computing

MISE, we took into account this uncertainty. Before squaring and integrating across observa-

tion interval, we normalized the error between ground truth underlying rate obtained from

multi-trials (act as a reference) and single-trial estimated firing rate from method of interest by

dividing it with upper or lower credible interval. The upper (lower) interval was used when the

estimated firing rate is larger (smaller) than the reference. By doing so, we impose more (less)

weight when the credible interval is smaller (larger) to adjust the uncertainty brought by the

BARS estimation. We call this normalized MISE as a weighted MISE (WMISE) and formulate

it as follows,

WMISE � Dt
P
E l̂ðtÞ � lðtÞ

CðtÞ

� �2

ð27Þ

where C(t) is set to the upper credible interval when l̂ðtÞ � lðtÞ and the lower credible inter-

val when l̂ðtÞ < lðtÞ. These upper and lower credible intervals calculated by BARS are not

uniform.

We examined the performance comparison across methods under WMISE function. Based

on WMISE function, we derived three different metrics for performing the comparison. First,

we investigated the WMISE performance across total number of trials. Based on 1791 single-

trial firing rate estimation from 47 subdatasets in the Flint_2012 dataset, BAKS produces the

smallest WMISE mean (10.34) and median (6.85) as shown in Fig 11a. BAKS also produces

the best performance (mean = 19.77 and median = 13.56) in the case of nsa2004.1 dataset with

a total of 134 trials from 4 subdatasets (Fig 11d). Second, we measured the number of times (in

%) one method outperforms all the other methods. In both Flint_2012 and nsa2004.1 datasets,

BAKS more frequently (41.99% and 42.54% respectively) outperforms the other methods as

depicted in Fig 11b and 11e. In these cases, OKS comes as the second best method with 30.65%

and 17.16%. Third, we assessed the improvement (WMISE decrease in %) per trial made by

BAKS against other methods. Fig 11c and 11f describe the statistical summary of BAKS perfor-

mance compared to competing methods for the Flint_2012 and nsa2004.1 datasets, respec-

tively. A positive (negative) value means that the BAKS method outperforms (is outperformed

by) the others. As described in Fig 11c, the performance of BAKS is better than other methods

except OKS (see magenta boxplot; mean = -2.58% and median = 3.20%). This seems to contra-

dict the results when using the first and second metrics, in which BAKS outperforms all other

methods. To investigate this contradictory, we analyzed the performance of BAKS against

OKS across 1791 trials. It turns out that although BAKS more frequently outperforms OKS, in

a few trials, the magnitude of improvement made by OKS against BAKS is significantly large.
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However, in the nsa2004.1 dataset, BAKS is able to outperform all other methods (Fig 11f).

These results are in agreement with the two other metrics and the results obtained from the

synthetic datasets. As a summary, BAKS on average performs good compared to other meth-

ods in both real and synthetic datasets.

Some examples of single-trial firing rate estimations from all methods for both datasets are

shown in Fig 12. Fig 12a and 12b show the firing rate estimates from ‘N184’ and ‘E164’ cases in

the Flint_2012 dataset. Fig 12c and 12d show the firing rate estimates from ‘j032_25.6’ and

‘j032_51.2’ cases in the nsa2004.1 dataset.

Discussion

In this study, we propose a new method, referred to as BAKS, for estimating single-trial neuro-

nal firing rate. BAKS employs a kernel smoothing technique with adaptive bandwidth. This

differs from other kernel-based firing rate estimation methods in that its bandwidth parameter

is adaptively determined by an empirical Bayesian approach. BAKS has been developed with

the motivation to estimate firing rate from single spike train generated from underlying rate

function that dynamically changes over observed duration (i.e. non-stationary).

We tune the parameter of BAKS using synthetic spike train data stochastically sampled

from 3 rate functions (as representation of non-stationary underlying processes). These rate

functions are chirp, sine, and sawtooth expressed in Eqs (23), (24) and (25), respectively.

Using this tuned parameter, we evaluate the performance of BAKS using 5 synthetic datasets.

These datasets represent various setting and combination of underlying rate functions along

Fig 11. WMISE comparison across all firing rate estimation methods using real neural data. (a) Average WMISE comparison across all trials in

Flint_2012 dataset. (b) Number of times (in %) BAKS outperforms other methods in Flint_2012 datasets. (c) Single trial performance improvement

made by BAKS over competing methods in Flint_2012 datasets. (d)-(f) Similar to that of (a)-(c) but with nsa2004.1 dataset. In each boxplot, black

lines show the medians; black circles indicate the means; colored solid boxes represent interquartile ranges; whiskers extend 1.5× from upper and

lower quartiles; gray crosses represent outliers.

https://doi.org/10.1371/journal.pone.0206794.g011

Estimation of neuronal firing rate using BAKS

PLOS ONE | https://doi.org/10.1371/journal.pone.0206794 November 21, 2018 22 / 31

https://doi.org/10.1371/journal.pone.0206794.g011
https://doi.org/10.1371/journal.pone.0206794


with their intensity and frequency variations, ISI shape (parameter γ), and number of trials.

The performance comparison is measured under MISE function. By extensive simulations, we

demonstrate good performance of BAKS compared to two other kernel-based methods (OKS

and VKS) and two generalized nonparametric regression methods (Locfit and BARS). On

average, BAKS outperforms the other methods in single-trial estimation (smallest MISE)

across various settings. The adaptive bandwidth featured in the BAKS can adjust the different

spike densities within the observation interval. The results suggest that BAKS is suitable to

be used for single-trial analysis of neural data. The flexibility of BAKS has also been tested

by using spike train generated from same models with different values of shape parameter

(γ = {0.25, 0.5, 0.75, 1, 2, 3, � � � 10}). These various values represent diverse neuronal activities

which include bursting, irregular, and regular spiking. Furthermore, BAKS is also evaluated

using synthetic datasets generated from two other underlying rate functions, namely Gauss-

ian-damped sinusoidal rate and square rate functions. Consistent results are obtained despite

using these different characteristics of spike trains. BAKS does not assume specific distribution

on the spike train, rather it uses appropriately chosen prior distribution on the bandwidth

parameter. The prior distribution of the bandwidth is derived from Gamma prior distribution

on the precision parameter (inverse of square bandwidth). The precision parameter describes

how concentrated observed data are around the means of Gaussian kernel which are set to the

spike times. Since these spike times (i.e. sum of ISI) are conveniently modeled with Gamma

Fig 12. Firing rate estimates comparison for real neural data. (a) Firing rate estimates from ‘N184’ of Flint_2012

dataset (b) Firing rate estimates from ‘E164’ of Flint_2012 dataset (c) Firing rate estimates from ‘j032_25.6’ of

nsa2004.1 dataset. (d) Firing rate estimates from ‘j032_51.2’ of nsa2004.1 dataset. Black lines and gray-shaded regions

indicate the ‘true’ underlying rates and their 95% credible intervals, respectively. Black raster in the bottom of each plot

represents a single spike train generated from the associated underlying rate.

https://doi.org/10.1371/journal.pone.0206794.g012
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distribution [15, 27–30], the precision parameter is also assumed to be Gamma distribution.

This choice has been shown to yield good performance. On the other hand, all other compet-

ing methods (OKS, VKS, Locfit, and BARS) use a Poisson assumption [12–14], which is less

likely for the case of single-trial spike train; neurons have certain properties (e.g. refractory

and bursting) that cannot be described by the Poisson model [15, 16]. Numerous works have

shown the inadequacy of the Poisson model and proposed other more biophysically plausible

models (e.g. IG and IIG) [6, 15, 27–30, 36]. The deviation from Poisson assumption under sin-

gle-trial cases may lead OKS, VKS, Locfit and BARS to poor performance [12, 17].

We also compare the performance of BAKS method under multi-trial cases to study the

implication of increasing number of spikes within the same duration. Some topics of interest

in neuroscience use multi-trial spike train to obtain the firing rate. The results show that all

methods produce similar trend; the increasing number of trials up to a certain value (thresh-

old) improves the performance. However, as the number of trial increases, the rate of improve-

ment of each method and the threshold value differ from each other. BARS produces the most

significant performance improvement with the increasing number of trials. This significant

improvement of BARS is driven by two factors. First, BARS is built on the assumption that

spike counts within the bin intervals follow a Poisson distribution. This assumption is suitable

for multi-trial cases since superimposed spike train across trials approximate a Poison process

[12, 16]. Second, BARS employs a fully Bayesian approach and locality heuristic procedure to

update prior distribution of parameter (knots configuration) [14]. With the increasing number

of trials (i.e. number of spikes), BARS at the cost of high computational complexity can effec-

tively find the optimal knots configuration regardless of the prior. Nevertheless, in comparison

to OKS, VKS, and Locfit methods, BAKS still yields good performance. The overall results sug-

gest that BAKS is good at estimating firing rate from a low to moderate number of spikes (rep-

resented by single or few trials) from non-stationary underlying rate functions. BAKS

performs even significantly better in the cases of sawtooth and square rate functions which

indicates its suitability for estimating firing rate from discontinuous underlying rate functions.

After validation using synthetic data, BAKS is also tested using real neural data recorded

from motor and visual cortex of non-human primate (NHP). The motor neural data

(Flint_2012) is associated with center-out reaching tasks, whereas the visual neural data

(nsa2004.1) is associated with moving random-dot visual stimuli. Measuring the performance

in real neural data is a challenging due to unknown underlying rate. Hence, the underlying

rate is estimated by using multi-trial cases on the assumption that neurons respond similarly

upon given same tasks/stimuli. This procedure is similar to Cunningham’s work [27]. How-

ever, our procedure differs from [27] in that we use BARS instead of PSTH for smoothing pro-

cess. In practice, neuronal response may considerably differ across similar trials. To minimize

large variation in the spike trains, subsets from two datasets (Flint_2012 and nsa2004.1) are

selected with constraints explained in previous section. BARS is chosen to obtain a smooth

estimate of the ground truth underlying rate as it provides the smallest MISE in multi-trial

cases of synthetic data. To account for the estimation uncertainty produced by BARS,

weighted MISE (WMISE) is used for comparison. From a total of 6 cases (3 metrics and 2 real

datasets), BAKS outperforms all other methods in 5 cases. The overall results show that, on

average, BAKS yields good performance compared to all other competing methods. This is in

good agreement with the results obtained from single-trial synthetic data, which further dem-

onstrates the effectiveness of the proposed method in estimating single-trial neuronal firing

rate.

In BAKS, the selection of prior parameter (α) value is crucial since it will impact the perfor-

mance of the firing rate estimation. In this study, the value of α is tuned by minimizing MISE

on synthetic dataset during training phase. This dataset is generated from three rate functions
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(chirp, sine, sawtooth) with medium intensity and frequency. During testing phase, we use

datasets with various settings to evaluate the robustness of BAKS with this tuned parameter

(αt = 4). According to Eq (13), the mean of prior bandwidth is inversely proportional to the

value of α. In the cases of low frequency rate functions with the same intensity as of during the

tuning phase, the spike density tends to decrease, which in turn requires larger bandwidth. To

adapt to this, the value of α that minimizes MISE tends to become smaller. Since we use a fixed

αt, this results in poor performance of BAKS. On the other hand, in the cases of high fre-

quency, although there is performance degradation, BAKS still shows better performance

compared to all other methods. This may be caused by relatively small performance degrada-

tion resulted from the use of αt as opposed to larger value of α (for adapting to higher spike

density). As can be seen in (Fig 3), the performance difference from the use of αt = 4 to the

right (larger value of α) is smaller than to the left (smaller value of α). In other cases related

with different values of intensity (the frequency is kept same), the performance of BAKS is

consistently better among other methods. The change of intensity (thus the associated band-

width) can be partially compensated by the change in scale parameter (β) which is set to a

function proportional to the number of spikes. This indicates that the performance of BAKS is

less (more) sensitive to αt value when there is low (high) variation of frequency (i.e. temporal

fluctuation) of the underlying rate function.

In practice, the value of α parameter of BAKS can be tuned using synthetic datasets gener-

ated from spike train model whose parameters derived from statistical summary of real data-

sets of interest. By analyzing repeated trial spike trains on real neural datasets with the same

tasks/stimuli, we can estimate important underlying parameters such as temporal fluctuation,

mean and dynamic range of intensity, ISI characteristic, and shape of the rate function. These

information can then be fed to the spike train model to generate synthetic datasets for tuning

purpose. Using the same principle of minimizing MISE, we can tune α and use this tuned

value for firing rate estimation during testing phase.

BAKS offers simplicity as standard kernel-based method does, yet is effective in grasping

sudden and slow changes of firing rate in different regions within the observation interval.

Unlike BARS which is computationally demanding, BAKS is relatively fast owing to an analyti-

cal expression of bandwidth posterior density. This analytical expression leads to the adaptive

bandwidth determined in an exact way (not numerical approximation), which reduces the

computational complexity. With good performance and relatively low complexity, BAKS is

suitable to be used for research that require single-trial firing rate estimation. For example,

understanding the encoding mechanism of neurons in cognitive-related tasks and decoding

task parameter in brain-machine interface (BMI) applications. As a summary, the comparison

of BAKS with other methods is given in Table 3.

Table 3. Comparison summary of BAKS with other methods.

BAKS OKS VKS Locfit BARS

Adaptability to underlying dynamics ✓ − ✓ − ✓

Bayesian/probabilistic approach ✓ − − − ✓

Automatic selection of smoothing parameter ✓ ✓ ✓ − ✓

Single trial (low to moderate number of spikes) ◇◇◇ ◇◇ ◇◇ ◇◇ ◇◇
Multi trials (large number of spikes) ◇◇ ◇◇ ◇◇ ◇ ◇◇◇
Computational complexity (runtime) ◇◇◇ ◇◇◇ ◇◇ ◇◇◇ ◇

More diamonds mark (◇) indicates better (desirable) property.

https://doi.org/10.1371/journal.pone.0206794.t003
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Conclusion

We have presented a simple yet accurate method, referred to as BAKS, for estimating single-

trial neuronal firing rate based on a kernel smoothing technique with adaptive bandwidth. The

key idea of BAKS is to consider the bandwidth parameter as a random variable under an

empirical Bayesian framework. By using Bayes’ theorem with proper choice of kernel and

prior distribution functions, the bandwidth can be adaptively determined in an exact and

quick way. Extensive evaluations on both synthetic and real neural data show that BAKS yields

good performance compared to other competing methods. This suggests that BAKS has the

potential to improve single-trial analysis in neuroscience studies and decoding performance of

spike-based brain-machine interfaces (BMIs).

Appendix

Appendix 1. Posterior distribution of bandwidth

In this appendix, we derive a closed-form expression of the posterior density of bandwidth as

given in Eq (9). According to Bayes’ theorem, the posterior density is formulated as:

pðhðtÞjrðtÞÞ ¼
f̂ ðrðtÞjhðtÞÞpðhðtÞÞ

Z

f̂ ðrðtÞjhðtÞÞpðhðtÞÞdhðtÞ
ð28Þ

Using likelihood function as in Eq (7) and prior distribution of bandwidth as in Eq (6), we can

obtain:

pðhðtÞjrðtÞÞ ¼

1

n

Xn

i¼1
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2hðtÞ� 2a� 1

GðaÞb
a exp

(

�
1

bhðtÞ2

)

Z
1

n

Xn

i¼1

KhðtÞðt � tiÞ
2hðtÞ� 2a� 1

GðaÞb
a exp

(

�
1

bhðtÞ2

)

dhðtÞ

ð29Þ

By substituting a Gaussian kernel into the likelihood function and removing the same con-

stants in both numerator and denominator, Eq (29) then becomes:

pðhðtÞjrðtÞÞ ¼
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Let now consider the denominator of Eqs (28) and (30), which we can rewrite as:

Z

f̂ ðrðtÞjhðtÞÞpðhðtÞÞdhðtÞ ¼
Z Xn
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To simplify the calculation, let us define variables as follows:

sðtÞ ¼
1

hðtÞ2
; hðtÞ ¼ sðtÞ�

1
2; dhðtÞ ¼ �

1

2
sðtÞ�

3
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b

� �� 1

ð33Þ
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By substituting Eqs (32) and (33) into Eq (31), the integral function can be represented as:

Z

f̂ ðrðtÞjhðtÞÞpðhðtÞÞdhðtÞ ¼
1

2

Xn

i¼1
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sðtÞa�
1
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�
sðtÞ
yðtÞ

)

dsðtÞ ð34Þ

Eq (34) can be simplified so that the integral part forms Gamma probability density as follows:

Z
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Since the integration of Gamma probability density function is equal to 1,
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Eq 35 can then be analytically expressed as:
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Finally, by substituting Eq (37) back to the original equation of posterior density of bandwidth

in Eq (28), we can obtain the closed-form solution as in Eq (9):
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Xn

i¼1

hðtÞ� 2a� 2 exp

(

�
1

hðtÞ2
ðt � tiÞ

2

2
þ

1

b

� �)

1

2
G aþ

1

2

� �
Xn

i¼1

ðt � tiÞ
2

2
þ

1

b

� � � a� 1
2ð Þ

ð38Þ

Appendix 2. Adaptive bandwidth estimate

Under squared error loss function, the adaptive bandwidth can be estimated by using the pos-

terior mean as given by:

ĥ ðtÞ ¼
Z

hðtÞpðhðtÞjrðtÞÞdhðtÞ ð39Þ
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By substituting Eq (38) into Eq (39), we can obtain:
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Similar to the derivation procedure for the posterior distribution of bandwidth (Appendix 1),

by the change-of-variables rule using Eqs (32), (33) and (40) can be written as:
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By modifying the integral part of numerator to be an integration of Gamma probability density

function (which is equal to 1) as in Eq (35), we can obtain the final closed-form solution as in

Eq (11):

ĥðtÞ ¼
GðaÞ

Xn

i¼1

ðt � tiÞ
2

2
þ

1

b

� �� a

G aþ
1
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2

2
þ

1

b

� �� a� 1
2

ð42Þ

Supporting information

S1 Fig. MISE comparison under different values of intensity and frequency for IIG model.

(a) MISE comparison for the case of low intensity. (b) MISE comparison for the case of high

intensity. (c) MISE comparison for the case of low frequency. (d) MISE comparison for the

case of high frequency. In each boxplot, black lines show the medians; black circles indicate

the means; colored solid boxes represent interquartile ranges; whiskers extend 1.5× from

upper and lower quartiles; gray crosses represent outliers.

(EPS)

S2 Fig. MISE comparison under different values of shape parameter (γ = {0.25, 0.5, 0.75}).

(a)-(c) MISE comparison for chirp, sine, and sawtooth rate functions, respectively, from IG

model. (d)-(f) MISE comparison for chirp, sine, and sawtooth rate functions, respectively,

from IIG model. Vertical bars represent the 95% confidence intervals.

(EPS)

S3 Fig. MISE comparison for IIG model with Gaussian-damped sinusoidal rate function.

In each boxplot, black lines show the medians; black circles indicate the means; colored solid

boxes represent interquartile ranges; whiskers extend 1.5× from upper and lower quartiles;

gray crosses represent outliers.

(EPS)

S4 Fig. Firing rate estimate comparison for IIG model with Gaussian-damped sinusoidal

rate function. (a)-(c) Firing rate estimates for the cases of low, medium and high frequency,
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respectively. (d)-(f) Firing rate estimates for the cases of low, medium and high intensity,

respectively. Black lines with gray-shaded regions indicate the underlying rate functions. Black

raster in the bottom of each plot represents a spike train generated from the associated under-

lying rate function.

(EPS)

S5 Fig. MISE comparison for IG model with square rate function. In each boxplot, black

lines show the medians; black circles indicate the means; colored solid boxes represent inter-

quartile ranges; whiskers extend 1.5× from upper and lower quartiles; gray crosses represent

outliers.

(EPS)

S6 Fig. Firing rate estimate comparison for IG model with square rate function. (a)-(b) Fir-

ing rate estimates for the cases of low and high frequency, respectively. (c)-(d) Firing rate esti-

mates for the cases of low and high intensity, respectively. Black lines with gray-shaded regions

indicate the underlying rate functions.

(EPS)
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